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ABSTRACT: Hateful meme is a multimodal medium that combines images and texts. The potential hate content of
hateful memes has caused serious problems for social media security. The current hateful memes classification task
faces significant data scarcity challenges, and direct fine-tuning of large-scale pre-trained models often leads to severe
overfitting issues. In addition, it is a challenge to understand the underlying relationship between text and images
in the hateful memes. To address these issues, we propose a multimodal hateful memes classification model named
LABF, which is based on low-rank adapter layers and bidirectional gated feature fusion. Firstly, low-rank adapter
layers are adopted to learn the feature representation of the new dataset. This is achieved by introducing a small
number of additional parameters while retaining prior knowledge of the CLIP model, which effectively alleviates
the overfitting phenomenon. Secondly, a bidirectional gated feature fusion mechanism is designed to dynamically
adjust the interaction weights of text and image features to achieve finer cross-modal fusion. Experimental results
show that the method significantly outperforms existing methods on two public datasets, verifying its effectiveness
and robustness.
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1 Introduction
With the widespread use of social media, memes have become one of the most important ways of

spreading hate speech. A meme can be narrowly defined as a combination of images and words [1], usually
conveying information, ideas or culture through humor, satire or images. Hateful memes take advantage
of this form of communication to attack specific racial, religious or gender groups in a veiled or satirical
manner. Hateful memes have posed a serious threat to social harmony [2]. Therefore, how to accurately and
quickly identify hateful memes has become a popular research topic nowadays.

The content of hateful memes frequently intersects with sensitive domains such as cultural differences,
political ideologies, and racial identities. The collection of hateful meme datasets is constrained by legal
restrictions, resulting in the general small size of the currently available datasets. Under this background,
mainstream models like CLIP [3], despite their superior performance across various tasks, usually have a
large number of parameters. When trained on small scale datasets, these models tend to overfit, which greatly
affects their generalization ability, thus limiting their effectiveness in classifying hateful memes. Effectively
avoiding overfitting on small-scale datasets while ensuring that the model maintains high efficiency and
stability has become a critical issue in hateful memes classification. To address this challenge, recent studies
have proposed the use of the adapter technique [4–6] to fine-tune pre-trained models. By inserting a
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small number of trainable adapter modules into the pre-trained model without fully updating the entire
model, Adapter can effectively reduce the computational resource requirements while maintaining the strong
performance of the original model. Although adapters reduce the number of trainable parameters, the
additional parameters introduced by them may still exacerbate overfitting on small datasets. This creates
higher demands for the parameter optimization and lightweight design of the adapters.

Cross-modal feature fusion of text and images is important in hateful memes classification task. Images
or text alone may appear innocuous in the meme, but when images are combined with text, their underlying
true intent becomes apparent [7]. Accurately modeling the cross-modal semantic interactions is key to
enhancing the model’s ability to recognize hateful memes. Current multimodal fusion methods, such as the
use of concatenation in ConcatBERT [8] and elemental multiplication in Coinclip [9], tend to ignore the
complex interactions between modalities and the importance of the information. These methods simply stack
features at the feature level, lacking modeling of the semantic dependencies between modalities, making it
difficult to effectively capture the deep and dynamic interaction information between text and image. On the
other hand, these approaches often fail to flexibly adjust the weight of image and text features fusion based on
the specific meme content. The limitations of this fixed fusion strategy reduce the model’s ability to recognize
complex memes and constrain its generalization performance.

To solve the above problems, we propose the following methods. (1) We adopted the low-rank adapter
fine-tuning technique to alleviate the overfitting problem that arises in models trained on small datasets.
Influenced by LoRA [10] and COMPACTER [11], we use a low-rank matrix to optimize the design of the
feature adapter. By decomposing the feature mapping process into the product of two low-rank matrices,
we reduce the number of parameters in the model. This design makes the model more effective in avoiding
overfitting and improving training efficiency when fine-tuning on small-scale datasets. (2) To address the
issues of insufficient modeling of semantic dependencies between modalities and inflexible feature weight
adjustment in existing multimodal fusion methods, we designed a bidirectional gated feature fusion mech-
anism to model the dynamic semantic dependencies between image and text. This mechanism introduces
two gating networks to control the information flow between image and text features. Two learnable scaling
factors are used to dynamically adjust the fusion weights. The bidirectional gated feature fusion mechanism
enables adaptive modeling of modality importance in different contexts, thereby enhancing the expressive
power of cross-modal semantic interactions.

We summarize the following contributions:
To apply the CLIP model more efficiently for hateful memes classification, we employ a low-rank feature

adapter to lightly fine-tune CLIP. By updating only a small number of parameters, we significantly improve
its performance in the hateful memes classification task.

We design a Bidirectional Gated Feature Fusion (BiGFF) that dynamically adjusts the interaction
weights between text and image, enhancing the fusion capability of cross-modal information and more
accurately capturing potential offensive expressions in memes.

The proposed method achieves better performance than traditional methods on two small-scale
datasets, demonstrating its robustness and efficiency in hateful memes classification.

2 Related Work
In this section, we introduce related work from three aspects: feature extraction of hateful memes, fine-

tuning methods for multimodal models, and multimodal feature fusion methods.
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2.1 Feature Extraction of Hateful Memes
In early hateful memes classification, image and text encoders are often pre-trained independently

for image and text feature extraction. Wang et al. [12] used Twitter-RoBERTa [13] model to extract text
features and Swin Transformer V2 [14] model to extract image features and classify them through multilayer
perceptron (MLP) [15] fusion mechanism. Gomez et al. [16] used Inception v3 [17] model to extract image
features and used LSTM network combined with GloVe word embedding to extract textual features, and
multimodal fusion methods such as feature splicing and text convolution kernel to detect hate speech
in multimodal publications. Riza Velioglu et al. [18] achieved an effective detection of hate speech through
multimodal deep learning (VisualBERT) [19] and integrated learning.

With the proposal of the CLIP model, more and more research has started to apply it to multimodal
hateful memes detection task. CLIP makes cross-modal feature fusion more efficient and accurate by
mapping images and text to a shared embedding space through contrast learning. Burbi et al. [7] proposed
a multimodal hate speech detection method (ISSUES) that combines text inversion techniques [20] with
a frozen CLIP model. This method enhances the expressive power of textual features by mapping images
from emoticons to pseudo-word tokens in the CLIP text embedding space. Mei et al. [21] proposed a
multimodal hate speech detection method that combines retrieval-guided contrast learning (RGCL). This
method refines the embedding space by dynamically retrieving pseudo-positive and hard-negative examples
during training. This approach ensures that modals with the same label are tightly coupled while modals
with different labels are effectively separated. However, ISSUES freezes both the image and text encoders
while RGCL freezes the image encoder during training. This means that these models can only use the
feature representations learned during the pre-training phase of CLIP. These models cannot further adapt and
optimize these features based on the specific data of the hateful memes classification task. Siddhant Bikram
Shah et al. [22] proposed a multimodal hate speech detection framework named MemeCLIP. Although
this method freezes the parameters of both the CLIP visual encoder and the text encoder, it introduces
feature adapters [4], allowing the model to perform task-specific optimization while preserving the pre-
trained knowledge of CLIP. MemeCLIP improves multimodal meme classification by using feature adapters.
These adapters optimize features through two trainable linear layers. While these linear layers enhance
the model’s performance, they also add extra parameters resulting in increased computational overhead.
In contrast, our method applies a lightweight optimization to the adapters based on LoRA technology. By
decomposing the feature mapping process into the product of two low-rank matrices, we significantly reduce
the adapter’s parameter count while improving training efficiency. Unlike the traditional adapter approach
in MemeCLIP, the low-rank adapter is more efficient on small datasets, avoiding overfitting and enhancing
the robustness and accuracy of the hateful memes classification task. Additionally, whereas MemeCLIP
uses element-wise multiplication for image and text feature fusion, we employ the BiGFF mechanism.
This mechanism dynamically adjusts feature fusion through a gating network, allowing for more effective
modeling of the dependencies between image and text. By introducing Low-Rank Adapter and BIGFF feature
fusion mechanism, we further improve the hate modality detection ability of the model.

2.2 Fine-Tuning Methods for Multimodal Models
With the widespread application of multimodal pre-trained models, achieving parameter-efficient

fine-tuning (PEFT) while maintaining performance has emerged as a research focus. Traditional full-
scale fine-tuning methods involve a large number of parameters and high training costs. To address these
challenges, researchers have proposed various PEFT methods to meet the needs of different tasks and
modalities. In existing PEFT methods, prompt tuning is a widely adopted strategy. It primarily guides the
model to complete downstream tasks by incorporating learnable prompt vectors. Zhou et al. [23] proposed
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the Context Optimization method, which substitutes the fixed text prompt with a learnable context vector.
This approach enables optimization solely on the prompt while keeping the pre-trained model parameters
frozen. Chen et al. [24] proposed prompt learning with optimal Transport (PLOT) method, which learns
multiple prompt vectors for each class to enhance the diversity of representations. PLOT introduces local
visual features and leverages the optimal transport mechanism to achieve fine-grained alignment between
prompts and visual features. In addition to prompt learning, another common parameter-efficient fine-
tuning method is adapter, which is based on the core idea of inserting lightweight modules into the
backbone model to learn task-specific knowledge. Gao et al. [4] proposed the CLIP-Adapter method, which
inserts lightweight bottleneck adapter modules at the end of the visual or text branches. The newly learned
features are fused with the original representations through residual connections. Yu et al. [5] proposed task
residual tuning method, which effectively decouples pre-trained knowledge from task-specific knowledge
by introducing learnable task residuals. Zhang et al. [6] proposed the Tip-Adapter method, which achieves
efficient adaptation without fine-tuning the CLIP model parameters. By constructing a cache model based
on few-shot image features and labels, it enables training-free adaptation.

2.3 Multimodal Model Feature Fusion
In the task of multimodal hateful memes classification, effectively integrating image and text infor-

mation to achieve deeper semantic understanding is an important challenge. Lippe et al. [25] proposed
a multimodal hateful memes classification model based on an early fusion strategy. This method extracts
image features using Faster R-CNN [26] and text features using BERT [27]. The extracted features are
concatenated and fed into the Transformer encoder, where deep semantic fusion between the image and
text is achieved through a shared self-attention mechanism. Zichao Li et al. [28] employed ResNet [29] and
XLM-RoBERTa [30] to encode images and text in the multimodal hateful memes classification. They used a
bidirectional cross-attention feature fusion mechanism, treating the image and text as queries and applying
attention weighting to the other modality. Pramanick et al. [31] adopted a hierarchical fusion strategy,
achieving deep image-text fusion through intra-modal attention and cross-modal attention mechanisms.
Kumar et al. [32] proposed an intermediate fusion strategy based on CLIP features from a feature-structure
perspective. The core idea is to construct a feature interaction matrix, explicitly modeling the relationships
between all dimensional levels of the image and text features through their outer product. Hossain et al. [33]
proposed a multimodal fusion method based on alignment and attention mechanisms. This method
performs semantic alignment of image and text features using an additive attention mechanism, generates
context vectors, and finally concatenates them with the original features to form a multimodal representation.

3 Methodology
In this section, we will provide a detailed introduction to our proposed model, LABF, which is a CLIP-

based hateful memes classification model. First, we use the CLIP framework for initial image and text
feature extraction. Then, we introduce low-rank adapters to fine-tune the CLIP model to enhance the feature
representation. Subsequently, we employ a bidirectional gated fusion mechanism to fuse image and text
features, fully exploiting the complementarity between multimodal information. Finally, a cosine classifier is
used for the classification task. Fig. 1 illustrates the overall architecture of the LABF model. In the following,
we describe each component of the model in detail.
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Figure 1: General framework of the hateful memes classification model (LABF) based on low-rank adapter layers and
bidirectional gated feature fusion

3.1 Data Preprocessing
Before training the model, we perform the necessary data preprocessing on the text and images. For text

data, we replace invalid texts with ‘null’. We use the CLIP tokenize method to convert the text into tokens
of a fixed length, with a maximum length of 77. Texts exceeding this length were truncated to ensure input
consistency. For image data, we load the images and convert them to RGB format. We resized the images to
a uniform size of (224 × 224) to ensure consistency and normalization of image inputs.

3.2 Feature Extraction
CLIP is a multimodal deep learning model proposed by OpenAI that aims to achieve cross-modal

understanding by jointly learning image and text representations. The CLIP model is trained on a large-scale
image-text pairing dataset. This large-scale training allows CLIP to learn a wide range of visual and linguistic
features, which enhances its cross-modal generalization capabilities. CLIP contains an image encoder and
a text encoder. In order to avoid large-scale parameter tuning in the fine-tuning process, We freeze the
parameters of clip throughout the training. As shown in Eqs. (1) and (2), We use the image encoder ( fimage)
and the text encoder ( ftext) to extract image and text features.

vimage = fimage(I) (1)
vtext = ftext(T) (2)

where I is an image and T denotes the textual information extracted from the image.
We introduce a linear projection layer to effectively decouple image and text features and further

optimize their alignment in a shared latent space. In hateful memes classification tasks, images and text
often convey different semantic information, so we use a trainable linear projection layer that will map
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image features and text features to a space more suitable for the task requirements, thus improving their
expressiveness in a specific task. The linear projection operation can be described by Eqs. (3) and (4).

Fi = Li(vimage) (3)
Ft = Lt(vtext) (4)

where Li and Lt denote the projection layers applied to image and text features.

3.3 Low-Rank Adapters
Although CLIP is pre-trained on large-scale datasets and efficiently captures the relationship between

images and text, the model may show symptoms of overfitting when applied to smaller datasets. On small
datasets, models tend to memorize features of the training data and fail to generalize effectively. We add a
low-rank adapters after the CLIP encoder to further adjust and fine-tune the feature space representation.
Low-rank adapters allow the model to fine-tune on new data while retaining the pre-trained knowledge of
CLIP. We use residual connection to fuse the features of the linear projection layer and the features of the
low-rank adapters. We balance the fusion degree between the two features by the residual ratio α.

To enhance the feature representation capability of the model without introducing a large number of
parameters, the low-rank adapter we use primarily involves three steps: dimensionality reduction, non-linear
activation, and dimensionality expansion. First, the input features are reduced in dimensionality, followed
by a non-linear activation to enhance feature interaction capability, and then the dimensionality is expanded
to restore the representation. This design not only significantly reduces the number of parameters but also
preserves the model’s non-linear modeling ability. The low-rank adapter can be represented by Eq. (5).

y =Wup ⋅ gelu(Wdown ⋅ x) (5)

where x ∈ R1024 is the input feature, Wdown ∈ R32× 1024 is the dimensionality reduction matrix, Wup ∈ R1024×32

is the dimensionality expansion matrix, and gelu is the activation function.
To further reduce the number of parameters, we apply the concept of low-rank matrix factorization. The

dimensionality reduction matrix Wdown ∈ R32×1024 and the dimensionality expansion matrix Wup ∈ R1024×32

are approximated as the product of two rank-1 small matrices Ai and Bi . The dimensionality reduction matrix
Wdown and the dimensionality expansion matrix Wup can be specifically represented as Eqs. (6) and (7).

Wup = A1B1 (6)
Wdown = A2B2 (7)

where A1 ∈ R1024×1, B1 ∈ R1×32, A2 ∈ R32×1, and B2 ∈ R1×1024. By using this approach, we significantly reduce
the parameter scale while still preserving the model’s fundamental ability to represent features.

To ensure good numerical stability and gradient propagation during the early stages of training, we
apply the Xavier Uniform initialization strategy to the weight matrices Ai and Bi involved in the low-
rank decomposition. This method automatically adjusts the initialization interval based on the input and
output dimensions, with each weight element sampled from the following uniform distribution. The entire
initialization method can be represented by Eq. (8).

W ∼ U
⎡⎢⎢⎢⎣
−
√

6
nin + nout

,
√

6
nin + nout

⎤⎥⎥⎥⎦
(8)
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where U represents the uniform distribution, and nin and nout represent the input and output dimensions of
the layer. This initialization method helps maintain consistent output variance across layers during forward
propagation, while avoiding issues such as vanishing or exploding gradients, thereby accelerating the model’s
convergence process.

We use a low-rank adapter on both the image and text sides. Each adapter consists of two linear
transformations, which are used for down-sampling and up-sampling operations, to efficiently adjust the
feature space. The formula for the low-rank adapter can be represented by Eqs. (9) and (10).

AI(Fi) =Wup ⋅ gelu(Wdown ⋅ Fi) = (A1B1) ⋅ gelu((A2B2) ⋅ Fi) (9)
AT(Ft) =Wup ⋅ gelu(Wdown ⋅ Ft) = (A1B1) ⋅ gelu((A2B2) ⋅ Ft) (10)

where Fi is the image feature, Ft is the text feature, AI is the image low-rank adapter, and AT is the text
low-rank adapter.

As shown in Eqs. (11) and (12), we obtain the text representation FT and the image representation FI
after integrating the output of the low-rank adapter with the linear projection.

FI = αAI(Fi) + (1 − α)Fi (11)
FT = αAT(Ft) + (1 − α)Ft (12)

Under the condition of freezing the CLIP parameters, we learn new features using the low-rank
adapter and fuse the original features with the new features from the low-rank adapter through residual
connections. This approach not only retains useful information of the original features but also allows
the new features to better complement the original ones, thereby enhancing the model’s representational
ability and performance. In this way, we enhance the model’s ability to capture complex patterns in the data
without significantly increasing computational complexity, further improving performance in hateful memes
classification tasks.

3.4 Bidirectional Gated Feature Fusion
In this study, we propose a bidirectional gated feature fusion called BiGFF, which aims to effec-

tively fuse image and text features. In hateful memes classification task, images and text often contain
complementary information. It is crucial to capture the complex relationship between images and text.
BiGFF further improves the effectiveness of feature fusion and the task performance by introducing a
bidirectional gating mechanism that dynamically adjusts the interaction between image and text features.
BiGFF allows each modality to selectively absorb information from the other modality based on its own
context, thus mitigating conflicts caused by semantic inconsistencies. Additionally, multimodal features
often contain redundant information, and the gating signals generated by BiGFF can dynamically adjust
the fusion intensity, suppressing irrelevant interfering features and retaining discriminative information.
This bidirectional, adjustable interaction mechanism enables more precise modeling of the deep semantic
dependencies between modalities.

The BiGFF module controls the interactions between image and text features through two gating net-
works. The specific structure is shown in Fig. 2. We generate a composite feature vector by concatenating text
and image features. Then, we map the concatenated features to the range [0, 1] using a linear transformation
followed by a Sigmoid activation function to generate the gated signals GI and GT . The two gating networks
can be represented by Eqs. (13) and (14).

GI = σ(l(Concat(FI , FT))) (13)
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GT = σ(l(Concat(FT , FI))) (14)

where Concat denotes the stitching of text features FT and image features FI , l is a linear mapping function,
σ is a Sigmoid activation function, and the outputs GI and GT are gated signals from image to text and from
text to image, which are used to control the strength of the interaction between the features.

Figure 2: Schematic diagram of Bidirectional Gated Feature Fusion module

As shown in Eqs. (15) and (16), after generating the gating signals, BiGFF uses these signals to regulate
the interaction between image and text features, thus enhancing the effective information flow between them.
At the same time, we introduce learnable scaling factors λ and μ to control the interaction intensity, resulting
in the updated image feature F′I and text feature F′T .

F′I = λ(GT ⊙ FT) ⊕ FI (15)
F′T = μ(GI ⊙ FI) ⊕ FT (16)

where ⊙ denotes an element-by-element multiplication operation, ⊕ denotes an element-by-element addi-
tion operation, and λ and μ are learnable scaling factors that control the strength of the modulation. The
scaling factors λ and μ are initialized to zero, ensuring that the model initially uses only the raw features
during the early stages of training. Subsequently, the model gradually learns the fusion strategy throughout
the training process. Through this modulation, BiGFF can flexibly adjust the interaction between image and
text features to ensure their effective fusion.
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As shown in Eq. (17), F′I and F′T are fused by element-by-element multiplication to obtain the final
fused feature representation.

Ff = F′I ⊙ F′T (17)

BiGFF can dynamically adjust the fusion degree of image and text features to ensure the effective
combination of the two modalities. This gated mechanism enables the model to automatically adjust the
information flow between images and texts according to different inputs, which enhances the ability of feature
expression in the classification of hateful memes.

3.5 Classification
We further process the fused multimodal features through multiple fully connected layers with ReLU

activation functions. As shown in Eq. (18), we use a cosine classifier for classification. The cosine classifier
improves the generalization ability of the model by normalizing and dynamically adjusting the size of the
category weights so that the model can better adapt to the feature distributions of different categories during
the training process. Specifically, the cosine classifier classifies the input feature vectors based on the cosine
similarity between them and the center vector of each category.

C =
Fl ⋅ Ff

∥Fl∥2∥Ff ∥2
(18)

where Fl denotes the center vector of each category, Ff denotes the final fused features, and C denotes the
similarity score. Throughout the training process, we use the cross-entropy loss function for training, so that
the model can more accurately classify hate modalities.

4 Experimentation
In this section, we present the details of dataset, evaluation metrics. Then, we compare our model with

several strong baselines. Finally, a detailed analysis is presented.

4.1 Datasets
To evaluate the effectiveness of the LABF model, we conducted experiments on two representative

datasets: PrideMM and HarMeme. The PrideMM dataset focuses on hate speech directed at the LGBTQ+
community, encompassing discrimination and hateful behaviors related to gender identity and sexual
orientation. The HarMeme dataset focuses on hate speech associated with COVID-19, primarily including
racial discrimination and biased remarks that emerged during the pandemic. Through experiments on these
two datasets, we can explore the model’s performance across different social contexts. Experiments on these
datasets, which have distinct social backgrounds and themes, enabled us to validate the effectiveness and
adaptability of the LABF model. The statistical information of the datasets is shown in Table 1.

Table 1: Statistical information on the datasets

Dataset HarMeme PrideMM

Memes Harmful Harmless Memes Hate Not hate
Train 3013 1064 1949 4328 2120 2208

Validation 177 61 116 228 115 113

(Continued)
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Table 1 (continued)

Dataset HarMeme PrideMM

Memes Harmful Harmless Memes Hate Not hate
Test 354 124 230 507 247 260

Total 3544 1249 2295 5063 2482 2581

PrideMM [22] dataset was constructed by Siddhant Bikram Shah et al. The dataset was manually
searched and extracted relevant images from three popular social media platforms, Facebook, Twitter and
Reddit, which were filtered with hashtags related to LGBTQ+ discussions. The dataset contains a total of
5063 images, of which the training set contains 4328 images, the validation set contains 228 images and the
test set contains 507 images. In the training set, 2120 images are hate memes and 2208 images are non-hate
memes. In the validation set, 115 images are hate memes and 113 are non-hate memes; in the test set, 247 are
hate memes and 260 are non-hate memes. The entire dataset consists of 2482 hate memes and 2581 non-hate
memes. The PrideMM dataset is primarily centered around the LGBTQ+movement. Accurate identification
of hate speech requires combining the specific LGBTQ+ socio-political context with the unique emotional
expressions and cultural context of the field. This presents a significant challenge to existing methods.

The HarMeme dataset [34] was constructed by Pramanick et al. The COVID-19-related memes were
collected using various search services and social media platforms, covering keywords such as ‘Wuhan virus
meme’, ‘U.S. election meme’, and ‘U.S. election meme’. The keywords covered include ‘Wuhan virus meme’,
‘US election meme’ and ‘COVID vaccine meme’. Initially, 5027 memes were collected, but 3544 valid memes
were retained after de-emphasis and filtering. The dataset contains 3544 images, of which the training set
contains 3013 images, the validation set contains 177 images, and the test set contains 354 images. The
training set contains 1064 images labeled as harmful and 1949 images labeled as harmless; the validation set
includes 61 images labeled as harmful and 116 images labeled as harmless; the test set consists of 124 images
labeled as harmful and 230 images labeled as harmless. The memes in the HarMeme dataset convey their
potential harmfulness through satire, political satire, or ambiguity. The harmfulness of many contents needs
to be assessed in the context of the underlying social, political, and cultural backgrounds, which presents a
significant challenge to the model’s detection capabilities.

4.2 Experimental Setup
4.2.1 Evaluation Metrics

For the evaluation metrics of the model, we use accuracy and AUC as the evaluation criteria for the
experiments. The formulas for accuracy and AUC are shown in Eqs. (19) and (20).

Accuracy = TP + TN
TP + TN + FP + FN

(19)

AUC = ∫
1

0

TP
TP + FN

⋅ FP
FP + TN

d ( FP
FP + TN

) (20)

• TP represents the number of samples correctly predicted as positive by the model.
• TN represents the number of samples correctly predicted as negative by the model.
• FP represents the number of negative samples incorrectly predicted as positive by the model.
• FN represents the number of positive samples incorrectly predicted as negative by the model.
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AUC measures the model’s performance across all possible classification thresholds, providing a
comprehensive reflection of the model’s ability to distinguish between hate speech and non-hate speech.
Compared to evaluation metrics based on a single threshold, AUC is not affected by a specific threshold and
offers a more holistic assessment of the model’s performance.

4.2.2 Experimental Parameters
The performance of deep learning models is highly dependent on experimental parameters and

environment settings. The model parameters we used are shown in the following Table 2. In this study, all
experiments were conducted on an NVIDIA GeForce RTX 3070 GPU, using PyTorch version 2.5.0. The
learning rate was set to 1 × 10−4, the batch size to 16, and the number of training epochs to 10. The residual
ratio of the low-rank feature adapter was set to 0.2, and the rank of the low-rank adapter was set to 1. We used
AdamW as the optimizer with a weight decay of 1 × 10−4. The ViT-L/14 model is used as the image encoder.

Table 2: Model parameter settings

Parameter Value
CLIP model ViT-L/14
Batch size 16

Learning rate 1 × 10−4

Epochs 10
Optimizer AdamW

Weight decay 1 × 10−4

Residual ratio 0.2
Rank of low-rank adapter 1

4.3 Comparison with Baselines
We compare our model (LABF) with some strong baselines. The following is a brief description of

the model: On the unimodal approach we use CLIP image encoder and CLIP text encoder as image-based
and text-based approaches. On multimodal methods we have selected MOMENTA [31], Hate-CLIPper [32],
ISSUES [7], MemCLIP [22] and our method LABF for comparison. The relevant results are shown in Table 3.

Table 3: The comparison results between LABF and existing methods, with results marked with an asterisk (∗) imported
from the literature

Models PrideMM Acc PrideMM AUC HarMeme Acc HarMeme AUC
CLIP Text-Only 69.6 76.9 78.8 86.6

CLIP Image-Only 73.0 79.0 79.1 91.0
CLIP 72.0 79.1 81.1 89.4

MOMENTA [31]* 72.2 78.6 82.4 87.9
Hate-CLIPper [32]* 75.5 83.1 83.9 91.9

ISSUES [7]* 74.7 84.2 81.6 92.8
MemeCLIP [22] 75.8 84.5 83.6 93.2

LABF 76.7 85.0 84.5 93.9



1874 Comput Mater Contin. 2025;84(1)

The overall performance comparison of LABF is shown in Table 2. We can see that the performance of
CLIP Text-Only is lower than that of CLIP Image-Only, which indicates that CLIP Image-Only can extract
representations that capture both the image and overlaid text semantics. The performance of unimodal
models on both datasets is worse than most multimodal models, demonstrating the necessity of using
multimodal processing for hateful memes classification.

Although MOMENTA, Hate-CLIPper, and ISSUES all use the CLIP model as the image and text
encoder, they freeze the CLIP parameters during training, which limits the model’s ability to learn features
from new data and makes it difficult to adapt to subtle changes in data when faced with complex multimodal
tasks. Although MemeCLIP introduces Feature Adapters to learn features from new data while retaining
CLIP’s prior knowledge, its use of element-wise multiplication as a feature fusion strategy fails to fully
promote interaction between image and text features, which somewhat affects the model’s ability to capture
cross-modal semantic relationships and limits its performance in multimodal classification tasks.

Our model achieves the best performance on both datasets. Experimental results show that Low-
Rank Adapters play a key role in enhancing the CLIP model’s adaptability to small-scale datasets. By
employing low-rank matrix factorization techniques, Low-rank Adapters not only effectively reduce the
model’s parameter count but also significantly decreases the risk of overfitting, enabling the model to achieve
more robust learning and generalization on limited data. The BiGFF mechanism dynamically adjusts the
interaction weights between text and image features, significantly improving the accuracy of cross-modal
information fusion.

4.4 Ablation Experiments
4.4.1 Ablation Study of Each Module

To evaluate the effectiveness of the proposed model and analyze the contribution of each component to
the overall performance, we conducted comprehensive ablation experiments. The experimental results are
shown in Table 4.

Table 4: Results of ablation experiments

Module PrideMM HarMeme

LR BiGFF CC Acc AUC Acc AUC
72.0 79.1 81.1 89.4

✓ 75.5 84.6 84.5 92.0
✓ 75.3 84.0 84.7 93.0

✓ 75.7 84.4 84.5 92.5
✓ ✓ 74.4 83.5 84.7 92.4

✓ ✓ 75.7 84.3 83.1 92.5
✓ ✓ 75.3 84.0 81.9 91.6
✓ ✓ ✓ 76.7 85.0 84.5 93.9

In this study, we evaluated the impact of the Low-Rank Adapter (LR), Bidirectional Gated Feature
Fusion module (BiGFF), and Cosine Classifier (CC) on the performance of the multimodal hate speech
detection model through ablation experiments.

The results show that the LR module significantly improved the model’s accuracy and AUC, particularly
in enhancing feature representation and model adaptability. Since we froze the parameters of the CLIP model
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and fine-tuned it through low-rank adapters, the low-rank adapters effectively enhanced the model’s learning
capability in the hateful memes classification task. They demonstrated significant advantages in feature
learning and task adaptability. When the low-rank adapters were removed, the model lost this fine-grained
feature processing and task adaptability, resulting in a substantial performance drop.

BIGFF further improves the model’s performance by effectively fusing multimodal features, especially in
the HarMeme model, where its performance is particularly outstanding. BiGFF utilizes a gating mechanism
to dynamically adjust image and text features, making the interaction between the two modalities more
refined. In BiGFF, the dynamic weights generated by the gating network can modulate the features based
on their similarity and importance, effectively enhancing the relevance and fusion effect of features from
different modalities. Ablation experiment results show that after removing BiGFF, the model’s ability to fuse
multimodal features significantly decreases, leading to weakened feature interaction, which in turn impacts
performance improvement.

The CC module compares the joint image-text features with class representations using cosine simi-
larity, improving classification performance. It plays a key role in multimodal hate speech detection tasks,
particularly when combined with the low-rank adapter (LR) and BiGFF. This combination optimizes feature
fusion and further improves classification accuracy. Overall, the synergy of LR, BIGFF, and CC enables the
model to achieve optimal performance in both accuracy and AUC, demonstrating the critical role of these
modules in multimodal hate speech detection tasks.

4.4.2 The Effect of Image Size Variation on Model Robustness
To validate the model’s effectiveness and robustness across different scenarios, experiments

were conducted on two datasets, PrideMM and HarMeme, with different input image sizes
(224 × 224, 128 × 128, 256 × 256, 512 × 512). The experimental results of Table 5 show the model’s
performance stability and adaptability across different datasets and image sizes. While variations in image
size had a minor impact on the model’s performance, the overall performance maintained a high level.
These results show the model’s ability to maintain strong performance when faced with different datasets
and input sizes, thereby validating its effectiveness and robustness in diverse scenarios.

Table 5: Performance of the model at different image sizes

Image size PrideMM Acc PrideMM Auc HarMeme Acc HarMeme Auc
(224 × 224) 76.7 85.0 84.5 93.9
(128 × 128) 75.3 83.2 83.1 93.0
(256 × 256) 75.1 83.4 83.9 93.5
(512 × 512) 74.2 83.8 83.6 93.4

4.4.3 Performance of Low-Rank Adapter across Different Modalities
In this experiment, we evaluated the performance of Low-Rank Adapter across different modalities.

As shown in Table 6, on the PrideMM dataset, the model performance is comparable when the Low-Rank
Adapter is applied to either the image modality or the text modality individually. When the Low-Rank
Adapter is applied to both modalities simultaneously, a substantial enhancement in model performance is
observed. These results indicate that simultaneous adaptation of both modalities facilitates more effective
feature optimization, thereby enhancing the overall performance of the model.
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On the HarMeme dataset, while the accuracy across all configurations remains comparable, the AUC
values are lower when the Low-Rank Adapter is applied to either the image modality or the text modality
individually. When the Low-Rank Adapter is applied to both modalities, the AUC value increases. This
demonstrates that simultaneously fine-tuning both image and text modalities can better enhance the model’s
learning effectiveness for individual modalities, further boosting the model’s robustness and performance.

Table 6: Performance of low-rank adapter across different modalities

Adapter type PrideMM Acc PrideMM Auc HarMeme Acc HarMeme Auc
Image adapter 74.4 84.1 84.2 93.1
Text adapter 74.4 83.9 84.5 92.7

Low rank adapter 76.7 85.0 84.5 93.9

4.4.4 Comparison of Different Multimodal Feature Fusion Methods
To further evaluate the effectiveness of the BIGFF fusion mechanism, we compared the performance

of different feature fusion methods on the PrideMM and HarMeme datasets. The fusion methods mainly
include feature concat, element-wise multiplication, DualCo-Attention [2], and Combiner [35].

The experimental results of Table 7 show that BiGFF exhibits significant advantages in multimodal
tasks. Traditional methods such as Concat and element-wise multiplication have similar performance but
fail to effectively capture the complex interactions between image and text features, resulting in mediocre
performance on both datasets. Dual Co-Attention enhances feature interaction between text and image
by introducing an attention mechanism. However, the inclusion of the attention mechanism increases
the model’s computational complexity and optimization difficulty, leading to poorer performance on the
HarMeme dataset. Combiner provides effective feature fusion but lacks the dynamic adjustment capability
of BiGFF, which leads to insufficient exploitation of modality potentials when handling complex interactions
between image and text.

Table 7: Comparison of different multimodal feature fusion methods

Fusion method PrideMM Acc PrideMM Auc HarMeme Acc HarMeme Auc
Concat 75.7 83.7 82.2 92.1

Element-wise multiplication 75.0 83.7 83.1 92.8
DualCo-Attention [2] 76.9 84.3 81.1 91.7

Combiner [35] 75.1 84.5 85.3 91.6
BIGFF 76.7 85.0 84.5 93.9

Our proposed BiGFF method achieves the best performance on both the PrideMM and HarMeme
datasets. BiGFF dynamically adjusts the fusion strength of image and text features through a bidirectional
gating mechanism, enhancing the interaction and information flow between modalities. This characteristic
enables BiGFF to perform excellently in hateful memes classification task.

4.5 Parameter Sensitivity Analysis
During the training process of a deep learning model, the choice of hyperparameters has a crucial

impact on the performance of the model. Different hyperparameter settings may significantly change the
convergence speed, final performance, and computational efficiency of the model. Therefore, to further
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improve the performance of the model in the multimodal hate speech detection task, we designed a series
of key parameter experiments focusing on the analysis of three core hyperparameters: the learning rate, the
feature fusion ratio, and the rank of the Low-Rank Adapters. By systematically tuning these hyperparameters
and evaluating their effects on model accuracy, AUC metrics.

4.5.1 Learning Rate
Appropriately setting the learning rate is critical to improving model performance. Keeping other

parameters constant, the results of experiment in Fig. 3 show that the model performs best on all datasets
when the learning rate is 1.0 × 10−4. The AUC values of 85.0 and 93.9 for PrideMM and HarMeme are the
best performances. When the learning rate is 1.0 × 10−5, the model performance decreases significantly, with
AUC of 83.2 and 93.1 on the two datasets. The model performance improves with the gradual increase of the
learning rate, but when the learning rate is more than 1.0 × 10−4, the model’s performance starts to decrease,
which may lead to instability in the training process. Therefore, the optimal learning rate should be set to
1.0 × 10−4.

Figure 3: Trend of AUC at different learning rates

4.5.2 Residual Ratio
We analyzed the impact of the low-rank feature adapter residual ratio α on model performance. The

experimental results in Fig. 4 show that the residual ratio α of the low-rank feature adapter plays a key role
in balancing the CLIP prior features and the new features learned by the adapter, significantly affecting the
model’s performance. When α = 0.1, the model mainly relies on CLIP pretrained features and the tuning
effect of the adapter is weak, resulting in relatively low AUC values (PrideMM: 84.3, HarMeme: 93.7). As α
increases to 0.2, the role of the adapter increases and the feature representation capability is optimized, with
AUC values improving to 85.0 and 93.9 for optimal performance. However, as α continues to increase to 0.3
and above, the model performance begins to degrade due to over-tuning of the adapter, which introduces
noise and weakens the effectiveness of the features. Therefore, α = 0.2 was determined to be the optimal
configuration, allowing the model to achieve efficient adaptation to downstream data while retaining CLIP
priori knowledge, thus improving classification performance.
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Figure 4: Trends in AUC with different residual ratios

4.5.3 Rank of Adapter
In the Low-Rank Adapter, the update of the matrix weights ΔW is achieved through the product of

two low-rank matrices, A ∈ Rd×r and B ∈ Rr×k , where the rank r controls the amount of information the
Low-Rank Adapter can learn and represent. A higher rank implies larger dimensions for the low-rank
matrices A and B, enabling the Low-Rank Adapter to capture more complex patterns and weight adjustments,
thus enhancing the model’s adaptability [10]. However, as the rank increases, the number of parameters
and computational complexity also grow, which may lead to performance degradation and an increased
risk of overfitting, especially when the data size is limited. The number of trainable parameters introduced
by r × (d + k), meaning that higher ranks require more memory and computational resources, potentially
impacting the model’s performance. Therefore, we explore the impact of varying the rank of the low-rank
matrices in the Low-Rank Adapter on the model’s performance.

The experimental results in Table 8 show that the Low-Rank Adapter rank significantly affects the model
performance. As the rank increases, the accuracy and AUC values on the PrideMM dataset tend to decrease,
and the model performance regresses especially when the rank is 4 and above. Specifically, at rank 1, the
PrideMM and HarMeme datasets have the best performance with AUCs of 85.0 and 93.9, whereas at rank
16, although the accuracy of the HarMeme dataset is maintained at 84.5, its AUC value decreases to 91.8, and
the performance of PrideMM is further degraded. This suggests that higher-ranked adapters may lead to an
increase in computational complexity and introduce the risk of overfitting. In summary, a lower rank is the
optimal choice for this task, as it can ensure higher performance while avoiding excessive adapter size and
computational overhead.

Table 8: Effect of different low-rank adapter ranks on model performance

Rank PrideMM HarMeme Adapter size

Acc AUC Acc AUC
1 76.7 85.0 84.5 93.9 3.2 k
2 76.5 83.8 85.0 93.6 5.3 k
4 74.8 84.8 84.5 92.5 9.5 k

(Continued)
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Table 8 (continued)

Rank PrideMM HarMeme Adapter size

Acc AUC Acc AUC
8 76.3 84.3 83.6 93.8 18.0 k
16 74.6 83.7 84.5 91.8 34.8 k

To further validate the impact of different adapter designs on model performance, we conducted a
comparative experiment to examine the differences in model performance between low-rank adapter and
clip-adapter [4].

The experimental results in Table 9 show that low-rank adapter outperform clip-adapter on the
PrideMM and HarMeme datasets. The low-rank adapter achieves 0.850 on PrideMM and 0.939 on HarMeme,
outperforming the clip-adapter with scores of 0.846 and 0.928. Additionally, low-rank adapter has only 3.2 k
parameters, significantly fewer than Clip-adapter’s 524 k, demonstrating a clear parameter advantage. This
indicates that low-rank adapter can significantly enhance model performance while maintaining a lower
computational cost, validating the effectiveness of LoRA technology in adapter design.

Table 9: The impact of two different adapters on model performance

Adapter PrideMM HarMeme Adapter size

Acc AUC Acc AUC
Low-Rank Adapter 0.767 0.850 0.845 0.939 3.2 k

Clip-Adapter [4] 0.759 0.846 0.839 0.928 524 k

4.5.4 Sensitivity Analysis of the BiGFF Module’s Scaling Factors
In this experiment, we conducted a sensitivity analysis of the learnable scaling factors λ and μ in the

BiGFF module to explore their impact on the model’s performance on the PrideMM and HarMeme datasets.
As shown in Table 10, when the initialized values of λ and μ are 0, the model achieves the best performance
with AUC values of 0.85 and 0.939 on the PrideMM and HarMeme datasets. As the initialization values of
λ and μ increase, the model performance gradually decreases. When the initialization values of λ and μ
are 2, the AUC values of the model on the two datasets drop to 0.841 and 0.923. This trend suggests that
strong feature interactions at the beginning of model training weaken the effect of feature fusion and lead to
a decrease in model performance.

Table 10: Sensitivity analysis of BiGFF module’s scaling factors on model performance

λ, μ PrideMM HarMeme

Acc AUC Acc AUC
(0, 0) 0.767 0.850 0.845 0.939

(0.5, 0.5) 0.761 0.845 0.853 0.932
(1, 1) 0.757 0.842 0.853 0.930
(2, 2) 0.755 0.841 0.831 0.923
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5 Conclusions and Future Work
In this study, we propose a multimodal classification framework that fuses Low-Rank Adapter with Bidi-

rectional Gated Feature Fusion. By introducing Low-Rank Adapter layers into the CLIP model, we achieve
efficient migration of pre-trained knowledge; The designed bidirectional gated network can dynamically
adjust the strength of the interaction between image and text features, which significantly improves the
ability to capture cross-modal semantics. Experimental results show that the proposed model outperforms
the existing baseline model on both datasets.

In future work, we will further explore and optimize the model from two directions. On one hand,
we plan to introduce dynamic adaptation mechanisms and explore more efficient low-rank parameter
decomposition strategies to further enhance the flexibility and computational performance of the LABF
framework. On the other hand, we will introduce adversarial learning mechanisms to enhance the model’s
robustness and generalization ability in the presence of adversarial examples or high-noise scenarios. We
consider leveraging adversarial training methods and adversarial example generation techniques. These
approaches offer new possibilities for building robust representations in multimodal models. We believe that
by incorporating adversarial noise perturbation mechanisms tailored for both image and text modalities, the
LABF model is expected to maintain stable performance in more complex and dynamic real-world scenarios.
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