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ABSTRACT: Identifying cloud IP usage scenarios is critical for cybersecurity applications, yet existing machine
learning methods rely heavily on numerous features, resulting in high complexity and low interpretability. To address
these issues, this paper proposes an approach to identify cloud IPs from the perspective of network attributes. We
employ data mining and crowdsourced collection strategies to gather IP addresses from various usage scenarios, which
including cloud IPs and non-cloud IPs. On this basis, we establish a cloud IP identification feature set that includes
attributes such as Autonomous System Number (ASN) and organization information. By analyzing the differences in
the properties of different IP usage scenarios in the detection results, we can find out the factors that are conducive to
cloud IP identification. Experimental evaluation demonstrates that the proposed method achieves a high identification
accuracy of 96.67%, surpassing the performance of traditional machine learning models such as CNN, MLP, XGBoost,
KNN, SVM, and Decision Tree, whose accuracies range between 81% and 92%. Furthermore, this study reveals that
latency and port information exhibit insufficient discrimination power for distinguishing cloud IP from non-cloud IP
scenarios, highlighting ASN as a simpler, more interpretable, and resource-efficient criterion. To facilitate reproducible
research, datasets and codes are publicly released.
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1 Introduction
Cloud IP identification aims to determine whether an IP belongs to a cloud service provider (such as

Alibaba Cloud, Tencent Cloud, AWS, Google Cloud, etc.) and identify its specific service type by analyzing
the IP address and its related features. Cloud IP identification has a wide range of applications, especially in
the fields of network security [1–4], access control [5,6], and data analysis [7,8].

In recent years, the rapid development and widespread adoption of cloud computing technologies have
led to an ever-expanding variety and scale of cloud services, thereby rendering the network environment
increasingly complex and dynamic. Traditional IP identification methods often fall short in managing this
complexity, creating an urgent need for advanced data processing and intelligent analysis techniques to
enhance both accuracy and efficiency. Consequently, both academic and industrial research communities
have gradually incorporated machine learning, deep learning, and big data approaches into the study of
cloud IP identification. These efforts focus on extracting richer and more nuanced IP feature information
from multiple dimensions, with the goal of achieving rapid and precise identification even when confronted
with massive datasets and diverse service scenarios. Such endeavors not only offer a theoretical foundation
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for refining subsequent methodologies but also underpin practical applications in security defense and
resource allocation.

Existing studies rely heavily on high-dimensional features combined with deep neural networks,
often overlooking the fundamental question: “Which network attributes actually contribute to the effec-
tive and interpretable identification of cloud IPs?” This gap has hindered the development of simpler,
computationally-efficient methods that offer clear insights into their decision processes. Moreover, few
existing methods systematically examine the discriminatory power of different network features—such as
latency, ports, and ASN (Autonomous System Number is a unique identifier assigned to a network operator
or organization (e.g., Internet Service Providers, cloud providers). Each ASN distinctly identifies a network
entity responsible for managing IP address blocks and routing policies on the Internet)—for IP usage
scenario recognition.

To bridge this gap, this study proposes an approach that explicitly investigates network attribute differ-
ences between cloud and non-cloud IP scenarios, focusing on identifying favorable discriminative features.
By systematically analyzing attributes like latency, port availability, and ASN organizational information
across diverse IP scenarios, our work seeks to uncover clear and interpretable factors that enhance cloud
IP identification accuracy. Our research is motivated by the practical need for simpler and interpretable
methods capable of effectively distinguishing cloud IPs from other IP usage scenarios.

Traditional IP identification methods struggle to effectively manage this complexity, prompting
researchers and practitioners to adopt machine learning (ML), deep learning (DL), and big data analytics for
cloud IP identification. These approaches focus on extracting richer IP features from multiple dimensions
to enhance identification accuracy even in large-scale datasets. Zhou et al. [9] proposed a comprehensive
feature extraction method, focusing on geographic locations, path, ports, and WHOIS information, but
primarily relied on deep neural networks, resulting in limited interpretability and high computational
cost. Wang et al. [10] proposed a deep ensemble learning approach to classify IP blocks into typical usage
scenarios, improving accuracy but maintaining high complexity. Li et al. [11] introduced a continuous
neural tree model capable of handling complex feature interactions but similarly lacked transparency in
decision-making processes. Furthermore, Liu et al. [12] utilized a graph-based framework (GraphCyber) that
improved computational efficiency but still depended on deep neural network structures that were difficult
to interpret clearly.

Despite these advancements, a clear research gap remains. Specifically, previous studies primarily
employ complex DL approaches and large-scale, high-dimensional feature spaces, yet seldom explicitly
analyze which network attributes truly contribute to the effective and interpretable identification of cloud
IP scenarios [13]. This gap limits our understanding of IP usage scenarios and restricts the development
of simpler, interpretable, and more resource-efficient methods. Moreover, few studies have systematically
evaluated the discriminatory power of different network attributes—such as latency, port openness, and
ASN—in differentiating cloud IPs from non-cloud IPs [14,15].

To address these gaps, our research focuses explicitly on analyzing network attributes to identify the
favorable factors for cloud IP identification. We emphasize computational efficiency, interpretability, and
resource efficiency, aspects which are frequently overlooked in existing approaches.

The specific objectives of this research are:

• To systematically analyze different network attributes (including latency, port openness, and ASN
organization information) to determine their effectiveness in distinguishing cloud IPs from non-cloud
IP usage scenarios.
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• To explicitly identify favorable network attributes that significantly enhance the accuracy and inter-
pretability of cloud IP recognition.

• To propose a simplified, computationally efficient cloud IP identification method primarily based on
ASN organizational attributes, overcoming the complexity and opacity associated with traditional deep
learning approaches.

• To provide publicly accessible datasets and reproducible experimental methods, thereby facilitating
further research in cloud IP recognition within the research community.

The main contributions of this work are as follows:

• We propose a cloud IP identification method based on ASN organization information. The latency
connectivity, port opening information, and ASN organization information in the cloud IP network
attributes are different from those in the non-cloud IP network attributes. Based on these properties,
we use network differences to capture richer correlation feature information. Therefore, we obtain
experimental results with higher robustness and generalization.

• We have achieved effective identification of cloud IP. We verified that the cloud IP usage scenario and
the locally hosted non-cloud IP usage scenario have similar characteristics such as latency and ports.
However, these characteristics cannot be used to distinguish between cloud IP and non-cloud IP. On the
other hand, IP ranges under the same ASN have similar IP usage scenarios. Based on the experimental
results, we summarize the obstacles and advantages of cloud IP usage scenario identification. This
provides theoretical support for more accurate identification of cloud IP usage scenarios.

• Community Contribution. In order to enable more scholars to study IP usage scenarios, we pro-
vide real data to the community and open up our research methods. The open-source repository
is available at: https://gitee.com/henan-normal-university_4_0/determination-of-favorable-factors-fo
r-cloud-ip-recognition-technology.git (accessed on 6 April 2025).

The structure of the paper is organized as follows. Section 1 introduces the background and moti-
vation for cloud IP identification. Section 2 presents related work, highlighting the limitations of existing
approaches. Section 3 discusses the key challenges and the rationale behind our research. In Section 4,
we describe our proposed cloud IP recognition methodology, including data collection and feature
design. Section 5 provides a detailed analysis of the network attributes–latency, port, and ASN and eval-
uates their discriminative power. Section 6 presents the experimental evaluation, including setup, dataset
construction, comparative model results, and justification for selecting ASN as the core feature. Section 7
summarizes the findings and outlines directions for future research. Section 8 discusses the limitations of
the proposed approach.

2 Related Work
Cloud IP identification technology has recently garnered significant attention, especially with the rapid

expansion and adoption of cloud computing infrastructure. Existing methods primarily leverage machine
learning and deep learning techniques to address IP usage scenario identification.

Zhou et al. (2022) [9] proposed a comprehensive feature extraction framework that uses various
IP attributes, including geographic location, path information, ports, domain name services (DNS), and
WHOIS information, achieving promising results in distinguishing IP usage scenarios. Wang et al. (2022)
introduced a deep ensemble learning model designed to classify IP blocks into four typical usage scenarios:
home broadband, private enterprise networks, mobile networks, and data centers. They improved decision
tree models to achieve higher accuracy within specific regions. Similarly, Li et al. (2024) introduced a deep

https://gitee.com/henan-normal-university_4_0/determination-of-favorable-factors-for-cloud-ip-recognition-technology.git
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continuous neural tree model capable of effectively handling complex feature interactions and transfer
learning capabilities across different regions.

Additionally, Liu et al. (2024) [12] developed the GraphCyber framework based on graph neural
networks (GNN) to improve computational efficiency. Their approach divides IP nodes into regional blocks,
enhancing computational efficiency while identifying IP usage scenarios at a granular level. However, despite
the performance gains, the intrinsic “black-box” nature of deep learning and the requirement for high
computational resources remain critical limitations.

Previous studies have also extensively relied on IP geolocation databases. However, these databases’
internal methodologies for cloud IP identification are not publicly accessible, contributing further to
challenges related to computational overhead and interpretability.

To address these limitations, our study adopts an alternative approach, emphasizing interpretability
and efficiency by systematically analyzing network attributes such as latency, port openness, and ASNs. Our
method specifically investigates which network attributes significantly contribute to accurately distinguish-
ing cloud IP usage scenarios from non-cloud IPs. In contrast to previous methods, our approach highlights
interpretability, systematically examining the contribution of each network attribute to the identification
accuracy and efficiency of cloud IP recognition.

In summary, while prior studies focus on enhancing accuracy through complex feature sets and deep
learning techniques, our research seeks to identify simple, interpretable, and computationally efficient
features, significantly contributing to practical and effective cloud IP identification.

3 Challenges and Motivations
Cloud IP identification is increasingly important for maintaining network security and stability,

yet current methodologies face several critical challenges that hinder practical deployment and limit
their effectiveness.

Firstly, existing cloud IP recognition methods are highly complex and lack interpretability. Most
current approaches, including deep learning and ensemble models, utilize large feature sets and com-
plex model architectures. Although these methods achieve relatively high classification accuracy, their
complexity imposes significant computational overhead and makes the decision-making process opaque.
Consequently, network administrators often find it challenging to trust and implement these models in
practical security applications.

Secondly, a significant obstacle in cloud IP recognition research is the lack of publicly available and
reliable datasets. Existing IP datasets are often privately held, incomplete, or inaccessible due to national or
organizational restrictions. This situation severely limits reproducibility, independent verification of results,
and fair comparative analysis of different IP identification techniques. Thus, developing publicly accessible
datasets is critical for enabling standardized evaluations and community-wide progress in this area.

Thirdly, the current literature has not adequately addressed the fundamental differences in IP traffic
characteristics across different usage scenarios. Most studies focus on simply classifying IPs without deeply
analyzing or interpreting the network-level attributes (such as latency patterns, open ports, or ASN distri-
butions) that distinguish cloud IP from non-cloud IP scenarios. Without understanding these underlying
characteristics, it remains difficult to establish meaningful theoretical foundations or clear guidelines for IP
scenario differentiation.

Lastly, there is a noticeable absence of clearly defined criteria or baselines for identifying IP usage
scenarios. The field lacks standardized benchmarks or criteria for systematically distinguishing cloud IP
addresses from others, causing inconsistent methodologies and conclusions across studies. Establishing
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transparent and interpretable criteria or bases for classification is therefore necessary to advance rigorous
and comparable research efforts.

Motivated by these key challenges, this study aims to systematically address the gaps highlighted
above. Specifically, we focus on clearly identifying discriminative network attributes (e.g., ASN, latency,
ports) that effectively separate cloud IPs from other usage scenarios. By emphasizing interpretability and
resource efficiency, we aim to develop a simplified yet robust approach that overcomes existing limitations.
Additionally, we provide openly accessible datasets and reproducible methods, facilitating community-wide
validation and further research in cloud IP recognition.

4 Coud IP Recognition Method
Based on this motivation and goal, this paper uses data mining methods to obtain IP addresses in

different IP usage scenarios and detect the network attributes of IP addresses. By analyzing the differences
in network attribute values, the favorable factors and obstacles for identifying cloud IPs are obtained. Then,
according to these favorable factors, we can accurately identify cloud IP usage scenarios, as shown in Fig. 1.

Figure 1: Framework for identifying cloud IP usage scenarios based on favorable factors

Step 1: Data Collection and Preprocessing
We begin by gathering IP address data from multiple usage scenarios to ensure comprehensive coverage.

Specifically, we collect:
Cloud IP addresses from well-known providers, including Alibaba Cloud, Tencent Cloud, Amazon

Web Services (AWS), and Google Cloud.
Non-cloud IP addresses from various real-world scenarios: university campus networks, mobile base

stations, dedicated line users, and home broadband users.
All raw data undergoes a rigorous cleaning process to remove duplicates, resolve inconsistencies, and

eliminate outliers. We also cross-verify IP addresses with existing databases (e.g., IP2Location, IPIP, and
Chun Zhen) to ensure reliability.
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Step 2: Network Attributes Measurement
Once the dataset is established, we employ standardized measurement tools to probe the network

attributes of each IP address:
Latency (Round-Trip Time): We use the Ping command (ICMP protocol) to measure RTT from our

probing server to the target IP. This value reflects the network latency.
Port Scanning: We leverage the MASSCAN tool to scan ports ranging from 1 to 10,000, capturing

which ports are open on the target IP. This data reveals potential services and provides insight into the IP’s
usage scenario.

ASN: Using a GeoLite2 ASN Database (by MaxMind) lookup, we retrieve the ASN for each IP, thereby
identifying its organizational affiliation. This step is crucial for analyzing whether an IP is managed by a cloud
provider, a national telecom operator, or an independent enterprise network.

In this study, we utilized the GeoLite2 ASN database, which is a freely available product provided
by MaxMind. The GeoLite2 ASN database offers comprehensive global IP-to-ASN mappings, is updated
regularly monthly, and is widely recognized and adopted by the research community. While commercial
databases such as MaxMind’s GeoIP2 ASN provide more frequent updates (weekly) and higher granular-
ity, GeoLite2 ASN was specifically selected for this research due to its open-access nature, making our
experiments easily reproducible and verifiable by other researchers without incurring additional cost or
access restrictions. The broad usage and community acceptance of GeoLite2 also enable straightforward
comparisons with other studies in cloud IP identification.

Step 3: Feature Analysis and Discriminative Attribute Selection
Next, we systematically analyze and compare the measured network attributes across different IP

usage scenarios:
Latency: We investigate whether latency alone can reliably distinguish cloud IPs from non-cloud IPs.

Our findings indicate that simple RTT measurements often fail to discriminate effectively, largely due to
varied user configurations and potential ICMP filtering.

Port Information: We examine port scanning results for both cloud and non-cloud IPs. Although certain
ports (e.g., 80, 443, 22) appear frequently in cloud environments, they also show up in many self-hosted or
dedicated-line scenarios, reducing their discriminative power.

ASN Organization Information: We then focus on ASN-based attributes. Experimental results strongly
suggest that IP addresses within the same ASN tend to share similar usage scenarios. Cloud providers
typically manage dedicated ASNs, whereas non-cloud IPs are associated with ISPs offering general broad-
band, base station services, or enterprise networks. Therefore, ASN emerges as a particularly strong and
interpretable feature for distinguishing cloud IP usage scenarios from others.

Step 4: Cloud IP Identification and Validation
After isolating ASN as the most effective factor:
Model Building and Comparison: We construct a cloud IP identification model based primarily on

ASN organization attributes. For a thorough performance comparison, we also train multiple machine
learning models (e.g., MLP, CNN, XGBoost, KNN, SVM, Decision Tree) on various network feature subsets
(including latency and port information).

Evaluation Metrics: We evaluate each model’s classification accuracy and AUC (Area Under the ROC
Curve). Our proposed ASN-based method achieves an accuracy of 96.67%, surpassing the performance of
traditional machine learning models, which exhibit accuracies between 81% and 92%.
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Interpretability and Overhead Analysis: Since our approach relies on a single, well-defined feature ASN,
it significantly reduces computational overhead and increases transparency in decision-making. By contrast,
deep learning methods often operate as “black-box” solutions and require extensive computational resources.

Experimental Validation: We verify the robustness of our approach using IP addresses from different
regions (China and Europe) and a diverse range of usage scenarios (e.g., base station IPs, home broadband,
data center hosting). This confirms that focusing on ASN effectively generalizes across multiple contexts.

5 Feature Analysis
In order to reveal the essential differences in different IP usage scenarios, this paper conducts network

detection on IP addresses from the perspective of network attributes. It is well known that each IP address has
its own unique network attribute characteristics. Next, we analyze the obstacles and advantages of identifying
cloud IP from the perspectives of latency, port, and ASN.

5.1 Latency
Latency refers to the time required from sending a request to receiving a response, and it is one of

the key indicators for measuring computer network performance. For many applications (especially real-
time applications, such as video conferencing, online gaming, and remote control), latency is critical to their
performance. The main components of latency include sending latency, transmission latency, processing
latency and queuing latency. The latency used in our paper is the sum of them.

This paper uses the Ping command to measure latency. The round-trip time (RTT) is calculated by
calculating the time difference between sending an ICMP Echo Request to the destination address and
receiving the Echo Reply. The measurement and analysis of latency is of great significance for identifying the
organizational entities corresponding to different types of IP addresses.

In network communication, different IP usage scenarios have varying requirements for connectivity.
However, when an IP address serves as a web server, the host associated with the IP address must provide web
services to the user. This requires mutual connectivity between the server host and the user host. Therefore,
whether it is a cloud IP or a non-cloud IP, the connectivity of IP addresses in different usage scenarios needs
to be connected. This may cause the ICMP protocol to respond.

In the experiment of studying IP address connectivity in different usage scenarios, we discovered a
problem. When a host has an ICMP filtering policy, it will not respond to ICMP requests. Even if the host
remains connected.

5.2 Port
Ports are used to identify different applications or services. Each data packet contains a destination port

number. And the receiver uses this port number to forward the packet to the corresponding application
or service.

The characteristic of port value is that it has extremely strong application service differences. The port
value range is 0~65,535. It means that a host can open ports for up to 65,536 services at the same time and
distinguish application differences of them. Ports are divided into well-known ports, registered ports and
dynamic or private ports. The well-known ports range from 0 to 1023. They have the strongest application
service differentiation, and each port number is fixed to the corresponding service. The range of registered
ports is from 1024 to 49,151. These ports are also bound to certain services, but the port numbers are not
fixed. For example, port 3306 is commonly associated with MySQL databases. However, the MySQL database
does not force users to use port 3306. Additionally, in order to protect the database from attacks, users often
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avoid exposing their database port and even changing the database port number on their own initiative.
Other ports are dynamic or private ports. Other ports are dynamic or private ports. They are usually used
for short-lived connections or temporary services and range from 49,152 to 65,535.

It can be seen that analyzing the port values between 0–1023 is the most valuable for research. By
analyzing the differences in port values in different usage scenarios, we can identify IP usage scenarios. It is
the focus of our paper.

During the port detection process, the detection result of the port value is usually inaccurate. The
main reasons for this inaccuracy are as follows. First, the target host may use firewalls or network filters
to restrict access to certain ports. Second, In the case of an unstable network environment or a target host
response timeout, the detection tool may not be able to accurately obtain the response information of the
port status. Finally, Technologies such as port masquerading or dynamic ports prevent us from obtaining
port information.

It is necessary to study the port feedback rate within the network segment. By filtering the protocol, the
host no longer responds to protocol requests. Users can prevent network attacks and protect host security.
On the other hand, the feedback rate of the port in the network segment can be used to reflect the network
attribute characteristics of the IP usage scenario corresponding to the host. Other researchers have proposed
that the geographical location and latency of /24 network segments are very similar [16]. In this paper, the
port feedback rate within the /24 network segment is used.

5.3 Autonomous System Number
An ASN is a number that used to uniquely identify different Autonomous Systems (AS) on the Internet.

The allocation of ASNs is managed by the Internet Assigned Numbers Authority (IANA) and regional
internet registries (such as ARIN in the US, RIPE NCC in Europe, APNIC in the Asia-Pacific region,
etc.) [17,18]. ASN not only identifies an Autonomous System but also contains information (about the range
of IP addresses) managed by it. The number of IP addresses that an Autonomous System can manage ranges
from a few to hundreds of millions.

In communication protocols, ASN is primarily associated with the Border Gateway Protocol (BGP).
BGP uses ASN to identify different Autonomous Systems and plays a crucial role in routing decisions. When
a BGP router receives routing information from other autonomous systems, it uses the ASN to determine the
validity and priority of the route. Additionally, BGP can prevent routing loops by checking the list of ASNs
traversed in routing updates. This ensures that duplicate paths do not occur. Multiprotocol BGP (MP-BGP)
also relies on ASN to support routing propagation for IPv6 and other protocols. Therefore, ASN plays a vital
role in BGP. It ensures the effective exchange of routing information between different Autonomous Systems,
and maintains the stability and reachability of the internet.

Based on ASN information, we can effectively distinguish IP addresses assigned to cloud providers from
those allocated to traditional network operators. Each ASN belongs exclusively to one organization, making
it a reliable feature for classifying cloud vs. non-cloud IP usage. Unlike large telecom carriers that manage
a diverse array of residential and enterprise IP allocations, cloud providers typically operate specialized
ASNs dedicated to data centers and virtual machines. This clear organizational boundary captured by ASN
significantly enhances the interpretability and accuracy of identifying cloud IP addresses. Furthermore, while
mobile data usage scenarios often span multiple ASNs, cloud IP addresses tend to be concentrated under a
smaller set of well-defined ASNs, further simplifying detection.

Based on the above analysis, the ASN information for mobile data usage scenarios is relatively complex.
The ASN information for cloud IP usage scenarios is simple and centralized.
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6 Experimental Evaluation
In this section, we will study the network attribute characteristics of cloud IPs and analyze the

network attributes of IP addresses from different scenarios. We aim to identify network attributes that are
advantageous for recognizing cloud IPs and those that are disadvantageous.

6.1 Experimental Setup
In this paper, we conducted network probing on a large ground truth dataset from the perspective of

network attributes. The probing source was an Alibaba Cloud server host with the following configuration,
dual-core processor, 2 GB RAM, 100 Mbps peak bandwidth, running Linux CentOS 7.6. The geographic
locations of the server were in Hangzhou, China; Shanghai, China; London, UK; Frankfurt, Germany; and
Silicon Valley, USA. This paper used the network measurement tool Scamper (developed by the Cooperative
Association for Internet Data Analysis (CAIDA)) to probe IP addresses. The tool includes commands such
as Ping and Traceroute, and supports protocols such as ICMP, UDP, TCP, etc. For port scanning, we used the
MASSCAN tool, which can quickly perform batch scans on target IP ports. The scan was configured to target
ports within the range of 1 to 10,000. For querying the ASN, our paper used the ASN database provided by
Max-Mind, which is used to look up the ASN corresponding to each IP address.

6.2 Dataset
We have made the dataset and related experimental results of this article public. This section will

describe the dataset collection and cleaning process to ensure the accuracy of IP addresses in IP usage
scenarios.

6.2.1 Cloud IP Addresses
Our paper first collected the IP addresses of Tencent Cloud, Alibaba Cloud, Amazon Cloud, and

Google Cloud.
Cloud service providers such as Tencent Cloud and Alibaba Cloud do not disclose relevant cloud IP

address documents. Therefore, this paper first screens out IP addresses whose Internet service providers
(ISPs) are Tencent Cloud and Alibaba Cloud from three major databases (IPIP [19], Chun Zhen [20], and
IP2location [21]). Then, we searched for city-level location results for these IP addresses and organized the
ones belonging to the same city based on the results.

Two cloud service providers, Amazon Cloud and Google Cloud, provide cloud IP documentation on
their official websites. The documentation clearly specifies the IP ranges and the regions associated with
those IP ranges. In this paper, we select IP addresses from major cities in the United States and Europe, then
include the IP addresses within the specified ranges in the dataset. The dataset size for each city is shown
in Table 1.

Table 1: Ground truth IP address dataset for different IP usage scenarios

IP Quantity Distribution regions IP Quantity Distribution regions
Alibaba
cloud

2,243,850 Shanghai, Beijing,
Hangzhou, Shenzhen,

Qingdao

Google
Cloud

4,820,736 Las Vegas, Salt Lake City,
Council Bluffs, The

Dalles, Dallas, Berlin,
Frankfurt, Turin, Paris

(Continued)
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Table 1 (continued)

IP Quantity Distribution regions IP Quantity Distribution regions
Tencent

cloud
2,162,937 Shanghai, Beijing,

Nanjing, Tianjin,
Guangzhou, Chengdu,

Jinan, Shenzhen,
Chongqing

Base
Station

37,864 Zhengzhou, Jinan,
Dezhou, Luoyang,
Beijing, Weifang,

Zaozhuang, Xi’an, Hefei,
Xinxiang

Amazon
cloud

2,5191,115 London, Paris, Ireland,
Frankfurt, Oregon,

California

Non-
Cloud

184,275 China, Europe

Building on this foundation, we further processed the raw data to ensure its reliability and suitability
for subsequent analysis. Initially, a rigorous data cleaning procedure was implemented to remove duplicate
entries, resolve inconsistencies, and eliminate any outliers that could skew the analysis. Each IP address was
cross validated across multiple sources to confirm its legitimacy and correct geographic assignment. Follow-
ing this, we enriched the dataset by integrating additional network attributes such as latency measurements,
port usage patterns, and self-assigned system identifiers, which are critical for distinguishing between cloud
and non-cloud IP scenarios.

Subsequently, feature extraction was carried out using a combination of statistical analysis and domain-
specific heuristics to derive meaningful indicators from the raw network data. These features were then
normalized and categorized to facilitate an accurate comparison across different regions and service
providers. Our methodology emphasizes not only computational efficiency but also the interpretability of
the resulting model, addressing the common challenges posed by black-box deep learning approaches.

6.2.2 Base Station IP Addresses
This paper adopts crowdsourcing method to obtain base station IP. Before data was collected, users were

clearly instructed not to use Wi-Fi for data connections. And they can only submit their IP addresses over
cellular data connections. After users submitted their IP addresses, the city corresponding to the IP address
will be recorded. Then, we queried the size of the subnet (the current IP address belongs), and designated
this subnet as the base station IP subnet. The IP addresses within this subnet were treated as base station IPs.
The dataset is displayed in Table 1.

6.3 Feature Effectiveness Validation Experiment
In Section 5, three unique network properties of IP addresses were introduced: latency, port, and ASN.

We conducted experiments to verify whether these attributes can be used to distinguish cloud IPs from non-
cloud IPs. This section will present the experimental results and analyze the advantages and disadvantages
of identifying cloud IP usage scenarios.

6.3.1 Latency Effectiveness Validation Experiment
As analyzed in Section 5.1, latency and connectivity represent the ability of the server and user to com-

municate with each other. To ensure users can access server resources, connectivity is typically maintained.
However, different usage scenarios have varying connectivity requirements. Therefore, we probed the true
IP datasets of the four major cloud service providers and non-cloud IP addresses. As shown in Table 2.
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In Table 2, the connectivity test results for each IP are shown. The results indicate that most of the IPs
are not reachable. The reason for this is that the host resources have not yet been allocated to the user, or the
user has configured security policies to prevent the host from being detected. We also tested the connectivity
of individual cloud IPs and non-cloud Ips. The results (line 5) show that the cloud IPs do not exhibit any
significant difference in characteristics compared to other usage scenarios in this network metric. Therefore,
we conclude that using latency as a feature to identify cloud IPs is ineffective.

Table 2: Connectivity test for different IP usage scenarios

IP usage scenario Total IP count Number of inaccessible IPs Inaccessible IP percentage
Alibaba cloud 2,243,850 1,990,945 88.73%
Tencent cloud 2,162,937 1,725,727 79.79%
Google cloud 4,820,736 3,356,207 69.62%

Amazon cloud 2,5191,115 2,353,663 93.43%
Non-cloud 184,275 161,210 87.48%

6.3.2 Port Effectiveness Validation Experiment
Ports are the unique identifiers that distinguish different applications or services on a network. When

a host needs to provide services to users, the corresponding port must be opened for communication. The
purpose of studying the port openness of different IP usage scenarios is to distinguish cloud IPs from non-
cloud IPs by port values. First, port probing was performed on the reachable IPs of the four cloud service
providers (Alibaba Cloud, Tencent Cloud, Google Cloud and Amazon Cloud). Then, we scanned all ports
within the range of 1–10,000 and identified the ten most frequently occurring ports for each cloud service
provider. The proportion of each port in the top ten was calculated and illustrated as shown in Fig. 2.

Fig. 2 shows the port scan results of the cloud IP real data set. We can see that ports 22, 80, 443, and
3389 appear most frequently. As shown in Fig. 2, ports 22, 80, 443, and 3389 appear most frequently. Ports
80 (HTTP) and 443 (HTTPS) are particularly dominant due to their ubiquity in hosting web-based services
in the cloud.

However, relying solely on single-IP scans might not capture the broader network context. Different
users or hosts under the same provider could open or block various ports based on specific needs or
security policies.

Fig. 2 presents the port scan results for individual cloud IP addresses from Alibaba Cloud, Tencent
Cloud, Google Cloud, and Amazon Cloud (in the range 1–10,000). As illustrated, ports 22, 80, 443, and 3389
appear most frequently across multiple cloud service providers. However, relying solely on single-IP scans
might overlook broader network-level patterns and could be affected by a particular user’s or host’s service
configurations. To investigate whether these port distributions differ significantly across the entire network
segment, we extended our scanning from a single IP to the full /24 subnet that the IP belongs to. This broader
approach, detailed in Table 3, helps capture the variety of active hosts within that subnet and reveals whether
certain ports are consistently tied to cloud usage scenarios or are also found in common ISP services, mobile
data networks, and other non-cloud environments. If the same ports remain prominent across both cloud
and non-cloud subnets, it suggests that port-based indicators alone may be insufficient to reliably identify
cloud IP usage.

Based on these considerations, we present the extended scanning results in Table 3, which summarizes
the top-five open ports in the /24 subnet of each IP address in the dataset. This approach amplifies the
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correlation between port values and their IP usage scenarios. We set the scan range to be limited to ports
1–1000 to comply with network security regulations. In addition, a small port scan range helps reduce the
network load on the scanning host. The probing results are shown in Table 3.

Figure 2: Top 10 most frequent ports for different cloud service providers. (a) Top 10 most frequently used ports in
Amazon Cloud; (b) Top 10 most frequently used ports in Google Cloud; (c) Top 10 most frequently used ports in Tencent
Cloud; (d) Top 10 most frequently used ports in Alibaba Cloud

After expanding a single IP to a /24 subnet, ports 80 and 443 still account for the largest share, which
is similar to the port information opened by the cloud IP. In addition to ports 80 and 443, port 22, which
is opened for remote login protocol, should have a strong correlation with cloud IP. However, port 22
also appears in mobile data scenarios and ordinary broadband scenarios (accounting for 0.12% and 0.23%,
respectively). Port 22 appears in the detection results of both cloud IP and non-cloud IP. Obviously, remote
login cannot be regarded as a unique feature of cloud IP. On the other hand, the port opening status is
determined by the user’s business needs. Therefore, we believe that using port-related information to identify
cloud IP is a disadvantage.
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Table 3: Top 5 most frequent ports in subnet and their proportions

IP usage scenario Detailed usage scenario Top five ports and their proportions

Non-cloud IP
Mobile data 443(1.11%), 80(1.10%), 587(0.79%), 465(0.79%),

21(0.79%)
Dedicated connections 443(25.30%), 80(24.16%), 22(11.52%), 21(6.55%),

587(3.68%)
General broadband 80(0.68%), 443(0.62%), 21(0.30%), 53(0.26%),

465(0.26%)

After expanding a single IP to a /24 subnet, ports 80 and 443 still account for the largest share, which
is similar to the port information opened by the cloud IP. In addition to ports 80 and 443, port 22, which
is opened for remote login protocol, should have a strong correlation with cloud IP. However, port 22
also appears in mobile data scenarios and ordinary broadband scenarios (accounting for 0.12% and 0.23%
respectively). Port 22 appears in the detection results of both cloud IP and non-cloud IP. Obviously, remote
login cannot be regarded as a unique feature of cloud IP. On the other hand, the port opening status is
determined by the user’s business needs. Therefore, we believe that using port-related information to identify
cloud IP is a disadvantage.

6.3.3 Effectiveness of ASN for Cloud IP Recognition
The uniqueness of ASN was introduced in Section 5.3. To verify its utility in identifying cloud IP

scenarios, we queried the ASN information of four cloud service providers. Table 4 presents the results.

Table 4: Statistics of ASN for cloud companies

Cloud service provider AS number Number of IP
addresses in the ASN

Percentage of the
company’s IP addresses

Alibaba cloud AS37963 2,243,850 100.00%

Tencent cloud

AS45090 2,140,459 98.98%
AS132203 4064 0.19%
AS139341 1016 0.05%

0 762 0.04%
AS23724 508 0.02%
AS4837 8636 0.40%

AS136958 4318 0.20%
AS38283 2032 0.09%
AS4538 508 0.02%

Google cloud AS396982 4,512,256 93.60%
AS15169 308,480 6.40%

Amazon cloud AS16509 21,454,628 85.17%

Table 4 lists the principal ASNs for Alibaba Cloud, Tencent Cloud, Google Cloud, and Amazon Web
Services (AWS), along with the number of IP addresses each ASN contains and the corresponding percentage
of the total. Notably, some cloud providers register multiple ASNs but tend to concentrate the majority of their
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IP addresses under one or two main ASNs. For instance, Tencent Cloud owns 13 ASNs; however, AS45090
alone accounts for nearly 99% of its IP resources. Alibaba Cloud, by contrast, exclusively uses AS37963,
unifying all IP addresses under a single ASN. One reason for this pattern is that major cloud providers
typically manage routing and infrastructure across a few core ASNs to streamline network administration
and maintain consistent routing policies. Although a provider may occasionally acquire or register additional
ASNs (due to mergers, new data centers, or experimental services), most production traffic and customer
VMs remain clustered in its primary ASN(s).

Google Cloud and AWS similarly appear in multiple geographic regions—spanning Europe and North
America—but still belong to a limited set of ASNs. This centralized ASN usage simplifies the identification
of their IP resources, since administrators only need to track a handful of global ASN entries to categorize
a significant portion of cloud IP addresses. In rare cases, minor discrepancies may arise when smaller, less-
frequented ASNs are not fully documented or have incomplete data in external databases.

To further investigate whether different network service providers might share ASNs—or if one ASN
covers multiple locations—we examined base station IPs from various provinces. The results are summarized
in Table 5.

Table 5: ASN statistics for base station IPs

IP range Province City ISP AS number
39.144.188.0/24 Henan Xinxiang China Mobile AS24445
117.136.106.0/23 Henan Zhengzhou China Mobile AS24445
113.121.196.0/23 Shandong Dezhou China Telecom AS4134
106.33.160.0/20 Henan Zhengzhou China Telecom AS4134
171.9.166.0/19 Henan Zhengzhou China Telecom AS4134

182.33.128.0/20 Shandong Weifang China Telecom AS4134
182.39.128.0/18 Shandong Zaozhuang China Telecom AS4134
219.144.0.0/22 Shaanxi Xi’an China Telecom AS4134
61.54.108.0/23 Henan Xinxiang China Unicom AS4837

112.224.141.0/22 Shandong Yantai China Unicom AS4837
220.205.249.0/24 Beijing China Unicom AS4837

124.64.16.0/22 Beijing China Unicom AS4808

Table 5 shows how base station IP addresses (non-cloud) are distributed among distinct ASNs belonging
to various ISPs (e.g., China Mobile, China Telecom, China Unicom). For instance, China Telecom uses
AS4134 across provinces such as Henan, Shandong, and Shaanxi, while China Mobile relies on AS24445, and
China Unicom predominantly employs AS4837 or AS4808. Even though these ASNs cover multiple cities,
each ASN remains tied to a single ISP, indicating that non-cloud IPs—despite their wide geographic reach—
still map uniquely back to their operator. This organizational consistency confirms that ASN effectively
differentiates cloud IPs (centrally managed by cloud providers) from non-cloud IPs (allocated by traditional
network operators for mobile data, broadband, etc.).

Overall, Tables 4 and 5 demonstrate that while IP addresses under the same ASN can be geographically
diverse, they share a single organizational affiliation. In practice, IP usage scenarios typically fall into two
major categories: cloud IP (managed by cloud providers) and non-cloud IP (managed by ISPs). Thus, ASN
proves to be a viable and interpretable feature for identifying these distinct usage contexts—an insight crucial
for security, resource allocation, and network policy enforcement.
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6.4 Experiment on Identifying Cloud IP Using Multiple Network Attribute Factors
By detecting the network attributes of cloud IP and non-cloud IP, we obtained the latency value, port

information, and ASN organization information corresponding to the IP address. We constructed a dataset
containing these network attributes for machine learning experiments and to verify the method proposed
in this Organizations with strict compliance standards (e.g., in finance or healthcare) often maintain private
network policies that block or sandbox traffic from external cloud services. To ensure geographic diversity,
the dataset includes IP addresses collected from major cities in China—Beijing, Shanghai, Guangzhou, and
Shenzhen—as well as multiple European metropolitan areas—Paris, Turin, Berlin, and London—covering a
variety of cloud providers. This broad regional coverage allows us to assess the robustness of our approach
across different latency conditions, port patterns, and ASN distributions. The experimental results are shown
in Table 6.

Table 6: AUC of different models for cloud IP recognition

Model Implementation Hyperparameters Accuracy
(Ping + Port +

ASN)

Accuracy
(ASN Only)

Decision tree scikit-learn criterion = ‘gini’,
max_depth = None,
random_state = 42

0.92 0.89

XGBoost XGBoost max_depth = 6, learning_rate =
0.3, n_estimators = 100,

random_state = 42

0.86 0.86

KNN scikit-learn k = 5, metric = ‘euclidean’ 0.86 0.87
SVM scikit-learn kernel = ‘rbf ’, C = 1.0, gamma =

‘scale’, random_state = 42
0.81 0.81

MLP scikit-learn hidden_layers = (100,50),
activation = ‘relu’, max_iter = 500,
solver = ‘adam’, random_state = 42

0.82 0.81

CNN TensorFlow/Keras Conv1D(filters = 64, kernel_size =
2, activation = ‘relu’), epochs = 10,

batch_size = 32, optimizer =
‘adam’, loss =

‘categorical_crossentropy’

0.81 –

Ours ASN – 0.96

To clearly demonstrate and validate our proposed method, we specifically sampled the dataset to
contain 500 non-cloud IP addresses (TYPE = 0) and 2000 cloud IP addresses (TYPE = 1), maintaining a
ratio of approximately 1:4. Although this intentionally introduces class imbalance, this proportion mirrors
realistic scenarios commonly observed in practice, where cloud-hosted IPs are generally more prevalent.
Such design decisions allow our experiments to closely reflect real-world conditions. Furthermore, the use of
diverse mainstream machine learning models (MLP, CNN, XGBoost, KNN, SVM, and Decision Tree) helps
demonstrate that our ASN-centric approach consistently performs well despite class imbalance.

In Table 6, we construct datasets with multiple network attributes (including latency, port, and ASN
information) and datasets using only ASN attributes. Then, we use mainstream machine learning methods
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(MLP, CNN, XGBoost, KNN, SVM, Decision Tree) to classify cloud IP usage scenarios. The results show that
the recognition accuracy of machine learning methods under various network attribute data sets is slightly
different. When only ASN features were used for experiments, the machine learning classification results did
not improve or decrease significantly compared to using multiple network attributes as feature data sets for
classification. In the dataset using only ASN, the average recognition accuracy of multiple machine learning
methods is 0.84, while our method is 0.96, which is significantly higher than the recognition accuracy of
machine learning.

This ASN-focused approach to cloud IP identification provides notable advantages in scalability,
resource efficiency, and geographic adaptability. By reducing reliance on multiple, high-dimensional features,
it is especially suitable for large-scale monitoring contexts, while its explicit reliance on ASN records offers
straightforward traceability for network administrators. Moreover, because ASNs are assigned globally
through Regional Internet Registries (RIRs), the method generalizes effectively across diverse regions and
provider ecosystems.

Although we compared our proposed method to a variety of mainstream machine learning models
(Section 6.4), it is equally important to evaluate its relative performance and utility against the latest
published methods in this domain. Table 7 summarizes our method’s performance alongside selected state-
of-the-art cloud IP identification approaches proposed by Zhou et al. [9], Wang et al. [10], Li et al. [11], and
Liu et al. [12]. The experimental results are shown in Table 7.

Table 7: Comparison of cloud IP identification methods and their key characteristics

Method Feature
dimensionality

Key
technique

Reported
accuracy

Interpretability Computational
overhead

Zhou et al. [9] More features – – Low High (due to
large feature

set)
Wang et al. [10] – DT & Deep

learning
98% Medium High

Li et al. [11] 46 features Deep
continuous
neural tree

94% Medium Moderate

Liu et al. [12] Graph-based
approach

GNN-based
GraphCyber
Framework

97% Low High
(building

graph
structures)

Ours 1 primary
feature (ASN)

ASN-based
classification

96.67% High Low

Observations from the Comparative Analysis:

1. Higher Accuracy with Fewer Features

While prior works often employ 40+ features (e.g., geographic location, ports, DNS, WHOIS) combined
with deep learning architectures, our method focuses on ASN organization attributes supplemented by
minimal supporting data (latency, port). Despite this lean approach, we achieve a higher reported accuracy
of 96.67%.
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2. Improved Interpretability

Most prior SOTA models (e.g., [9,10,12]) rely on deep or ensemble learning techniques that are
difficult to interpret. By contrast, our ASN-based classification is inherently more transparent: network
administrators can clearly see whether an IP belongs to a known cloud service provider’s ASN or a general
ISP. This clarity can be especially valuable for real-time security decision-making. Unlike feature importance
methods (e.g., SHAP, permutation importance) employed by prior studies, which merely indicate numerical
significance of attributes without clear practical meaning, our approach provides straightforward, actionable
explanations tied directly to real-world entities.

3. Reduced Computational Overhead

Methods like DNN or GNN [9,12] often require large-scale feature extraction and extensive training,
which can be computationally intensive. By trimming the feature set drastically, our approach minimizes
resource usage and speeds up deployment, making it suitable for high-volume, real-time environments.

Overall, these comparisons emphasize the superior accuracy, interpretability, and lower overhead of our
proposed method relative to existing state-of-the-art solutions. The use of ASN as a primary discriminative
feature underscores the potential for simpler, more transparent systems that maintain or surpass the
performance of more complex deep learning frameworks.

The method proposed in this paper eliminates unfavorable factors for identifying cloud IP usage
scenarios and focuses on the ASN organization affiliation information of the IP address. Experimental results
show that our method improves the accuracy and interpretability of identifying cloud IP usage scenarios
without considering the uncertainty of network properties. That is to say, even if there is a lot of noise in the
network attributes, our model can still achieve high-precision cloud IP identification.

6.5 Rationale for Choosing ASN as a Key Discriminative Feature
In this subsection, we provide a detailed justification for selecting ASN as the primary factor in

identifying cloud IP usage scenarios. By highlighting ASN’s uniqueness, interpretability, and organizational
consistency, we demonstrate why it outperforms latency- or port-based approaches in terms of both
accuracy and explainability. Specifically, the following points clarify the key advantages of ASN in our
classification framework.

• Uniqueness and Non-repetition. An ASN is a globally unique identifier that is assigned to network
entities (e.g., Internet Service Providers, data center operators, cloud service providers). Because ASNs
cannot overlap—each corresponds to a distinct organization—this provides a clear-cut way to group IP
addresses by their operational or organizational affiliation. In contrast, latency and port usage are not
strictly tied to any single organization and can be influenced by factors such as user configurations or
network conditions, making them less reliable for classification.

• Clear Organizational Boundaries Each. ASN typically belongs to a specific network operator or service
provider. For instance, cloud service providers (e.g., AWS, Alibaba Cloud, Tencent Cloud, and Google
Cloud) often control well-defined ASNs used predominantly for hosting virtual machines, storage,
and other cloud-based resources. On the other hand, non-cloud IP addresses are typically associated
with ASNs owned by national telecom operators, universities, or smaller ISPs. These clear boundaries
naturally lend themselves to an interpretable classification system.

• Reduced Ambiguity and Greater Interpretability Port. usage and latency are highly context-dependent
and subject to individual host configurations and security policies (e.g., firewall settings, port for-
warding). As a result, they can vary substantially even within the same IP usage scenario, leading to
ambiguous or conflicting signals when classifying cloud vs. non-cloud IPs. Conversely, ASN is assigned
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and managed at the organizational level and remains consistent for all IP addresses under the same
network entity. This consistency translates into improved interpretability—one can readily see that if a
given IP belongs to an ASN known to be managed by a cloud provider, that IP is highly likely to be a
cloud IP.

• Low Overhead and High Scalability. Extracting ASN from an IP address via a lookup in a reputable
database (e.g., MaxMind) is computationally lightweight and easily scalable for large IP datasets. In
contrast, high-dimensional machine learning approaches that rely on numerous features (e.g., 40+
attributes involving port scans, latency measurements across different protocols, DNS records, WHOIS
lookups) can be computationally expensive and more difficult to maintain. ASN-based identification
thus offers a resource-friendly alternative while still achieving high classification accuracy.

• Robustness across Different Regions. Our empirical results indicate that relying on ASN provides
robust classification performance across multiple geographic regions (China, North America, Europe)
and diverse IP usage scenarios (base station IPs, university networks, home broadband, and data
center environments). Since ASN allocation is managed by regional internet registries under global
standards, it remains relatively stable across countries and continents, making it suitable for large-scale,
cross-regional IP classification tasks.

Combined with the above factors, we choose ASN as the key factor.

7 Conclusions and Future Work
At present, the identification of cloud IP usage scenarios is mainly carried out through database query

and machine learning methods. These methods generally have problems such as inaccurate identification,
black box, and complexity. This paper starts from the perspective of network attributes and proposes a
method based on ASN organization information to identify cloud IP. The new method can explain the
favorable factors for identifying cloud IP scenarios, discard useless features in network attributes, and realize
cloud IP identification only by relying on the attribution information of IP addresses. Explainability perfectly
solves the black box problem. Experimenting with only the ASN feature also greatly reduces overhead. Most
importantly, the experimental results show that our method can achieve a recognition accuracy of 96.67%,
which is higher than the recognition method based on machine learning. In the community contribution
module, we also make the experimental code and data public to facilitate discussions with other scholars.

Our method depends heavily on timely and accurate ASN databases; outdated or incomplete records
can lead to misclassification. Sub-leased or multi-tenant ASNs also pose a challenge when “cloud” and “non-
cloud” traffic coexist under the same organizational umbrella. As IPv6 adoption grows, extending our focus
beyond IPv4-based ASNs will be critical for comprehensive coverage. Finally, dynamic IP allocation within
cloud providers necessitates periodic re-checking of IP usage scenarios, ensuring sustained accuracy in real-
world, rapidly changing environments.

In future work, we plan to expand upon threshold determination for latency and port openness. Specif-
ically, we will explore quantile-based methods or machine learning-driven optimization to systematically
identify boundary values that separate cloud IP from non-cloud IP usage scenarios. This approach can be
particularly valuable for resolving ambiguities in shared ASN subnets or dynamic IP allocation, where small
differences in latency or port usage can yield crucial insights. Additionally, we aim to integrate real-time ASN
database synchronization or a hybrid ASN-DNS validation strategy, ensuring precise automated responses
in rapidly evolving network environments. By adopting these enhanced thresholding techniques, our ASN-
centric identification method can achieve finer-grained decision-making and maintain robust performance,
even in borderline or ambiguous classification cases.
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Cloud IP ranges often change dynamically, and multiple providers may share or sub-lease the same
ASN, creating classification ambiguities. Future research could address these issues by regularly updating
ASN-IP mappings, incorporating secondary verification (e.g., DNS or WHOIS data), or combining active
and passive traffic analysis methods. These strategies can effectively manage the complexity of dynamic and
overlapping ASN scenarios.

8 Limitations
Despite the promising results of our ASN-based cloud IP identification approach, several limitations

warrant attention:

1. Dependence on ASN Database Accuracy. Our method heavily relies on external ASN databases (e.g.,
MaxMind). If these databases contain outdated or inaccurate records, the classification may mislabel
certain IPs. Nevertheless, as these databases are extensively used and regularly updated within both
academic and industry communities, inaccuracies are generally rare and typically have minimal impact
on large-scale analytical results. Regular database updates and cross-verification with alternative sources
can mitigate, but not fully eliminate, this risk.

2. IPv6 Adoption. While our experiments focused primarily on IPv4 addresses, the continued growth
of IPv6 may reveal different patterns or require separate ASN databases. In high-IPv6 environments,
additional research and validation will be necessary to confirm the approach’s robustness.
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