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ABSTRACT: To fully explore the potential features contained in power load data, an innovative short-term power
load forecasting method that integrates data mining and deep learning techniques is proposed. Firstly, a density peak
fast search algorithm optimized by time series weighting factors is used to cluster and analyze load data, accurately
dividing subsets of data into different categories. Secondly, introducing convolutional block attention mechanism into
the bidirectional gated recurrent unit (BiGRU) structure significantly enhances its ability to extract key features. On
this basis, in order to make the model more accurately adapt to the dynamic changes in power load data, subsets
of different categories of data were used for BiGRU training based on attention mechanism, and extreme gradient
boosting was selected as the meta model to effectively integrate multiple sets of historical training information. To
further optimize the parameter configuration of the meta model, Bayesian optimization techniques are used to achieve
automated adjustment of hyperparameters. Multiple sets of comparative experiments were designed, and the results
showed that the average absolute error of the method in this paper was reduced by about 8.33% and 4.28%, respectively,
compared with the single model and the combined model, and the determination coefficient reached the highest of
95.99, which proved that the proposed method has a better prediction effect.
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1 Introduction
Power load forecasting is mainly based on historical data to predict future load demand [1]. The

accuracy of prediction has become a key indicator for measuring the modernization level of power enterprise
management, and it is also an important foundation for achieving modernization and scientific management
of the power grid [2]. Power load forecasting is classified into long-term, medium-term, short-term,
and ultra-short-term categories based on varying time scales. Among them, short-term load forecasting
concentrates on predicting daily or weekly electricity consumption demands and is vital for the efficient
operation and dispatch of power systems. Therefore, load forecasting has become an indispensable task
within the framework of the power system from the point of view of guaranteeing security, improving
economic efficiency and promoting long-term development [3].

Traditional forecasting methods, like trend extrapolation [4], regression analysis [5], and time series
analysis [6], rely mainly on historical load data. These methods work well for data with minimal trend
changes but suffer a sharp drop in prediction accuracy when trends change significantly. With deep-learning’s
growth, many scholars worldwide have delved into short-term load forecasting, introducing effective models.
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Recurrent Neural Network (RNN)-based neural networks are prominent in load forecasting [7]. But RNNs
face issues like gradient vanishing and explosion. To address this, Gated Recurrent Unit (GRU) was
proposed by adding update and reset gates to traditional RNNs, offering a clear upgrade over RNNs and
older machine-learning methods [8]. In load forecasting, while GRU-based models are somewhat widely
used, they can’t capture data’s bidirectional dependency, leading to subpar forecasts. To let GRUs learn
bidirectional temporal features, Bi-directional Gated Recurrent Unit (BiGRU) was developed as an extension
of unidirectional GRUs. By combining forward and backward GRUs, BiGRU comprehensively captures
bidirectional dependencies in time-series data, outperforming GRU in prediction [9].

Load data has a certain periodicity, and the widespread integration of new energy microgrids further
intensifies this periodicity. As a result, relying solely on a single model or method rarely achieves the desired
prediction effect. Previous research has explored diverse methods. Reference [10] proposes a multivariate
real-time rolling decomposition paradigm, which achieves point and interval based power load forecasting
by constructing a hybrid power load forecasting system. Reference [11] proposes a hybrid grey model
that integrates multiple methods to reduce external interference. Optimize using an enhanced multi-
objective slime mold algorithm to predict the trend of electricity consumption during the 15th Five Year
Plan period. Reference [12] proposes an efficient interval prediction method that utilizes an innovative
field mixer to mine spatiotemporal information, improves accuracy by utilizing adjacent field data, breaks
the black box with interpretability analysis, and achieves accurate wind power prediction. Reference [13]
uses the improved Northern Eagle optimization algorithm to optimize model parameters for power load
forecasting, where the model integrates multiple components to leverage their strengths. Reference [14]
constructs a load forecasting model using Convolutional Neural Network (CNN) and multilayer extended
long short-term memory (LSTM) neural networks, where CNN extracts local features and LSTM captures
long-term dependencies. Reference [15] uses an adaptive hierarchical clustering algorithm to filter input
datasets for short-term electricity load forecasting, with a model based on the stacked integration of
CNN-BiLSTM-Attention and XGBoost.

In summary, although modern short-term load forecasting (STLF) methods have seen some success,
previous clustering algorithms can’t handle dynamic time-series data, and the simple fusion of forecasting
models with classical attention mechanisms can’t meet current load forecasting needs and lacks innovation.
This paper presents a new data-mining and deep-learning-based model. It innovatively improves the
CFSFDP algorithm to handle dynamic data, enabling more effective time-series data clustering. Applying
the Temporal-Clustering by Fast Search and Find of Density Peaks (T-CFSFDP) [16] to load curve clustering
provides a more reliable data foundation for short-term load forecasting. The paper also breaks traditional
boundaries by introducing the Convolutional Block Attention Module (CBAM) into load forecasting,
significantly enhancing the model’s ability to recognize key temporal features [17]. A sub-model integration
strategy for clustered data further boosts the model’s performance in capturing trends. The integration of
the T-CFSFDP algorithm and the BiGRU-CBAM model is novel in the STLF field. Finally, five evaluation
criteria validate the effectiveness of this integration technique, offering valuable insights for future load
forecasting research.

The primary work conducted in this paper includes the following aspects:
(1) Optimize the clustering algorithm: The previous CFSFDP algorithm is not able to deal with temporal

data well, by introducing the time decay factor, it makes it able to better take into account the temporal nature
of the data, and the clustering effect of the time series is further improved.

(2) Applying convolutional block attention mechanism: CBAM was initially proposed to be used in the
field of image recognition, but its application in load prediction is still relatively limited. In this paper, CBAM
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is combined with BiGRU to endow the model with the ability to pay attention to key data information, which
significantly improves the prediction accuracy of the model.

(3) Stacking model stacking: Based on the clustering results of T-CFSFDP, the corresponding sub-
models are trained separately for each category of data, and XGBoost is used as a meta-model to be integrated
with stacking model stacking to form the final prediction model.

2 Introduction to Clustering Algorithms and Their Optimization

2.1 Peak Density Fast Search Algorithm
In 2014, Rodriguez and Laio proposed Clustering by Fast Search and Find of Density Peaks [18]. Unlike

other density-based clustering algorithms, CFSFDP uses local density for fast and efficient sample point
classification and outlier removal [19]. It doesn’t need pre-specifying the number of clusters or complex
parameter settings, making it more user-friendly than many traditional clustering methods. This is crucial for
short-term load forecasting data, as data distribution and the number of potential clusters are often unknown
before forecasting. The algorithm is based on two assumptions: cluster centers are in highly-dense data areas,
and their distance to other cluster centers is large relative to local data points. Thus, density and distance are
key parameters in CFSFDP. For each data point x, the relevant formulas are calculated as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρu =
N
∑

v=1,v≠i
exp(− g2

uv
g2

k
)

δu =minv∶ρv>ρu(duv)
(1)

where guv is the distance between data points u and v, gk is the cutoff distance, ρu is the local density of data
point u, and δu is the minimum distance from point u to ρu a higher point.

2.2 Time-Series Weighted Density Peaks Clustering Algorithm
The CFSFDP algorithm, a machine-learning-based grouping method, has limitations in historical load

data cluster analysis. When calculating the Euclidean distance between data points, it often misclassifies
points with distinct peaks, resulting in inaccurate clustering. Moreover, since it ignores the time-series order
of input data, it cannot handle time-series data well. Time-series changes don’t affect its final clustering
results. Thus, the algorithm requires further optimization to fit the characteristics of time-series data better.

To address the density peak clustering algorithm’s neglect of data input temporal nature, this article
enhances CFSFDP. It introduces time-dimension information and adds a time-weighting factor ti during
topological-relationship calculation. The time weighting factor ti serves to weight and adjust the calculation
of the distance between data points according to their timestamps. Specifically, for two data points xi and x j,
the original Euclidean distance d(xi , x j) will be adjusted to d(xi , x j) = d(xi , x j) × ti × t j in calculating the
distance between them, where ti and t j are the time weighting factors corresponding to data points xi and
x j, respectively. ti ’s value is usually based on the data points’ distance from the current time. The value of
ti is usually determined according to the distance of the data point from the current time, the closer to the
current time, the larger the value of ti , and vice versa, the smaller, thus strengthening the dynamic processing
capability of time series data.

Through a large number of experiments, in order to prevent problems such as excessive computation
or degradation of clustering quality due to improper setting of the time decay factor, it is determined that
the optimal clustering performance can be achieved by setting the bandwidth of the time decay factor to 50,
and the clustering accuracy is 0.6709. Its pseudocode is in Algorithm 1, and the specific process is illustrated
in Fig. 1.
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Algorithm 1: Time clustering by fast search and find of density peaks
Input: dataset D, standard deviation σ , number of cluster centers NC, decay factor K
Output: Clustering results including labels and metrics
1 Initialize n ← ∣D∣, d and δ ← 0n , l abel s ← −1n , t ← e−({0,1,2,. . . ,n−1} mod k)/50.
2 Calculate d for each point in D:
3 for i = 1 to n do
4 distances ← {∥D j − Di∥2 ∶ j = 1, 2, . . . , n};
5 d[i] ← Σ(exp(−(∥distances∥2)/(2σ 2))) ⋅ t[i];
6 Calculate δ for each data point:
7 for i = 1 to n do
8 dh ← { j ∈ {1, 2, . . . , n} ∶ d j > di};
9 if dh is not empty then
10 δi ←min j∈dh ∥Di − D j∥2;
11 else
12 δi ←max1≤ j≤n , j≠i ∥Di − D j∥2;
13 Compute gamma and select cluster centers:
14 γ ← (d1δ1t1 , d2δ2t2, . . . , dn δn tn);
15 C ← {i1 , i2, . . . , iNC};
16 for each center to C do
17 l abel s[center] ← index o f center in C;
18 Assign labels to all data points:
19 for i = 1 to n do
20 if dh is not empty then
21 distances ← ∥D[i] − D[C]∥2;
22 l abel s[i] ← l abel s[Cmin];
23 Return labels, d, δ, γ, C.

Figure 1: Flowchart for time-weighted density peak clustering

2.3 Clustering Performance Analysis
In this study, the two core parameters of the T-CFSFDP algorithm were set as follows: Gaussian kernel

function standard deviation σ = 1.5, and time span k = 24. In order to accurately determine the number
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of cluster centers in the T-CFSFDP algorithm, a decision graph was drawn and the cluster centers were
identified through manual observation. The decision diagram is shown in Fig. 2. In the upper right corner,
there is a point with a high local density. Between [10000, 16000], there is a significant difference in decision
values between the two points. The remaining data points are located in the lower right corner. Therefore,
this article sets the number of cluster centers to 4 and assigns the remaining data points to these centers.

Figure 2: Decision-making maps produced by T-CFSFDP

After preprocessing the data, the original daily load profile samples were clustered using the T-CFSFDP
clustering algorithm, and four classes of typical load profile samples were obtained. As shown in Fig. 3, the
figure demonstrates these four classes of clustered load profile samples and the clustering over time, where
the red dashed line is the center of each cluster.

Figure 3: T-CFSFDP clusters load data into four categories

To verify the effectiveness of the clustering method in this paper, three metrics are used to evaluate the
performance of clustering:

(1) Davies-Bouldin Index (DBI, Davidson-Bouldin Index) is a measure of the effectiveness of clustering,
which reflects the quality of clustering by evaluating the compactness within clusters as well as the separation
between clusters. The lower value of DBI means the better the clustering result. The formula of DBI is defined
as follows:

DBI = 1
N

N
∑
i=1

max
j≠i

Fi + Fj

∥wi −w j∥2

(2)
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where F i is the average Euclidean distance from the sample of class i to its class center, and ∥wi −w j∥2 is the
class center Euclidean distance for classes i and j.

(2) Dunn’s Validity Index (DVI, Dunn’s Index) evaluates clustering quality. It’s derived from the ratio
of intra-cluster closeness to inter-cluster distance. A higher DVI value indicates superior clustering. The
formula for calculating DVI is as follows:

DV I = max
1≤i≤k
(min

i≠ j

dinter, i j

dintra, i
) (3)

where dinter, i j denotes the shortest distance between cluster i and cluster j, and dintra, i is the maximum value
of the distance from all points inside the ith cluster to the center of that cluster.

(3) Silhouette Coefficient (SC, Silhouette Index) is a measure of clustering effectiveness that evaluates
the consistency of a data point with the cluster to which it belongs and its separation from other clusters.
A higher value of SC implies that the data point belongs more to the current cluster and is more clearly
delineated from the other clusters, thus reflecting a better clustering quality.

SC = 1
n

n
∑
i=1

u(xi) − v(xi)
max{v(xi), u(xi)}

(4)

where v(xi) denotes the average distance from xi to each data point in the same cluster and u(xi) denotes
the average distance from xi to each data point in the closest cluster.

Compare the T-CFSFDP clustering algorithm with K-Means and CFSFDP clustering algorithms by
calculating the values of the DBI, DVI, and SC metrics. The various indicators are presented in Table 1, and
it can be seen that the T-CFSFDP algorithm achieved the best clustering performance.

Table 1: Comparison of clustering effects

Clustering method Cluster number DBI DVI SC
K-Means 4 0.5322 0.1421 0.5441
CFSFDP 4 0.5068 0.1569 0.5474

T-CFSFDP 4 0.5065 0.1615 0.5545

3 Model Structure and Method Description

3.1 BiGRU Network
In unidirectional neural networks, information propagates in a sequential front-to-back manner.

However, electricity load depends on both historical and future periods, and a single GRU neural network
has difficulty fully extracting the deep features of relevant data [20]. To overcome the shortcoming of
unidirectional information flow, this article uses the BiGRU model to improve the performance of power
load forecasting [21]. Its specific details are shown in Fig. 4.

Where Z1 and Z2 represent the initial positions of the two propagation directions, respectively.
x1 , x2, x3, . . . , xt denote the corresponding input timing signals at each moment, and y1 , y2, y3, . . . , yt denote
the corresponding outputs.
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Figure 4: BiGRU network structure

3.2 Convolutional Block Attention Mechanism
CBAM is an effective end-to-end attention mechanism. It contains two interconnected modules:

channel attention and spatial attention. CBAM calculates weights for feature maps in the channel and
spatial dimensions. After that, it multiplies these weights by the original feature maps, thereby adaptively
strengthening features. When the CBAM module is integrated into the network, the network can better
identify and use prominent features. This optimizes the overall performance of the model and significantly
improves the accuracy of prediction tasks.

The CBAM network architecture is shown in Fig. 5. The channel attention module effectively filters
important information from the input data, and the calculation formula is as follows:

Mc(F) = σ (MLP (AvgPool (F)) +MLP (MaxPool (F))) = σ(W1(W0(Fc
av g)) +W1(W0(Fc

max))) (5)

where σ is the sigmoid function, W0 ∈ RC/r×C and W1 ∈ RC/r×C , and the MLP weights W0 and W1 are shared
for both inputs.

Figure 5: CBAM attention mechanism structure

The spatial attention module mainly focuses on which position information is meaningful, which is a
supplement to channel attention. Its calculation formula is as follows:

Ms(F) = σ ( f 7×7 ([AvgPool(F), MaxPool(F)])) = σ ( f 7×7([Fs
av g , Fs

max])) (6)

where a is the sigmoid function and f 7×7 denotes the convolution operation with a filter size of 7 × 7.

3.3 Overall Process Description
This article proposes a T-CFSFDP algorithm and a stacked BiGRU-CBAM method for short-term power

load forecasting. T-CFSFDP clustering preprocesses data to identify intrinsic clusters and provides structured
input to the BiGRU-CBAM model, enabling it to more effectively handle datasets with complex temporal
and feature correlations. The basic structural design is shown in the Fig. 6.



1196 Comput Mater Contin. 2025;84(1)

Figure 6: Flowchart of the prediction method based on T-CFSFDP clustering and BiGRU-CBAM models

(1) Data preprocessing: Due to power outages and equipment issues, the historical load time series
dataset contains bias values and noise. In order to ensure reliable data for subsequent analysis, the original
dataset was preprocessed. The preprocessing rules are as follows: replace outliers <400 with the average of
adjacent values; When the adjacent values fluctuate greatly (∣ current – previous ∣ >300), replace with the
sum of the previous values. Moreover, to remove the impact of numerical units among different factors and
simplify the training of network models, the original data is normalized to the interval of [0, 1]. Meanwhile,
for the purpose of better aligning with the actual physical significance of the predicted outcomes and enabling
easier comparison and analysis with the initial data, the predicted data undergoes inverse normalization. The
calculation formulas for normalization and anti normalization are as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

M′ = M −Mmin

Mmax −Mmin

A′ = M′(Mmax −Mmin) +Mmin

(7)

where M is the original load data, M′ and A′ are the normalized and denormalized load data, respectively,
and Mmin and Mmax are the minimum and maximum values in the original load sequence, respectively.

(2) Cluster analysis: After clustering historical load data using T-CFSFDP, the cluster centers of the four
clusters were determined to be 34441, 43417, 39457, and 37904, respectively. Subsequently, the data points are
assigned to the corresponding clusters based on their proximity to these centroids.

(3) Model building: For each cluster, a BiGRU model with the CBAM module is trained. CBAM,
composed of channel and spatial attention modules, adaptively adjusts feature maps. In the channel attention
module, the global average and max pooling of input feature maps are done. The results are processed by MLP,
summed, and Sigmoid-activated to get weights for channel adjustment. The spatial attention module averages
and max-pools processed feature maps in the channel dimension and spliced them. They used convolution
and Sigmoid to get weights for spatial adjustment and CBAM feature extraction. Then, CBAM-processed
feature maps are input into BiGRU which processes sequence data from both directions to capture context
and build the model.

(4) Integrated model prediction: For each cluster, the relevant sub-models are trained independently,
using the mean square error as the loss function and the Adam optimizer to improve the training results.
The training period is set to 120 times, the batch size is set to 64, and the number of GRU units is set to 64,
too. The training set data is used for iterative training, and the model parameters are continuously fine-tuned
to reduce the loss value to gradually achieve the best model performance. After the sub-model training is
completed, the prediction results of the sub-models are collected by overlaying. The XGBoost meta-model
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parameters are automatically optimized by combining them with Bayesian optimization. Finally, the adjusted
meta-model is used to complete the prediction.

4 Example Analysis and Performance Evaluation

4.1 Data Set Description and Evaluation Criteria
The dataset in this paper is taken from the literature [22], and all load data is obtained from the local

grid operator in Panama. There are no missing values on the dataset, but only a few low values on the loads
were detected, probably due to problems such as hourly outages and grid damage, in addition all records
were kept. In this paper, the historical load data of which is selected from 4 January 2015, 00:00 to 4 January
2020, 23:00, a total of 5 years, the sampling interval of the data is 1 h, the cumulative load value between 00:00
and 01:00 is the first sampling data, and 24 points are collected every day, a total of 43,848 valid load data.
The time-series data is sliced in the ratio of 3:1:1, the first 60% of the dataset is used as a training set to train
the prediction model, and the last 40% is divided equally into validation set and test set.

In order to better analyze the research data, the load data from 2015 to 2020 were plotted as a load sample
curve, as shown in Fig. 7. The green area in the figure represents the average load level, while the gray shaded
area reflects the fluctuation range of the load. It can be seen that the changes in load are relatively periodic,
and the fluctuations in peak and valley values indicate significant changes in power load within a certain
time interval.

Figure 7: Trend chart of dataset load situation

This article selects seven evaluation metrics to assess predictive performance, namely MSE, MAE,
MAPE, RMSE, and R2. The metric calculation formula is as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FMSE =
1
n

n
∑
i=1
(ki − k̂i)2, FMAE =

1
n

n
∑
i=1
∣k̂i − ki ∣, FMAPE =

100%
n

n
∑
i=1
∣ k̂i − ki

ki
∣

FRMSE =
√

1
n

n
∑
i=1
(ki − k̄i)

2, FR2 = 1 −

n
∑
i=1
(k̂i − ki)

2

n
∑
i=1
(ki −

1
n ∑

n
i=1 ki)

2

(8)

where k̂i and ki are the predicted load value and load true data value of the ith load point in the test set,
respectively; n is the number of prediction points.
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4.2 Experimental Analysis and Model Evaluation
4.2.1 Analysis of Multidimensional Requirements for Model Implementation

In terms of hardware, the CPU needs to handle a large number of matrix operations, such as XGBoost
training, T-CFSFDP function distance calculation, etc. To efficiently complete intensive numerical opera-
tions, it is recommended to use multi-core processors. For the bidirectional GRU layer computation of deep
learning model training in sub models, a GPU that supports CUDA acceleration and has video memory
should be equipped. In terms of memory, due to the need to store large amounts of data and intermediate
results in the code, at least 16 GB of memory is required to ensure smooth operation. At the software level,
Python 3.10, Keras 2.12, Xgboost 2.0.3, Pandas 1.4.3, Scikit-learn 1.4.1. post1, and NumPy 1.23.5 are used for
data processing, model development, and evaluation.

In the comprehensive evaluation of the overall prediction process, this article first focuses on the
running time of clustering algorithms. The T-CFSFDP algorithm takes 15.9433 s, slightly higher than the
CFSFDP algorithm’s 15.6106 s. Due to the high time complexity of T-CFSFDP, its running time is significantly
higher than traditional clustering methods such as DBSCAN (0.2034 s) and K-Means (0.1953 s). Secondly,
in terms of model running time, BiGRU-CBAM takes 1259.35 ms per batch of training, which is longer than
GRU’s 871.71 ms and LSTM’s 1199.87 ms, mainly due to its more complex structure.

In summary, the method proposed in this paper is longer than the conventional prediction method
in terms of running time, although its prediction accuracy is significantly improved, which is a strategy of
trading time for accuracy. Moreover, the additional increase in elapsed time is within the acceptable range.

4.2.2 Bayesian Optimization of XGBoost Hyperparameters
In this paper, model integration is achieved via the meta-model XGBoost, which utilizes the historical

training information of each sub-model for final prediction. Thus, choosing a reasonable set of hyper-
parameters is crucial for enhancing model accuracy. Therefore, the Bayesian optimization algorithm is
adopted to optimize the model parameters. After 20 iterations of the Bayesian optimization algorithm, an
optimal set of parameter combinations was determined. Specifically, the learning rate was set at 0.05, the
maximum depth was 3.061, and the number of estimators was 106.5.

4.2.3 Comparison of Prediction Accuracy
In this article, we divide the dataset into small time periods with the aim of accurately predicting the

load for the next 48 h. To verify the effectiveness of the proposed method, this paper compared GRU, BPNN,
LSTM, XGBoost, and LightGBM. Meanwhile, in order to ensure the rigor of the experiment, the internal
parameters of all models are kept consistent. As shown in Table 2, the proposed method shows the highest
prediction accuracy under the five different evaluation criteria. Its MSE is only 1433.59, which is 21.967%,
28.127%, 16.927%, 22.986%, and 18.586% higher than the other models, and its MAPE is only 2.33%, which is
7.171%, 11.403%, 2.511%, 5.672%, and 2.917% higher than the five counterpart models. Its MAE is 26.75, which
is 8.924%, 16.084%, 3.949%, 7.996%, and 4.703% higher than the five corresponding models, and its RMSE
is 11.713%, 15.209%, 8.845%, 12.279%, and 9.752% higher than the five corresponding models. The RMSE is
11.713%, 15.209%, 8.845%, 12.279% and 9.713%, respectively. Under the R2 criterion, it is 1.14%, 1.58%, 0.82%,
1.21% and 0.92% better than the other prediction models, respectively.
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Table 2: Comparison of five evaluation metrics across models

Model MSE MAPE % MAE RMSE R2 %
GRU 1838.44 2.51 29.37 42.88 94.85

BPNN 1995.09 2.63 31.87 44.67 94.41
LSTM 1724.88 2.39 27.85 41.53 95.17

XGBoost 1863.02 2.47 29.08 43.16 94.78
LightGBM 1760.69 2.40 28.07 41.96 95.07

Proposed method 1433.59 2.33 26.75 37.86 95.99

To further illustrate the advantages of our proposed model in short-term power load forecasting, we
compared our method with the GRU-CNN model in reference [23] and the CNN-GRU-Attention prediction
model in reference [24]. As shown in Fig. 8, our proposed method has the highest prediction accuracy under
three different evaluation indicators, with RMSE improving by about 10.31% and 7.91%, MAE improving
by about 4.16% and 4.40%, R2 improving by about 2.14% and 1.74%, and MAPE improving by only 2.33%,
compared to the other two models by 4.12% and 4.90%, respectively.

Figure 8: Comparison of four types of evaluation metrics RMSE, MAE, R2, MAPE

To evaluate the generalization, stability, and robustness of the model, this paper uses cross validation to
comprehensively examine its performance. The average MSE, RMSE, MAE, MAPE, and R2 values obtained
from the cross validation experiment were 0.00049, 0.02195, 0.01577, 0.02400, and 0.93927, respectively.
The results show that the model possesses a great degree of accuracy, good fitting effect, and reliable
data prediction.

4.2.4 Ablation Experiment
To verify the effectiveness of each component of the method proposed in this article, ablation experi-

ments were conducted. Meanwhile, in order to ensure the validity of the experiment, only a portion of the
entire method was deleted or modified, while the rest remained unchanged. The following is a description
of the ablation experiment:
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(1) T-CFSFDP+BiGRU-CBAM represents a processing method that does not use a meta model to
integrate XGBoost models, but instead uses the conventional weighted average to integrate sub models. At
the same time, for convenience, the name will be changed to TBC;

(2) T-CFSFDP+BiGRU+XGBoost indicates a method that does not introduce the CBAM attention
mechanism. At the same time, to simplify the name changed to TBX;

(3) BiGRU-CBAM+XGBoost means that T-CFSFDP clustering is not used. Change it to BCX with the
simplified name above;

(4) T-CFSFDP+BiGRU+NoBO represents an experiment that does not use Bayesian optimization, and
is simplified and named NBO to highlight its characteristics.

From the comparative results of the ablation experiments in Table 3, it can be seen that under different
evaluation indicators, the average RMSE improvement of the method proposed in this paper is about 11.66%,
MAE is about 12.26%, and MAPE is about 10.34%, which proves the effectiveness of each module.

Table 3: Comparative results of ablation experiments

Model RMSE MAE MAPE %
TBC 47.21 33.75 2.86
TBX 40.07 28.36 2.40
BCX 44.82 31.88 2.72
NBO 39.33 27.77 2.37

Proposed method 37.86 26.75 2.32

4.2.5 Model Performance Analysis
In this paper, we compare the load prediction curves of the proposed method with those of GRU,

GRU-CNN, and CNN-GRU-Attention to visualize the higher agreement between their prediction curves
and the actual load. As can be seen from Fig. 9a, the prediction performance of the baseline GRU model
is inferior to that of this paper’s method during periods of high power load fluctuations. From Fig. 9b, the
introduction of convolutional neural network improves the smoothness of the prediction curve. Compared
with unidirectional GRU, BiGRU is more capable of capturing the changing trend of load data, which also
makes the prediction effect of this paper’s method better. Fig. 9c shows that the combined model containing
the attention mechanism has high prediction accuracy in the region of sharp fluctuations, but in the interval
where the load is relatively smooth but has a weak trend change, the prediction error accumulates because
the attention mechanism pays too much attention to the significant fluctuations and ignores the potential
trend in the smooth section. In contrast, the method in this paper presents stable and excellent prediction
performance in all kinds of load change scenarios by virtue of its comprehensive and balanced feature
extraction and analysis capabilities, which provides a more reliable solution for accurate load forecasting in
power systems.
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Figure 9: (a) Baseline model prediction curve comparison; (b) Combined models predict curve contrast; (c) Compar-
ison of prediction curves of the influence of Attention mechanism on model effect

5 Conclusion
Short-term load forecasting is crucial for grid operation. This paper presents a power load forecasting

method using T-CFSFDP clustering and BiGRU-CBAM, where T-CFSFDP clusters historical data first to
underpin subsequent forecasts, CBAM heightens BiGRU’s focus on important data, and model integration
improves adaptability to different data categories. Analysis reveals that compared with most mainstream
models, it performs outstandingly in all metrics, with MSE, MAPE, MAE, and RMSE averaging improve-
ments of about 21.72%, 5.94%, 8.33%, and 11.53%, respectively, demonstrating better accuracy. However, the
current study has limitations such as the need to optimize model efficiency for real-time forecasting and
the lack of consideration for short-term factors like weather and electricity prices that can cause short-term
load fluctuations and affect prediction accuracy. Thus, future research can optimize the algorithm structure
and use parallel computing to enhance model efficiency, incorporate more short-term influencing factors
and multi-source heterogeneous data along with in-depth data fusion study, and integrate other advanced
machine or deep learning methods to better handle complex load forecasting scenarios.
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