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ABSTRACT: Defect detection based on computer vision is a critical component in ensuring the quality of industrial
products. However, existing detection methods encounter several challenges in practical applications, including the
scarcity of labeled samples, limited adaptability of pre-trained models, and the data heterogeneity in distributed
environments. To address these issues, this research proposes an unsupervised defect detection method, FLAME
(Federated Learning with Adaptive Multi-Model Embeddings). The method comprises three stages: (1) Feature learning
stage: this work proposes FADE (Feature-Adaptive Domain-Specific Embeddings), a framework employs Gaussian
noise injection to simulate defective patterns and implements a feature discriminator for defect detection, thereby
enhancing the pre-trained model’s industrial imagery representation capabilities. (2) Knowledge distillation co-training
stage: a multi-model feature knowledge distillation mechanism is introduced. Through feature-level knowledge transfer
between the global model and historical local models, the current local model is guided to learn better feature
representations from the global model. The approach prevents local models from converging to local optima and
mitigates performance degradation caused by data heterogeneity. (3) Model parameter aggregation stage: participating
clients utilize weighted averaging aggregation to synthesize an updated global model, facilitating efficient knowledge
consolidation. Experimental results demonstrate that FADE improves the average image-level Area under the Receiver
Operating Characteristic Curve (AUROC) by 7.34% compared to methods directly utilizing pre-trained models. In
federated learning environments, FLAME’s multi-model feature knowledge distillation mechanism outperforms the
classic FedAvg algorithm by 2.34% in average image-level AUROC, while exhibiting superior convergence properties.
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1 Introduction
Automated monitoring systems are gradually replacing traditional manual inspection methods in mod-

ern manufacturing [1–4]. Defect detection based on computer vision has become an essential component
of quality inspection in smart manufacturing processes. Supervised learning requires a large numbers of
labeled samples to achieve optimal model performance. However, the high cost of collecting industrial
defect samples presents a significant barrier to the acquisition of sufficient labeled data for defect detection
models [5,6]. Moreover, variations across factories in equipment, environment, and production create
inconsistent data distributions, causing non-identical data distribution (non-IID) issues that reduce model
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performance [7]. Hence, effectively transferring knowledge among manufacturing sites while mitigating the
impact of heterogeneous industrial data remains a key challenge.

Unsupervised defect detection has emerged as a widely adopted approach in industrial inspection
systems. This method relies solely on normal samples for identifying defects. Contemporary unsupervised
defect detection methods can be classified into three main categories: reconstruction-based, generation-
based, and embedding-based approaches. Among various methods, embedding-based approaches have
attracted increasing attention due to their promising performance. These approaches use pre-trained
Convolutional Neural Networks (CNNs) from ImageNet to extract features, then apply statistical meth-
ods like multivariate Gaussian distributions [6], feature repositories [8], or normalizing flows [9] to
model normal sample distributions. Industrial images have feature distributions that differ significantly
from those in ImageNet. This difference limits the direct deployment of pre-trained CNNs in real-world
industrial applications.

As a distributed learning framework, federated learning enables collaborative model training across
different clients while preserving data privacy [10]. In the industrial defect detection context, privacy
preservation is particularly critical. Manufacturing data often contains proprietary information about
production processes, quality control standards, and competitive advantages. Federated learning addresses
these ethical and privacy concerns. It enables model training without direct data sharing. This allows
manufacturers to collaborate while protecting their intellectual property. It also helps them safeguard their
competitive secrets. The classic federated learning algorithm FedAvg [11] achieves model optimization
through iterative parameter aggregation. In each round, clients send updated model parameters to the
central server. The server then aggregates these parameters to refresh the global model. However, traditional
federated learning faces a key challenge. Models trained only on local datasets create gaps between local and
global objectives. These gaps hinder model convergence. Knowledge distillation technology emerges as a
promising solution to address this issue. FEDDFUSION [12] improves model performance via knowledge
distillation on unlabeled data while maintaining privacy protection and computational efficiency. Building
on knowledge distillation’s success in federated learning, this research proposes a method that leverages
multi-model embedding features.

In the intersection of federated learning and defect detection, IsIam et al. [13] implemented a federated
framework for USB flash drive quality inspection, enabling distributed collaborative fine-tuning of a pre-
trained Visual Geometry Group (VGG) model. Mehta and Shao [14] extended this paradigm to metal
additive manufacturing, which improved defect detection over traditional single-machine methods. How-
ever, these methods mainly focus on supervised learning scenarios, limiting their practical applications due
to the scarcity of labeled data. Zhang et al. [15] combined federated learning with unsupervised representation
learning, but only explored conceptual integration without maximizing federated learning and unsupervised
representation learning combined benefits.

This work proposes an unsupervised defect detection framework combining federated learning with
knowledge distillation to address labeling limitations and enhance training efficiency in distributed industrial
settings. The contributions of this work are summarized as follows:

(1) Introducing federated learning into unsupervised defect detection through FLAME (Federated
Learning with Adaptive Multi-Model Embeddings), enabling collaborative model optimization while
preserving data privacy.

(2) Proposing FADE (Feature-Adaptive Domain-Specific Embeddings), which generates synthetic defect
embeddings for model optimization while eliminating defect sample dependencies and adapting to
target domain distributions.
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(3) Designing a multi-model feature knowledge distillation mechanism, which integrates local, global,
and historical feature representations to optimize diverse knowledge and reduce data distribution gaps
among clients.

2 Related Work

2.1 Defect Detection and Localization
A large body of work has employed supervised approaches for defect detection and localization

[16–19]. Current unsupervised methods for defect detection and localization can be categorized into three
fundamental approaches: reconstruction-based, generation-based and embedding-based techniques.

Reconstruction-based methods fundamentally leverage the autoencoder architecture. Abati et al. [20]
minimize the differential entropy of latent distribution through joint optimization of reconstruction error
and maximum likelihood estimation of latent representations. Although the reconstruction-based method
exhibits strong expression and generalization capabilities, it may also accurately reconstructs defective sam-
ples, potentially leading to false detections [21]. Generation-based methods focus on synthesizing defective
samples to establish decision boundaries between normal and defective data distributions. SimpleNet [22]
addresses domain bias through the integration of a pre-trained feature extractor and lightweight feature
adapter. Embedding-based methods rely on feature representations extracted from pre-trained CNNs for
defect detection. PaDiM [6] leverages features extracted from pre-trained CNNs to construct the normal
class distribution. Ma et al. [23] propose a Transformer-based generation, detection, and tracking network
for drainage pipeline defect images, which enhances feature extraction capabilities through self-attention
mechanisms and incorporates Generative Adversarial Network (GAN) for data augmentation. Jia et al. [24]
propose a photovoltaic module defect detection method based on improved VarifocalNet, significantly
enhancing both detection accuracy and speed.

2.2 Federated Learning
Following McMahan et al.’s [11] pioneering FedAvg algorithm, federated learning has emerged as a

prominent research direction across industrial domains. Hsu et al. [7] study non-IID effects in federated
visual tasks using Dirichlet distribution, generating datasets with controlled similarity levels to evaluate
federated algorithms across different data distributions.

One promising strategy for addressing data heterogeneity lies in optimizing the local training procedure.
For instance, FedProx, proposed by Li et al. [25], constrains the drift between local updates and the global
model by adding a proximal term to the local objective function. Li et al. [26] tackle feature distribution
shift in non-IID settings by applying local batch normalization, which reduced discrepancies and improved
convergence. Wang et al. [27] introduce FedNova, which implements an adaptive normalization strategy to
handle heterogeneous client update frequencies. Karimireddy et al. [28] introduce SCAFFOLD to correct
client drift using control variables. These approaches mainly focus on basic classification tasks. However,
their effectiveness for complex visual tasks, especially defect detection, remains largely unexplored.

2.3 Knowledge Distillation
Knowledge distillation [29] has gained prominence in recent years. Researchers now explore improved

methods to combine knowledge distillation with federated learning. Data-efficient image Transformers
(DeiT) [30] creates a novel distillation method using tokens that allow student models to extract teacher
features via attention mechanisms. The Fast Knowledge Distillation (FKD) framework [31] reduces costs by
precomputing region-level soft labels before training, avoiding repeated teacher network forward passes.
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VanillaKD [32] enhances distillation efficacy through KL divergence loss optimization while generating
labels for multiple cropped instances, preserving information fidelity comparable to conventional knowl-
edge distillation.

Knowledge distillation has emerged as a critical technique within federated learning frameworks for
addressing model heterogeneity. FedMD [33] integrates transfer learning with knowledge distillation to
enable collaborative learning by sharing output scores on public datasets, preserving both architectural
diversity and data privacy. FedGKD [34] uses past global models’ knowledge to guide local training,
regularizing features and maintaining performance.

3 Preliminaries and Definitions
This section presents the theoretical foundations and key definitions of federated learning, and the

established frameworks are detailed in [27,28].

3.1 Generalized Update Rules of Federated Learning
Consider a federated learning framework with K (K ≥ 1) communication rounds across M clients. Each

client has a private dataset Di with size Di ≜ ∣Di ∣, determining its aggregation weight pi = Di/D. During the
kth round, client Ci performs τ(k , i) (τ(k , i) ≥ 1) local optimization steps. The notation wλ

(k , i) represents local
model parameters, where λ = 0, 1, 2, . . . , τ(k , i) indicates the local iteration index.

Each client constructs the local loss function Fi (wλ
(k , i)) derived from its respective dataset. The primary

objective of the federated learning system is to minimize the global loss function F (wK). At the onset of each
communication round (λ = 0), clients initialize their local model parameters with the global parameters
received from the server (w0

(k ,i) = wk). Throughout the local training iterations (0 ≤ λ ≤ τ(k , i) − 1), Ci

computes the local gradient ∇Fi (wλ
(k , i)) based on its local loss function Fi (wλ

(k , i)) and current model
parameters wλ

(k ,i). The optimization process can be formalized as Eqs. (1)–(3):

Fi (wλ
(k , i)) =

1
∣Di ∣

∑
x j∈D i

l (wλ
(k , i); x j) (1)

F (wk+1) =
N
∑
i=1

pi Fi (wλ
(k , i)) (2)

wλ+1
(k , i) = wλ

(k , i) − η∇Fi(wλ
(k , i)) (3)

where l (wλ
(k , i); x j) represents the loss value of the local model wλ

(k , i) on sample x j, with η > 0 denoting
the learning rate of the optimizer. The client gradient update process is characterized by three essential

parameters: the local normalized gradient G(k , i), the global gradient direction dk =
N
∑
i=0

PiG(k , i), and the

global step size τk =
N
∑
i=1

Pi∥ai∥1, defined as Eq. (4):

G(k , i) ≜
1

∥ai∥1

τ(k , i)−1

∑
λ=0

aλ
i ∇Fi (wλ

(k , i)) (4)

where ai ∈ Rτ(k , i) defines a non-negative vector that determines the local accumulation of stochastic gradi-
ents, with its λth element denoted as aλ

i . Upon completion of local optimization iterations, the parameter
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server executes the global model parameter update. Given the above definitions, the global model update
rule simplifies from Eqs. (5) and (6):

wk+1 = wk − η
N
∑
i=1

pi ∥ai∥1 G(k , i) (5)

wk+1 = wk − ητk dk (6)

3.2 FedAvg and FedNova Algorithms
3.2.1 FedAvg

In the FedAvg algorithm, clients communicate with the central server during the kth communication
round. Each client Ci maintains a private dataset Di . These datasets have a specified batch size B and local
training occurs for E epochs. The number of local optimization iterations τ(k , i) = ⌊E ⋅ Di

B ⌋ is determined to
help control the training process for each client. The cumulative vector ai is defined as [1, 1, . . ., 1] with L1
norm ∥ai∥1 = τ. Consequently, the local normalized gradient G(k , i) and its corresponding model update rule
are formulated as Eq. (7):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

G(k , i) ≜
τ−1
∑
λ=0

∇Fi(wλ
(k , i))

wk+1 = wk − η
N
∑
i=1

piG(k , i)

(7)

3.2.2 FedNova
The FedNova algorithm preserves FedAvg’s cumulative vector definition ai = [1, 1, . . . , 1] while intro-

ducing a novel local gradient normalization mechanism. This normalization of client contributions during
global model aggregation effectively mitigates systematic biases stemming from heterogeneous local training
iterations. The local normalized gradient G(k , i) and its corresponding model update rule are formulated
as Eq. (8):

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G(k , i) ≜ 1
τ(k , i)

τ(k , i)−1
∑
λ=0

∇Fi(wλ
(k , i))

wk+1 = wk − η∑
N
i=1 pi τ(k , i)G(k , i)

∑N
i=1 pi τ(k , i)

(8)

3.3 FedProx and SCAFFOLD Algorithms
3.3.1 FedProx

FedProx adds a regularization term based on the global model wk to constrain local model divergence
through scale control. The enhanced local optimization objective function is formulated as Eq. (9):

Fi (wλ
(k , i)) = fi (wλ

(k , i)) +
μ
2
∥wλ
(k , i) −wk∥

2
(9)

where fi (wλ
(k ,i)) denotes the inherent loss function of Ci on its private dataset Di , μ > 0 acts as a

regularization weight balancing between primary loss and regularization terms. It implements the following
distinct rule during local optimization as Eq. (10):
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wλ+1
(k , i) = wλ

(k , i) − η (∇Fi (wλ
(k , i)) + μ (wλ

(k , i) −wk)) (10)

3.3.2 SCAFFOLD
SCAFFOLD mitigates model divergence which arises from heterogeneous data distributions through

dual-level control variables, effectively minimizing gradient directional bias. The algorithm incorporates a
control variable correction term in the client-side gradient computation, expressed as Eq. (11):

∇Fi (wλ
(k , i)) = ∇ fi (wλ

(k , i)) − ci + c (11)

where∇ fi (wλ
(k ,i)) represents Ci ’s original gradient computation, while ci and c denote the client and server

control variables, respectively. Following each communication round, the server updates and disseminates
the global control variable c to guide subsequent training iterations. The local model parameters are updated
using the corrected gradient according to Eq. (12):

wλ+1
(k , i) = wλ

(k , i) − η∇Fi (wλ
(k , i)) (12)

4 Method

4.1 Feature-Adaptive Domain-Specific Embeddings
Convolutional Neural Networks (CNNs) have emerged as the primary approach for image feature

extraction in deep learning frameworks. However, pre-trained models’ features are inherently biased toward
their original training data. Adapting pre-trained models for domain-specific defect detection exhibits
inadequate performance in practical scenarios. This study proposes a FADE (Feature-Adaptive Domain-
Specific Embeddings) algorithm, which synthesizes defect embeddings to adaptively create realistic anomaly
embeddings in specific domains. Unlike conventional anomaly detection algorithms, FADE synthesizes
defect patterns in feature space rather than image space. By generating synthetic embeddings with Gaussian
noise, it eliminates the need for real defect samples. FADE leverages domain knowledge from pretrained
models to extract meaningful representations of normal patterns. It adopts a discriminative approach that
directly identifies differences between normal and defective embeddings.

The pipeline of the FADE algorithm is illustrated in Fig. 1. The process begins with a set of N normal
images as input. These images pass through a pretrained model that extracts activation vectors from different
layers. The model concatenates these features to form N normal embeddings. A defect embeddings generator
applies Gaussian noise to create synthetic defect representations. These are added to normal embeddings to
produce defective embeddings. Both normal and synthetic defective embeddings are fed into a discriminator.
The discriminator generates defect maps that highlight potential anomalous regions.

Let xtrain and xtest denote the training and test sets respectively, where each image x j is an element of
R

H×W×3 representing an RGB input. The feature map is partitioned into non-overlapping patches, where
spatial coordinates (h, w) ∈ [1, H] × [1, W] define the dimensional bounds for embeddings generation.
A hierarchical structure L is established. Each level l ∈ L yields a feature activation map ϕl , j ∼ ϕl (x j) ∈
R

Hl×Wl×Cl . The parameters Hl , Wl , and Cl denote spatial dimensions and channel depth. Feature subsets
are integrated across hierarchical levels. This integration captures multi-scale semantic features. It produces
embeddings (E j

h,w ∈ Rc) that preserve semantic hierarchy and spatial characteristics, as shown in Eq. (13):

E j
h,w = [ϕ1

h,w; ϕ2
h,w; . . . ; ϕn

h,w] (13)
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Figure 1: Overview of the proposed FADE algorithm. The diagram illustrates the complete workflow from normal
image input through feature extraction, defect embeddings generation with Gaussian noise injection, to defect maps
output

FADE synthesizes defect patch embeddings E j−
h,w ∈ Rc to approximate the distribution of defect feature

patches. This synthesis occurs through the injection of Gaussian noise vectors ε ∈ Rc into normal patch
embeddings. The process is formalized in Eq. (14):

E j−
h,w = E j

h,w + ε (14)

The Gaussian noise vector ε is sampled from a multivariate normal distribution (0, σ 2). This process
creates synthetic defect features by controlled perturbation of normal embeddings. A smaller σ value pro-
duces subtle deviations that may simulate minor defects, while larger values create more obvious anomalies.
Feature-space changes better preserve the underlying structure and statistical features of real defects.

Subsequently, both categories of patch embeddings are processed through the discriminator Disψ
to compute positional normality scores at coordinates (h, w). This study employs a two-layer multilayer
perceptron (MLP) as the discriminator architecture. The normality evaluation is expressed as Disψ(h, w) ∈
R

c . The defect score of the discriminator is formulated as Eq. (15):

s j
h,w = −Disψ (E j

h,w) (15)

Employing truncation parameters th+ = 0.5 and th− = −0.5 to mitigate overfitting, the local unsuper-
vised loss function is defined based on the discriminator response as Eq. (16):

l j
unsu p (h, w) = max (0, th+ − s j

h,w) +max (0,−th− − s j−
h,w) (16)
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Instead of generating defects in image space, FADE uses its enhanced capacity to create defective
samples directly in feature space. This approach enables the distribution of defect features to better align with
real-world patterns, leading to more precise decision boundaries in the model’s discrimination process. Addi-
tionally, by extracting multi-scale features across the CNN, FADE captures both textural details and semantic
information while adapting to domain-specific distributions that typically challenge pre-trained networks.

Following the removal of the noise generator and feature discriminator, N normal training images are
processed through the feature extraction network to obtain patch embeddings Eh,w = {x j

h,w, j ∈ [1, N]}. Eh,w

is assumed to follow a multivariate Gaussian distribution (μh,w, Σh,w). μh,w represents the sample mean.
The sample covariance matrix Σh,w is computed as Eq. (17):

∑h,w = 1
N − 1

N
∑
j=1
(E j

h,w − μh,w)(E j
h,w − μh,w)

T
+ ε I (17)

A regularization term εI is incorporated to ensure the full rank and invertibility of the sample covariance
matrix Σh,w. At each spatial position (h, w), the estimated multivariate Gaussian distribution (μh,w, Σh,w)
captures multi-level feature representations. The covariance matrix Σh,w encodes the inter-level feature
correlations. During the defect detection phase, patches at position (h, w) in the test image are quantitatively
evaluated using the Mahalanobis distance metric dmahal (E j

h,w). The distance quantifies the statistical
disparity between the patch embeddings E j

h,w of the test sample and the established normal distribution
(μh,w, Σh,w). The mathematical formulation of dmahal (E j

h,w) is expressed as Eq. (18):

dmahal (E j
h,w) =

√
(E j

h,w − μh,w)
T
∑−1

h,w (E j
h,w − μh,w) (18)

The resulting defect score map S = (dmahal(E j
h,w))1<h<H,1<w<W quantifies the deviation of each local

region from the normal distribution. The score map magnitudes quantify defect occurrence probabilities,
where elevated values indicate higher defect likelihood.

4.2 Federated Learning with Adaptive Multi-Model Embeddings
FLAME (Federated Learning with Adaptive Multi-Model Embeddings) is a federated learning frame-

work that enables collaborative defect detection, using knowledge distillation with multi-model embeddings
to address data heterogeneity across distributed clients. FLAME differs from traditional federated learning
algorithms by using multi-model embeddings knowledge distillation instead of simple parameter averaging.
It preserves historical model information for temporal consistency across learning rounds. FLAME operates
at the embedding level for better feature alignment across diverse data distributions. Analysis in Section 4.1
reveals that embeddings encompass multi-level structured features. This results in global model embeddings
that surpass local models in representational power and completeness.

As shown in Fig. 2, FLAME optimizes local training by analyzing knowledge similarities between
models. The process begins with the central server distributing the global model to all participating clients.
Each client then trains the model using their local private data. Clients enhance their models through
knowledge distillation, incorporating information from both global and historical models. The updated local
models are sent back to the server. The server then aggregates these models to create an improved global
model. Each client maintains three parallel model branches. These include the historical local model, the
current global model, and the current local model. Each model processes the same input data to generate
embeddings. Knowledge transfer occurs through the Embeddings-KD loss. This loss measures the similarity
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between feature representations. The framework combines this with unsupervised learning loss to guide local
model training. The approach alleviates data heterogeneity challenges while preserving privacy.

Figure 2: Overview of the proposed FLAME framework. Left: federated learning workflow between server and dis-
tributed clients with numbered communication steps. Right: client-side multi-model knowledge distillation mechanism
integrating historical, global, and current local models

The composite loss function of FLAME incorporates two components: the unsupervised learning loss
lunsu p from FADE and the distillation loss lkd derived from multi-model embeddings. During Ci ’s local
training process, wk

l oc denotes the current round’s local model under training, wk
g l o represents the aggregated

global model of the current round, and wk−1
l oc indicates the historical local model from the preceding round.

These three models process the training dataset xtrain in parallel, which can be formulated as Eq. (19):

E j ,k
(h,w) = Rw k (x j) (19)

E j ,k
l oc(h,w), E j ,k

g l o(h,w) and E j ,k−1
l oc(h,w)(k ≥ 1) represent the embeddings extracted from the training set by the

current local model, global model, and historical local model, respectively. FLAME’s optimization objective
includes two aims: minimizing the distance between the current local embeddings E j ,k

l oc(h,w) and global
embeddings E j ,k

g l o(h,w), maximizing the distance between the current local embeddings E j ,k
l oc(h,w) and its

historical counterpart E j ,k−1
l oc(h,w) simultaneously. The embeddings distillation loss function is formulated

as Eq. (20):

lkd = − log
⎛
⎜
⎝

exp (KL (E j ,k
l oc(h,w), E j ,k−1

l oc(h,w)) /τ)

exp (KL(E j ,k
l oc(h,w), E j ,k

g l o(h,w)) /τ) + exp (KL(E j ,k
l oc(h,w), E j ,k−1

l oc(h,w)) /τ)

⎞
⎟
⎠

(20)

where τ denotes a temperature coefficient that regulates the magnitude of the embeddings distillation loss.
When the knowledge representations between the local and global models achieve sufficient convergence
such that E j ,k

l oc(h,w) = E j ,k
g l o(h,w), the knowledge distillation loss converges to a fixed constant. Under these con-

ditions, as model heterogeneity diminishes, FLAME becomes equivalent to the classical FedAvg algorithm,
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which theoretically demonstrates the convergence stability of FLAME. The complete loss function for the
input data xtrain is formulated as Eq. (21):

ltotal = lunsu p (wk
l oc ; xtrain) + μlkd (wk

l oc ; wk−1
l oc ; wk

g l o ; xtrain) (21)

where μ denotes a hyperparameter that regulates the distillation loss. The FLAME framework is illustrated
in Algorithm 1. In each round, clients train locally through two phases. Firstly, they use FADE to extract
features and generate defect embeddings from unlabeled data. Secondly, they perform knowledge distillation
across current local, global, and historical local models. The dual optimization mechanism of FLAME serves
two critical purposes: ensuring domain adaptability in feature extraction and mitigating the non-IID data
challenge through knowledge distillation. The server aggregates these parameters based on each client’s data
volume. This weighting method gives proportional influence to clients with larger datasets. The framework
repeats the training, aggregation, and distribution cycle for a fixed number of communication rounds. The
final model achieves improved detection across diverse industrial environments.

Algorithm 1: The FLAME framework
Input: number of communication rounds K, number of parties N , local epochs E, temperature τ
Output: The final model wK

Server execution:
Initialize w0

for each round k = 0, 1, . . . , K − 1 do
for each party i = 1, 2, . . . , N in parallel do

send the global model wk to Pi
wk

i ← PartyLocalTraining (i , wk)
wk+1 ←∑N

i=1
∣Di ∣
∣D∣ w

k
i

return wK

PartyLocalTraining (i , wk) ∶
wk

i ← wk

for each epoch e = 1, 2, . . . , E do
for x in data_loader
lossunsu p ← loss_func(Dis (q) , Dis (q−)).mean()

losskd ← − log(
exp(KL(E j ,k

l oc(h,w) ,E j ,k−1
l oc(h,w))/τ)

exp(KL(E j ,k
l oc(h,w) ,E j ,k

g l o(h,w))/τ)+exp(KL(E j ,k
l oc(h,w) ,E j ,k−1

l oc(h,w))/τ)
)

losstotal ← lossunsu p + losskd
return wk

i to server

4.3 Computational Efficiency and Scalability Analysis
4.3.1 Computational Complexity of FADE

The computational costs of the FADE algorithm come from three main operations. Feature extraction
requires O(WHL) complexity for H ×W × 3 images with L CNN layers. Defect embedding generation via
Gaussian noise injection has O(c) complexity. Discriminator operations using a two-layer MLP contribute
O(c2) complexity. During inference, Mahalanobis distance calculations require O(c3) complexity per spatial
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position, though some components can be computed offline. This results in O(WHc) real-time inference
complexity for detection.

4.3.2 Communication and Computation Efficiency of FLAME
For N clients each transmitting model parameters of size ∣θ∣ bytes per round, the total communication

cost becomes O(N ∣θ∣). FLAME’s multi-model knowledge distillation requires each client to maintain three
models in memory, adding 2∣θ∣ bytes of memory overhead per client beyond standard federated learning.
The computational cost for knowledge distillation mainly comes from calculating KL divergence between
feature embeddings, contributing O(WHc) complexity per training batch.

4.3.3 Scalability Considerations
FLAME’s scalability across varying client populations will be demonstrated in Section 5.5.5. The frame-

work’s communication complexity scales linearly with participating clients as O(N ∣θ∣). When implementing
client sampling strategies where only a fraction β of clients participate each round, this reduces to O(βN ∣θ∣).

5 Experiment

5.1 Datasets
The heterogeneous data distribution inherent in real-world applications is simulated through the

implementation of Dirichlet distribution for non-IID data partitioning. The process involves sampling
probability vectors pk from DirN (β) [9], where β is the concentration parameter (default: 0.5). Input
images undergo standard normalization based on the RGB channel means and standard deviations of the
ImageNet dataset. For defective samples, annotation masks are spatially aligned through identical geometric
transformations, while all-zero masks are generated by default for normal samples.

The Furniture Board Dataset contains five distinct board categories characterized by unique texture
features: Warm White Grid (wwg), Straight Cloud Pattern (scp), Moon Shadow White Oak (mswo), Huixiang
Warm Wood (hww), and Green Grey Wood (ggw). Each category incorporates five representative defect
types: break corner (bc), break edge (be), edge indentation (ei), surface indentation (si), and stain (in). The
dataset comprises 2250 images, which contains 1950 training data and 300 testing data and each image with
a spatial resolution of 288 × 288 pixels.

The Magnetic Tile Defects (MT) dataset contains 1344 images of magnetic tiles with various surface
defects commonly encountered in material manufacturing, including 952 normal samples and 392 defective
samples [35]. This dataset includes five defect categories: blowhole, break, crack, fray, and uneven. All images
were resized to 225 × 225 pixels.

5.2 Evaluation Metrics
The Image-level Area Under the Receiver Operating Characteristic curve (I-AUROC) is calculated using

the defect detection score SAD to evaluate image-level detection performance. Given that peak response
points occur in defect regions of varying dimensions, the maximum value within the defect map is adopted
as the image-wise defect detection score. The computational procedure is defined as Eq. (22):

SAD (x j) = max
(h,w)∈W×H

dmahal (E j
h,w) (22)
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The Pixel-level Area Under the Receiver Operating Characteristic curve (P-AUROC) is calculated using
the generated anomaly localization map SAL to evaluate pixel-level defect localization performance. The
computational procedure is formulated as Eq. (23):

SAL (x j) = {dmahal (E j
h,w) ∣ (h, w) ∈ W × H} (23)

5.3 Implementation Details
FADE is compared with three state-of-the-art approaches including PaDiM, Patchcore and CS-Flow. To

test how different backbones impact performance, FADE and PaDiM are trained with different backbones:
ResNet18, Wide ResNet-50-2 and EfficientNet-B5. For ResNet implementations, embeddings are extracted
from the first three layers. For EfficientNet-B5 implementation, embeddings are extracted at layers 7, 20,
and 26 to achieve multi-scale integration and high spatial resolution. During defect embedding generation,
normal embeddings are disturbed with Gaussian noise (0, σ 2), where σ is set to 0.015 by default.

FLAME is compared with five state-of-the-art approaches including FedAvg, FedProx, FedNova,
SCAFFOLD and MOON. A baseline approach named SOLO is also evaluated, where each party trains a
model with its local data without federated learning. SGD optimizer with a learning rate 0.01 is applied for
all methods. SGD weight decay is set to 0.00001 and the SGD momentum is set to 0.09. The batch size is set
to 32. The number of local epochs is set to 200 for SOLO and 10 for all federated learning approaches unless
explicitly specified. For FLAME, the distillation parameter μ is set to 0.5 by default. MOON uses temperature
parameter μ = 1.0. FedProx uses hyperparameter μ = 0.01. All federated models use ResNet18 backbone by
default. The ablation studies are conducted following the methodology in federated learning work [36].

The experimental evaluations were conducted on a computing platform equipped with an RTX 4090
GPU (24 GB VRAM, Santa Clara, CA, USA), an AMD EPYC 7453 14-core processor (Santa Clara, CA, USA),
and 64.4 GB RAM.

5.4 Experiment Result
5.4.1 Defect Detection of FADE

As illustrated in Table 1, FADE improved detection performance across all backbone networks for
the five board categories. Compared to PaDiM which directly uses pre-trained models, FADE achieved
improvements of 7.34% and 0.66% in average I-AUROC and P-AUROC metrics, respectively. EfficientNet-
B5 achieved the best I-AUROC of 93.62% among all backbone architectures, indicating that deeper
networks extract more effective features. Patchcore achieves an average I-AUROC of 89.78%, which is 3.1%
lower than FADE with ResNet18. CS-Flow attains an average I-AUROC of 88.84%, falling 4.04% behind
FADE’s performance. These comparisons further validate FADE’s effectiveness in capturing discriminative
feature representations.

Table 1: Performance comparison of different defect detection methods on board defect detection, with metrics reported
as I-AUROC%/P-AUROC%. The table compares FADE across three backbone networks against PaDiM, Patchcore, and
CS-Flow

Model ResNet18 Wide ResNet-50-2 EfficientNet-B5 Patchcore CS-Flow

Type FADE (Ours) Padim FADE (Ours) Padim FADE (Ours) PaDiM
wwg 85.8/98.7 81.1/97.7 87.2/98.9 85.6/97.3 87.5/98.6 85.8/97.5 86.3/98.1 84.7/97.8
scp 91.7/99.2 87.1/99.1 93.5/99.1 94.8/98.7 93.6/99.4 92.3/98.9 91.1/99.3 88.8/98.8

mswo 99.9/99.3 98.6/98.7 98.7/99.5 97.2/98.9 98.8/99.5 97.9/98.6 96.5/98.4 97.6/98.3
hww 88.7/99.2 79.8/98.9 89.4/98.7 90.1/99.2 90.9/99.3 88.6/98.8 82.2/96.6 86.9/97.5

(Continued)
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Table 1 (continued)

Model ResNet18 Wide ResNet-50-2 EfficientNet-B5 Patchcore CS-Flow

Type FADE (Ours) Padim FADE (Ours) Padim FADE (Ours) PaDiM
ggw 98.3/99.6 81.1/98.3 96.8/99.3 94.5/98.6 97.3/98.7 96.4/99.1 92.8/99.4 86.2/96.9

Average 92.88/99.20 85.54/98.54 93.12/99.10 92.44/98.54 93.62/99.10 90.20/98.58 89.78/98.36 88.84/97.86

5.4.2 Defect Localization of FADE
As shown in Fig. 3, FADE demonstrates excellent detection performance across diverse board categories

and defect types. Experiment results show FADE accurately localizes defects of different types and sizes. For
extensive surface defects such as ‘ei’, the generated heatmap achieves comprehensive coverage with precise
boundary demarcation. Microscopic defects are precisely localized by FADE while keeping background
response minimal. FADE’s effective defect localization stems from two factors: adaptive feature mechanisms
that improve feature distribution modeling for more discriminative representations, and feature-space defect
synthesis that avoids image-space generation, enabling more accurate discriminant boundary learning.

Figure 3: Detection visualization of five distinct defect categories in the board defect dataset. The nomenclature follows
‘board-category_defect-type’ format, where ‘wwg_ei’ denotes an ‘ei’ defect on ‘wwg’ textured board



1852 Comput Mater Contin. 2025;84(1)

5.4.3 Defect Detection of FLAME
The experimental results in Table 2 demonstrate a consistent performance improvement pattern as

network complexity increases. As shown in the architectural progression of ResNet18, Wide ResNet-50-2,
and EfficientNet-B5, a steady enhancement in detection capabilities becomes evident. With the baseline
ResNet18 architecture, FLAME achieves an average I-AUROC of 89.16%, already outperforming other
federated learning approaches. When using the wider and deeper Wide ResNet-50-2, FLAME shows a slight
improvement with average I-AUROC increasing to 89.44%. However, the most significant performance gain
is observed with EfficientNet-B5. Using this architecture, FLAME attains 91.42% average I-AUROC.

Table 2: Detection performance comparison between FLAME and other federated frameworks, with metrics expressed
as I-AUROC%/P-AUROC%

Type FLAME (Ours) FedAvg FedProx FedNova SCAFFOLD MOON SOLO

ResNet18
wwg 85.1/97.7 83.8/97.9 84.0/97.9 84.5/98.1 82.0/97.6 84.3/97.3 73.2 ± 0.25/85.9 ± 0.23
scp 91.2/99.0 90.3/99.1 90.0/99.2 90.8/99.2 88.5/98.8 90.6/99.1 75.8 ± 0.21/86.3 ± 0.24

mswo 98.8/98.9 98.7/98.9 98.6/98.9 98.6/99.0 98.4/98.8 98.7/98.9 82.4 ± 0.15/89.8 ± 0.22
hww 83.7/98.9 81.9/98.8 83.6/98.3 82.1/98.4 81.2/98.6 82.8/98.7 72.9 ± 0.28/85.5 ± 0.19
ggw 87.0/98.4 85.7/98.1 85.7/98.2 86.9/98.2 84.2/98.4 86.2/98.3 76.5 ± 0.32/87.2 ± 0.31

Average 89.16/98.58 88.08/98.56 88.38/98.50 88.58/98.58 86.86/98.44 88.52/98.46 76.16/86.94
Wide ResNet-50-2

wwg 85.1/98.2 83.7/97.9 84.4/98.1 83.0/97.8 83.6/96.9 84.2/98.0 74.6 ± 0.27/86.2 ± 0.21
scp 90.5/98.1 90.9/98.6 91.7/98.7 90.1/98.8 90.8/98.7 91.2/98.6 77.3 ± 0.24/87.5 ± 0.26

mswo 98.7/99.5 97.2/99.3 98.0/99.1 96.5/99.2 97.1/99.3 97.5/99.3 81.8 ± 0.18/88.9 ± 0.23
hww 86.3/98.3 84.7/98.0 84.5/98.2 83.9/97.9 84.6/98.1 86.1/97.4 75.9 ± 0.31/86.8 ± 0.28
ggw 86.6/98.3 85.3/98.4 88.1/98.3 84.5/98.3 87.7/98.4 87.3/98.2 73.5 ± 0.22/85.7 ± 0.25

Average 89.44/98.48 88.36/98.44 89.34/98.48 87.60/98.40 88.76/98.28 89.26/98.30 76.62/87.02
EfficientNet-B5

wwg 85.5/98.6 84.2/97.8 84.1/98.2 83.8/98.0 84.8/97.9 84.8/98.2 75.2 ± 0.23/86.5 ± 0.25
scp 91.6/98.9 89.5/98.9 91.8/98.7 90.4/98.8 87.2/98.4 91.0/98.8 78.4 ± 0.19/88.1 ± 0.22

mswo 98.8/99.5 96.3/99.1 95.2/99.2 96.5/99.0 96.6/99.2 96.8/99.0 82.5 ± 0.16/90.2 ± 0.20
hww 88.9/98.3 86.6/98.5 85.2/98.4 86.1/98.6 85.8/98.6 87.4/98.5 76.1 ± 0.29/87.2 ± 0.24
ggw 92.3/98.8 88.8/98.6 90.5/98.7 88.9/98.5 89.2/98.5 91.8/98.6 75.8 ± 0.25/88.4 ± 0.28

Average 91.42/98.82 89.08/98.58 89.36/98.64 89.14/98.58 88.72/98.52 90.36/98.62 78.20/88.08

As shown in Fig. 4, the performance gap between FLAME and other methods widens as architectural
complexity increases. With EfficientNet-B5, FLAME surpasses FedAvg by 2.34%, compared to just 1.08% with
ResNet18. This suggests that FLAME’s multi-model embedding knowledge distillation mechanism better
leverages the enhanced representational capacity of these networks. These findings highlight that FLAME
maintains its effectiveness across all tested architectures. However, its full potential is best realized with more
advanced backbone networks which can extract richer feature representations from industrial data.

5.4.4 Defect Localization of FLAME
Fig. 5 illustrates defect localization results across federated methods, showing progression from original

images to predicted heatmaps, masks, and final segmentation. In the first row, FLAME generates heatmaps
with strong defect highlights and suppressed backgrounds, facilitating effective segmentation. Other fed-
erated methods show excessive sensitivity to plate texture variations, incorrectly identifying defect-free
regions as defective. The third row displays segmentation maps that highlight the detected defect regions.
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MOON successfully detects defects at multiple locations simultaneously just like FLAME. However, in terms
of boundary localization precision, MOON doesn’t achieve the same level of accuracy as FLAME, whose
segmentation results demonstrate superior alignment with the actual defect boundaries.

Figure 4: Comparative performance analysis of federated learning methods across different backbone architectures

Figure 5: The defect localization performance of different federated learning methods. The nomenclature follows
‘board-category_defect-type’ format, where ‘hww_si’ denotes an ‘si’ defect on hww textured board

FLAME’s defect localization performance across diverse board typologies is visualized in Fig. 6a. It
can be observed that the method accurately identifies the locations of various defects regardless of their
size, demonstrating detection capabilities for both microscopic anomalies and larger structural flaws. This
superior performance stems primarily from its novel multi-model embeddings knowledge distillation
mechanism. Through feature-level knowledge distillation from global, current local, and historical local
models, FLAME achieves two key benefits: enhanced stability and discrimination in feature learning, while
minimizing distribution shifts caused by non-IID data. Additional board defect detection diagrams are
shown in Fig. 6b. These diagrams demonstrate the effect of superimposing the predicted heat maps and
segmentation diagrams on the original images.
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Figure 6: The defect localization performance of FLAME. The nomenclature follows ‘board-category_defect-type’
format, where ‘wwg_in’ denotes an ‘in’ defect on ‘wwg’ textured board

5.4.5 Validation on Magnetic-Tiledefects-Datasets
As shown in Table 3, FADE demonstrates strong performance on the MT dataset across different

backbone architectures. With EfficientNet-B5, FADE achieves 84.44% I-AUROC and 97.30% P-AUROC,
showing improvements of 3.84% and 1.64% respectively compared to the ResNet18 implementation. In
the federated learning setting, FLAME shows effective performance with EfficientNet-B5 reaching 79.36%
I-AUROC and 87.44% P-AUROC. Due to the non-IID data distribution inherent in federated learning
environments, performance metrics show some reduction compared to centralized training approaches. This
phenomenon stems from the heterogeneity of magnetic tile defects across different clients, which complicates
the knowledge aggregation process.

Table 3: Performance of FADE and FLAME on the MT dataset across different backbone networks, with metrics
expressed as I-AUROC%/P-AUROC%

Type FADE FLAME

ResNet18 Wide ResNet-50-2 EfficientNet-B5 ResNet18 Wide ResNet-50-2 EfficientNet-B5
Blowhole 78.3/93.6 81.5/96.2 83.8/98.4 73.2/86.5 75.9/89.8 77.5/92.3

Break 83.5/97.9 85.2/99.3 85.7/99.5 75.6/80.4 79.8/83.2 82.3/85.7
Crack 79.2/94.7 82.1/97.0 82.3/98.9 74.1/87.9 76.4/80.6 78.2/83.1
Fray 85.1/99.6 86.8/91.2 88.6/92.3 76.4/81.6 80.5/84.3 82.0/86.9

Uneven 76.9/92.5 77.6/95.1 81.8/97.4 71.9/85.8 74.2/88.5 76.8/89.2
Average 80.60/95.66 83.64/95.76 84.44/97.30 74.24/84.44 77.36/85.28 79.36/87.44

The defect localization visualization results of FADE on the MT dataset are illustrated in Fig. 7.
For compact defects like blowholes, FADE demonstrates sensitivity in detecting these subtle anomalies.
Meanwhile, for extensive defects such as frays, the method maintains consistent detection accuracy across
the entire affected region.

FLAME demonstrates superior detection capabilities for intricate defects in Fig. 8. It precisely delineates
the contours of challenging linear structures like cracks. It also accurately captures irregular edge patterns
in defects such as frays. This enhanced performance on boundary-complex defects can be attributed to
the knowledge distillation mechanism that effectively integrates multi-perspective feature representations
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across distributed clients. The performance on the MT dataset demonstrate that the approaches effectively
generalize beyond the furniture manufacturing domain to other industrial contexts.

Figure 7: Defect localization visualization results of FADE on the MT dataset

Figure 8: Defect localization visualization results of FLAME on the MT dataset

5.5 Ablation Study
5.5.1 Effects of Noise

As shown in Fig. 9, the variation of FADE’s I-AUROC and P-AUROC metrics under different values of
σ is illustrated. The optimal configuration at σ = 0.015 attains superior performance metrics with average
I-AUROC and P-AUROC scores of 92.88% and 99.2%. These metrics represent substantial improvements
of 3.28% and 3.09% compared to alternative noise configurations. Experimental results show that selecting
appropriate noise can improve the detection performance and decision boundary learning ability.

Figure 9: The variation of FADE’s I-AUROC and P-AUROC under different values of σ



1856 Comput Mater Contin. 2025;84(1)

5.5.2 Effects of Knowledge Distillation Temperature μ
As demonstrated in Fig. 10, FLAME exhibits optimal convergence behavior at μ = 0.5, reaching steady

state after approximately 110 communication rounds with a minimal terminal loss of 0.66. At μ = 0.1, the
diminished knowledge distillation constraint leads to degraded convergence rates and elevated terminal loss
values. Elevated distillation parameters (μ = 1.0, 2.0, and 5.0) impose excessive regularization constraints,
leading to convergence instability during model optimization. These findings show an optimal distillation
parameter (μ = 0.5) balances local optimization objectives and knowledge transfer, enabling efficient
convergence and information propagation.

Figure 10: Loss convergence of FLAME across distillation temperature μ configurations

5.5.3 Effects of Heterogeneity
As shown in Fig. 11, Lower β values increase distributional skewness and cross-client heterogeneity.

Under substantial data heterogeneity (β = 0.1), FLAME maintains robust performance through achieving
convergence stability at approximately 90 communication rounds with a terminal loss value of 0.87. All
methods show unstable behavior under high data heterogeneity, with SCAFFOLD and FedNova showing
particularly poor convergence. At β = 5.0, the variations in convergence behavior among federated learning
approaches become more apparent. FLAME demonstrates superior performance by achieving a training loss
of 0.23 in contrast to SCAFFOLD’s convergence at 1.12.

Figure 11: Loss convergence dynamics of FLAME under distinct heterogeneity configurations
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As shown in Table 4, FLAME demonstrates superior performance across all three imbalanced data
distributions compared to baseline methods. At β = 5.0, FLAME attains an average I-AUROC of 92.73%,
surpassing the FedAvg algorithm by 2.73%. Compared to FedProx specialized in heterogeneity handling,
FLAME achieves a 1.18% enhancement in average I-AUROC. Empirical results demonstrate FLAME’s
potential in mitigating data heterogeneity through its feature-level knowledge distillation mechanism, which
reduces local-global model disparities.

Table 4: Performance of federated learning methods under different distributions of client data, with metrics expressed
as average I-AUROC%/P-AUROC%

Method β = 0.1 β = 0.5 β = 5.0
FLAME (ours) 83.19/97.75 89.23/98.72 92.73/99.12

FedAvg 78.71/97.23 87.89/97.78 92.25/98.76
FedProx 81.44/97.88 88.11/98.14 91.55/98.24
FedNova 79.12/96.98 87.13/97.69 91.75/98.54

SCAFFOLD 77.85/95.13 85.87/97.43 90.91/98.79
MOON 82.32/97.68 89.76/98.11 91.57/98.66
SOLO 69.34 ± 2.1/81.39 ± 1.7 76.62 ± 1.5/87.98 ± 1.3 81.77 ± 1.2/93.26 ± 1.1

5.5.4 Effects of Sampling Ratio
Training loss convergence was compared between different federated learning methods at sampling

ratios of 1.0, 0.5, and 0.2. As shown in Fig. 12, a lower sampling rate results in higher convergence volatility
due to reduced data participation per iteration. When a sampling ratio of 1.0 was used, FLAME exhibits a
convergence behavior which reaches steady state after approximately 95 iterations where the terminal loss
value stabilizes at 0.55.

Figure 12: Loss convergence characteristics of FLAME under differential sampling rates

Even at a minimal sampling ratio of 0.2, FLAME exhibits superior convergence characteristics and
achieves notably lower training loss values compared to baseline methods. In contrast, SCAFFOLD shows
severe instability under low sampling ratios, while FedAvg and FedNova achieve convergence but with higher
training loss values. These observations demonstrate FLAME’s capacity to maintain robust performance
across varying levels of participant engagement.
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5.5.5 Effects of Scalability
To evaluate FLAME’s scalability, experiments were conducted under two distinct configurations: (1) a

distributed setup with 50 participants, each actively engaged in every communication round; (2) a larger-
scale deployment with 100 participants, where 20% are randomly selected for participation in each round.
As illustrated in Table 5, FLAME attained average I-AUROC values of 79.85% and 82.29% under configu-
rations of 50 participants with 200 communication rounds and 100 participants with 500 communication
rounds, respectively.

Table 5: Comparison of FLAME with different federated learning methods across client scales and rounds, with metrics
expressed as average I-AUROC%/P-AUROC%

Method Parties = 50 Parties = 100

100 Rounds 200 Rounds 300 Rounds 500 Rounds
FLAME (ours) 74.26/93.62 79.85/95.92 79.53/95.45 82.29/96.42

FedAvg 69.15/91.54 75.76/92.74 74.67/92.32 78.14/94.49
FedProx 71.42/92.92 77.98/94.96 77.95/92.73 79.47/91.86
FedNova 72.92/92.48 75.84/93.82 71.42/93.19 75.25/91.76

SCAFFOLD 66.62/90.46 72.95/91.63 70.81/88.28 74.57/92.58
MOON 72.01/92.54 77.41/93.88 76.41/91.82 79.58/95.62
SOLO 58.22 ± 6.32/86.98 ± 4.87 72.83 ± 5.92/83.45 ± 2.85

Fig. 13 shows performance evolution across experimental configurations. Initial training shows slower
convergence due to high embeddings distillation loss from heterogeneous knowledge distribution. As
communication rounds increase, the model improves anomaly pattern recognition, ultimately surpassing
baselines. FLAME consistently outperforms FedAvg and FedProx by 4.15% in average I-AUROC across
both configurations.

Figure 13: Average I-AUROC convergence curves across communication rounds for different federated learning
methods under varying client scales
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5.5.6 Effects of Local Epochs
As shown in Fig. 14. FLAME outperforms other federated learning approaches across various local

training configurations. All federated learning methods show reduced performance with fewer local iter-
ations due to insufficient use of private datasets during optimization. FLAME achieves peak performance
with an I-AUROC of 89.16% when configured for 10 local training rounds, but performance declines beyond
this point due to increasing divergence between local and global optimization paths. Despite this decline,
FLAME still maintains superior performance with an I-AUROC of 86.87% compared to alternatives. These
results demonstrate FLAME’s effectiveness in reducing local overfitting by utilizing both global and historical
model knowledge.

Figure 14: Effect of local epochs on average I-AUROC in federated learning

6 Conclusion
This research proposes an unsupervised learning method FADE and a distributed anomaly detection

framework FLAME. FADE enhances feature extraction by synthesizing defect samples, eliminating the need
for labeled data. FLAME employs adaptive embeddings distillation by leveraging feature-level knowledge
from global and historical models to mitigate performance degradation caused by data heterogeneity. On
the board defect detection dataset, experimental results demonstrate that FADE achieves an I-AUROC
improvement of 7.34% compared to baseline pre-trained models. FLAME demonstrates superior detection
and localization performance in federated settings, outperforming the classic FedAvg algorithm by 2.34% in
average image-level AUROC, while also exhibiting better convergence stability. Future work will integrate
the extraction-amplification-fusion mechanism to enhance FADE and FLAME. Key improvements include
suppressing background noise, amplifying tiny defect features, and leveraging multi-scale fusion, thereby
advancing FADE’s synthesis capability and FLAME’s accuracy in distributed anomaly detection.
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