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ABSTRACT: With the growth of the Internet of Things (IoT) comes a flood of malicious traffic in the IoT, intensifying
the challenges of network security. Traditional models operate with independent layers, limiting their effectiveness in
addressing these challenges. To address this issue, we propose a cross-layer cooperative Feature Subset-Based Malicious
Traffic Detection (FSMMTD) model for detecting malicious traffic. Our approach begins by applying an enhanced
random forest method to adaptively filter and retain highly discriminative first-layer features. These processed features
are then input into an improved state-space model that integrates the strengths of recurrent neural networks (RNNs)
and transformers, enabling superior processing of complex patterns and global information. This integration allows
the FSMMTD model to enhance its capability in identifying intricate data relationships and capturing comprehensive
contextual insights. The FSMMTD model monitors IoT data flows in real-time, efficiently detecting anomalies and
enabling rapid response to potential intrusions. We validate our approach using the publicly available ToN_IoT
dataset for IoT traffic analysis. Experimental results demonstrate that our method achieves superior performance with
an accuracy of 98.37%, precision of 96.28%, recall of 95.36%, and F1-score of 96.79%. These metrics indicate that
the FSMMTD model outperforms existing methods in detecting malicious traffic, showcasing its effectiveness and
reliability in enhancing IoT network security.
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1 Introduction
With the continuous progress of Internet of Things (IoT) technology, its application has penetrated every

aspect of daily life. From smart homes, smart wearables, and other life-oriented fields to smart agriculture,
smart healthcare, and other areas of industrial digitalization, to smart fire protection, smart meters, and
other fields of social governance, IoT technology has shown broad application prospects. However, when
sensors and actuators in IoT devices sense the surrounding environment, communicate with each other,
and exchange data through the Internet, the communication protocol commonly used possesses security
vulnerabilities [1]. These vulnerabilities make IoT devices inevitably exposed to many potential security
threats (such as man-in-the-middle attacks, botnets, denial of service attacks, and ransomware attacks) when
linking to the global Internet. When network malicious traffic is generated, it is particularly important to
detect it in time and stop it before it reaches the host.

In the high-speed network environment, network traffic exhibits high data flow characteristics. The
malicious traffic detection method based on traditional methods has high computational complexity, and
there may be delays when processing network traffic, which cannot meet the current needs. Because
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there are a lot of irrelevant/redundant features in the data extracted from the original network, which
reduces the performance of the classifier, the study of feature dimensionality reduction methods plays an
important role in reducing the computational complexity and improving the model generalization ability.
The feature selection method is to rank the feature importance from the original features, and then select
the most important feature subset. Feature selection methods generally include filtering, wrapping, and
embedded methods [2]. The embedded method integrates feature selection into the model training process.
During training, the model selects features that are beneficial to performance according to the criteria and
adjusts the weight. It combines the advantages of both filtering and wrapping methods and considers data
characteristics and model training. These characteristics make embedded methods uniquely valuable in the
field of malicious traffic detection on the Internet of Things. The embedded feature selection method selects
the features that are most helpful to the malicious traffic detection model, reduces the feature dimension,
and thus enables more efficient malicious traffic detection.

In recent years, deep learning has developed rapidly and achieved great success in automatic target
recognition [3], computer vision [4], malicious code detection [5,6], and intrusion detection [7]. At the same
time, malicious traffic detection based on deep learning technologies, such as CNN, RNN, and Transformer,
has become a research hotspot in recent years. For input data, different deep learning models have different
processing methods. CNN can bypass complex state calculations and conduct parallel training through
convolutional kernels, so its training efficiency is relatively high. Because RNN trains information serially,
it cannot process information in parallel during training, leading to slower training efficiency for the RNN
model. When reasoning (or inferring), it only considers the information from the previous time step, so its
reasoning efficiency is fast; however, the model’s ability to retain previous information is relatively poor, as
RNNs tend to forget earlier information. The attention mechanism of the Transformer displays and stores
the entire context information. The information is trained and reasoned about in an uncompressed manner,
which results in relatively high computational power consumption during both training and reasoning,
leading to slower training and reasoning efficiencies. Since the Transformer needs to recalculate the whole
sequence every time, its model capability is very high. In the field of malicious traffic detection in the Internet
of Things (IoT), it is crucial to study a model that balances both detection efficiency and accuracy.

To sum up, IoT traffic has the characteristics of high data flow, high dimension, and class imbalance.
Existing Internet of Things malicious traffic detection technology has the following shortcomings:

(1) The redundant features and unimportant features are screened for the effectiveness of model training.
(2) Because the existing models cannot consider both efficiency and detection accuracy, the model

is studied.
(3) As for the imbalance of IoT traffic samples, the malicious traffic data is far less than the normal sample

and the model is not sensitive to small sample data.

To solve the above problems, this paper proposes a Feature Subset-Based Malicious Traffic Detection
(FSMMTD) malicious traffic detection method for the Internet of Things. The main contributions of this
paper are:

(1) To realize the adaptive selection of features, the feature selection method is first screened by using the
Internet of Things dataset to reduce the feature dimension.

(2) To consider the detection efficiency and accuracy, the state space model combined with the advantages
of CNN and RNN models can improve efficiency while selectively retaining features and ensuring
high accuracy.
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(3) To overcome the imbalance problem of malicious samples, this paper improves the cross-entropy loss
function, to adaptively adjust the loss weight value of sample categories and improve the generalization
of malicious traffic detection methods.

(4) To verify the effectiveness of the method, experiments, and evaluation verification are carried out on
the public Internet of Things dataset.

The hierarchy of this paper is as follows: First, Section 2 introduces the related work, including the
recent work on malicious traffic detection of the Internet of Things. Section 3 introduces the Internet of
Things malicious traffic detection method proposed in this paper, which is divided into four main steps:
data preprocessing, feature selection, feature extraction and classification, and model evaluation. Section 4
analyzes the experimental results, first introduces the data set used in this paper, then explains the evaluation
indicators, and finally analyzes the experimental results in depth. Section 5 summarizes the advantages
and disadvantages of the model proposed in this paper and proposes the direction of future improvement
and promotion.

2 Related Work
This section reviews the relevant research in the field of malicious traffic detection in deep learning

and the Internet of Things, with a focus on the development history and status of malicious traffic
detection technology.

2.1 Based on Deep Learning Research
In recent years, deep learning has attracted much attention in various industries, and related applications

have begun to enter millions of households, making it a current research hotspot.
A convolutional Neural Network (CNN) is a multi-layer feedforward neural network composed of

multiple single-layer convolutional neural networks. The CNN model can effectively extract local features
of network traffic through local receptive fields, such as packet length, interval, protocol type, etc. These
features are crucial for the analysis and recognition of network traffic. However, it has limitations in global
feature extraction, long-distance dependency modeling, and complex pattern recognition, making it difficult
to comprehensively capture all key information of network traffic, and convolutional neural networks have
a large computational load.

Recurrent Neural Network (RNN) is different from traditional feedforward neural networks in that it
performs cyclic connections between hidden layers. This cyclic connection enables the network to process
sequential data, as the hidden state of each time step depends not only on the current input but also on the
hidden state of the previous time step. Due to the issues of vanishing and exploding gradients, RNNs may
encounter difficulties in effectively capturing long-range dependencies when dealing with long sequences.
And the training speed is slow, making it difficult to parallelize processing.

In 2017, the Google research team proposed a Transformer architecture based on a self-attention
mechanism [8], which immediately demonstrated significant advantages in tasks such as sequence modeling
and machine translation in the field of Natural Language Processing (NLP). It has now become the
mainstream deep learning model in the NLP field.

For the input information, different models of deep learning have different processing methods. Because
RNN trains information serially, it cannot process information in parallel while training, so the training
efficiency of the RNN model is slow; When reasoning, only the information of the previous time step is
seen, so the reasoning efficiency is fast; The ability of the model is relatively poor because RNN forgets
the pre-information. The attention mechanism of the Transformer displays and stores the entire context
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information. The information is trained and reasoned in an uncompressed manner, which results in a
relatively large amount of computational power consumption in training and reasoning handsets with slow
training efficiency and reasoning efficiency.

In December 2023, Albert and Tri Dao proposed the Mamba [9] model based on the State Space Model
(SSM) and selection mechanism, which immediately demonstrated significant advantages in long sequence
tasks in the field of Natural Language Processing (NLP). Mamba’s unique linear attention mechanism enables
it to efficiently process large amounts of information, solving the problems of high computational complexity,
large memory usage, and long-distance dependency modeling that traditional Transformers face when
processing long sequences.

At present, the Mamba model has become an important deep learning model in the field of sequence
modeling. In January 2024, Vision Mamba [10] first applied Mamba to the field of computer vision, and since
then, more and more teams have applied Mamba models to practical scenarios such as computer vision,
time series, fault diagnosis, and multimodal tasks. In May 2024, based on Mamba, the Mamba-2 [11] model
proposed by the original author was published in ICML 2024, which further sparked corresponding research.
The development process and typical models of the Mamba model are shown in Fig. 1.

Figure 1: The development history of Mamba

Mamba is an improved State Space Model (SSM) designed for efficient processing of complex data-
intensive sequences. Initially, SSM was used as a mathematical tool in modern control theory to describe
dynamic systems. With the emergence of HiPPO initialization, the Linear State Space Layer (LSSL) has
demonstrated the ability to handle long-term dependencies. However, due to the high computational and
memory overhead of LSSL, its use in large-scale applications is limited. The Structured State Space Models
(S4) model improves computational efficiency by reparametrizing and effectively replacing traditional
attention mechanisms. In terms of implementing linear time research, S4 has multiple variants, such as H3,
gated state space, Hyena, and RWKV. Among them, Mamba significantly improved the ability to capture
remote context by introducing a data dependency selection mechanism, and demonstrated good linear time
efficiency and performance, surpassing traditional Transformer models.
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2.2 Internet of Things Malicious Traffic Detection Technology Based on Deep Learning
Compared with the mobile Internet, the Internet of Things has large-scale devices, multi-source

heterogeneous traffic, and many new types of attacks, resulting in the unsatisfactory application effect of
traditional malicious traffic detection technology in the Internet of Things. In traditional IoT research, tradi-
tional machine learning-based malicious traffic detection methods have limitations in improving detection
accuracy, relying on feature engineering, resulting in an exceptionally complex classification process. In
recent years, some researchers have successfully achieved efficient detection by selecting low-dimensional
features and simplifying algorithm complexity, providing strong support for the security protection of the
Internet of Things.

It is particularly important to enhance the accuracy and efficiency of malicious traffic detection in
response to security challenges in the Internet of Things environment. In recent years, researchers have
proposed various malicious traffic detection methods based on deep learning and other technologies.
Alsaffar [12] combines mixed feature selection (MI Bruta method) and stacked ensemble learning (using
random forest, CatBoost, and XGBoost as base learners, and multilayer perception as meta learners) to
improve the performance of intrusion detection systems. Laghrissi et al. [13] proposed a malicious traffic
detection system based on LSTM. In the preprocessing stage, principal component analysis and mutual
information were used to extract features from the data. The top three features in the principal component
analysis were used as inputs to explain the variance proportion. The model achieved good detection results.
Lo et al. [14] applied graph neural networks to IoT intrusion detection systems and proposed an intrusion
detection model based on EGraphSAGE. To address the challenge of noisy labels, Yuan et al. [15] introduced
a unified solution based on the Multi-dimensional Constraint-driven Representation (MCRe) framework.
Unlike traditional approaches, MCRe employs a triple constraint mechanism—informational integrity, inter-
class separability, and core proximity—to guide the model in learning more robust feature representations.
This innovative framework effectively avoids the limitations of conventional methods, particularly the
discarding of hard samples in data-cleaning processes and the excessive suppression of hard samples in
weighted training schemes.

Regarding the optimization of algorithm complexity, Yuan et al. [16] designed a lightweight convolu-
tional neural network (LCNN) to solve the memory limitation problem of IoT devices. By converting the
original bytes of binary files into Markov images, deep convolution, and channel shuffling are added to CNN,
and the convolutional layer is further optimized based on the number of ShuffleNetV2 units, achieving more
efficient computational performance. Compared to other deep learning methods, the size of the LCNN model
is only 1 MB, which effectively reduces the resource consumption of training the model while maintaining
prediction accuracy, thereby improving the training efficiency of the model.

Wang et al. [7] proposed a transformer-based IoT intrusion detection method called TransIDS to
address the issue of class imbalance. TransIDS introduces a multi-head self-attention mechanism that can
adaptively adjust attention to high-dimensional features. To address the impact of imbalanced datasets, label
smoothing techniques are used to add noise to sample labels, enhancing the model’s generalization ability.
Alabduallah et al. [17] proposed the HSSADL-CAC method to solve the problem of class imbalance data
processing in network attack classification, and to detect malicious traffic by optimizing deep learning models
to solve the problem of class imbalance processing. Method: The ADASYN method is used to deal with class
imbalance problems, the HSSA-based feature selection method is applied, and the deep extreme learning
machine (DELM) model is used to detect network attacks.

Compared with the mobile Internet, the Internet of Things has multi-source heterogeneous traffic
and many new attack types, resulting in the unsatisfactory application effect of traditional malicious
traffic detection technology in the Internet of Things. Traditional machine learning-based malicious traffic
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detection methods have limitations in improving detection accuracy, overly relying on feature engineering,
resulting in an exceptionally complex classification process. In addition, current deep learning models are
not suitable for the special environment of the Internet of Things in malicious traffic detection due to
their complexity and high computational costs. To solve this problem, researchers have studied methods to
reduce computing resource consumption. By selecting low dimensional features and simplifying algorithm
complexity, efficient detection results have been successfully achieved, providing strong support for the
security protection of the Internet of Things.

3 A Malicious Traffic Detection Method for the Internet of Things Based on the FSMMTD Model
The FSMMTD IoT malicious traffic detection method proposed in this article is illustrated in Fig. 2.

This method comprises three parts: data preprocessing, feature selection, and feature extraction and training.

Figure 2: FSMMTD model framework

In the data preprocessing stage, data cleaning and normalization are performed to standardize the data
format. The dataset is divided into two main parts: one for feature dimensionality reduction and the other
for model training, testing, and validation. This ensures that the model exhibits generalization on unknown
data flows.

During the feature dimension reduction stage, key features are identified through the application of
random forest feature selection and feature extraction techniques. The importance of data features is ranked,
and the most suitable feature dimensions are selected to reduce the data dimension. Subsequently, the
data transformed by the feature dimension reduction method is utilized in subsequent classification and
detection tasks.

During the model training phase, the Focal Loss function is established, and the FSMMTD model is
trained through an optimizer. In the testing phase, the trained FSMMTD model is used for feature extraction,
and finally, a SoftMax classifier is employed for classification evaluation.

3.1 Dataset
The TON_IoT dataset [18–21] is a data sample collected by the University of New South Wales from real

IoT environments such as IoT sensors and Windows systems, as shown in Fig. 3. It integrates heterogeneous
data sources generated from telemetry data from IoT and IIoT sensors, Windows operating system data, and
Ubuntu network traffic data. The dataset comprises a total of 22,339,021 samples and is categorized into two
classification methods. One is anomaly data detection, which belongs to binary classification, distinguishing
between normal traffic and malicious traffic; the other is a nine-class classification of malicious traffic,
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which divides malicious traffic into Backdoor, DDoS, DoS, Injection, Password, Ransomware, Scanning,
XSS, and MITM. The dataset includes six functional groups: connectivity, statistics, DNS, SSL, HTTP,
violations, and labels, encompassing a total of 44-dimensional features. This article primarily focuses on
the “Train_Test_Network.csv” dataset for data analysis, which comprises a total of 461,043 data stream
samples. Fig. 3 illustrates the label distribution of the two categories and the types of multiple categories,
while Table 1 lists the respective features of the dataset.

Figure 3: TON_IoT dataset

Table 1: Feature descriptions in the TON_IoT dataset

No. Feature Description No. Feature Description
Connect 01 ts Timestamp 07 Service Protocols for

dynamic detection,
such as DNS,

HTTP, and SSL
02 src_ip The IP address of

the source endpoint
08 Duration The time of packet

connection is
estimated by

subtracting the
“time of the last
packet seen” and
“time of the first

packet seen”

(Continued)
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Table 1 (continued)

No. Feature Description No. Feature Description
03 src_port Initiate the source

port of the
endpoint

TCP/UDP port

09 src_bytes The source byte is
the payload byte
derived from the

TCP sequence
number

04 dst_ip Target IP address
for responding to

endpoint IP
address

10 dst_bytes Target byte, which
is the response

payload byte from
the TCP sequence

number

05 dst_port

Target port for
responding to
endpoint
TCP/UDP port

11 conn_state

Connection status
S0 (no replay
connection)

S1 (connection
established)

REJ (connection
attempt rejected)

06 proto Transport layer
protocol for
streaming

connections

12 missed_bytes Number of missing
bytes in content

gaps

Statistics 13 src_pkts The estimated
number of raw data

packets from the
source system

15 dst_pkts Estimated number
of target data

packets from the
target system

14 src_ip_bytes The original IP byte
count, which is the
total length of the
source system IP

header field

16 dst_ip_bytes Target IP byte
count, which is the
total length of the
target system IP

header field

DNS 17 dns_query Domain name
subject for DNS

query

21 dns_AA The authoritative
answer of DNS,

where T represents
that the server has
authority over the

query
18 dns_qclass Specify the value of

the DNS query
class

22 dns_RD The recursion
required for DNS,
where T represents
the recursive query
of the query request

19 dns_qtype Specify the value of
the DNS query type

23 dns_RA DNS provides
recursive

functionality,
where T indicates

that the server
supports recursive

queries
20 dns_rcode Response code

value in DNS
response

24 dns_rejected DNS refusal, where
the DNS query is

rejected by the
server

(Continued)
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Table 1 (continued)

No. Feature Description No. Feature Description
SSL 25 ssl_version The SSL version

provided by the
server

28 ssl_established Establish a
connection

between both
parties, where T

represents
establishing a
connection

26 ssl_cipher SSL cipher suite
selected by the

server

29 ssl_subject The subject field of
the X.509

certificate provided
by the server

27 ssl_resumed Indicates a session
that can be used to

initiate a new
connection, where
T indicates that the
SSL connection has

already been
initiated

30 ssl_issuer Trusted
Owner/Initiator

(Certificate
Authority) of SLL

and Digital
Certificates

HTTP 31 http_trans
_depth

Pipeline depth of
HTTP connections

37 http_response
_body_len

The actual
uncompressed

content size of data
transmitted from
an HTTP server

32 http_method HTTP request
methods such as
GET, POST, and

HEAD

38 http_status
_code

Status code
returned by HTTP

server

33 http_uri URI used in HTTP
requests

39 http_user
_agent

The value of the
User-Agent header

in the HTTP
protocol

34 http_referrer The value of the
“referer” header in
the HTTP protocol

40 http_orig
_mime_types

Ordered vector of
mime type from
source system in
HTTP protocol

35 http_version The HTTP version 41 http_resp
_mime_types

Ordered vector of
mime type from

the target system in
HTTP protocol

36 http_request
_body_len

The actual
uncompressed

content size of data
transmitted from

HTTP clients

abnormal 42 weird_name Abnormal names
related to the

protocol

44 weird_notice Has the exception
been converted

into a notification
43 weird_addl Other information

related to protocol
anomalies
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3.2 Data Preprocessing
The original network traffic contains many duplicate, invalid, or incorrect data, such as noise data

and missing values. The sample quality is improved by cleaning and converting the original data, and the
data is processed into a form suitable for data analysis or model input. In this study, data preprocessing
includes missing value processing, duplicate data elimination, non-numerical feature coding, and feature
normalization. These steps are the basis for ensuring that the dataset is suitable for in-depth analysis.

Feature elimination: To ensure the generalization ability of the model under network traffic detection,
remove the features of the test environment identifier that only represents the generated data. The “ts”
feature records the timestamp information of each connection, while the “HTTP referrer” feature represents
the value of the “referer” header in the HTTP protocol. These features are not important for prediction
tasks in subsequent model training [22]. Therefore, in the pretreatment phase, these non-critical features
are eliminated. After feature elimination, 42 key features were retained in the dataset except for two
classification labels.

Missing value processing: in the network traffic characteristic information, all “-” symbols in the
characteristic value indicate that the data is unavailable. For example, if the connection feature “service” is
displayed as “-”, it means that the corresponding sample is missing a value. Similarly, the “-” value in the
DNS function indicates that these samples do not support the DNS function. Similarly, SSL, HTTP, and
other functions with a “-” value indicate that the corresponding sample does not support these functions.
Therefore, this study replaced these “-” values with “N/A” to indicate that the value does not apply to specific
functions and created a new binary feature “<feature name>_” for each feature to identify whether the
original feature value is “N/A”. In this way, the problem of missing values in data can be effectively handled,
providing accurate data support for subsequent model training and analysis.

Nonnumeric feature coding: Label Encoding is simpler and more space-saving, but it may introduce
arbitrary order for classified values. One Hot Encoding avoids this problem by creating binary columns for
each category, but it will lead to high-dimensional data [22]. In this paper, by considering the characteristics
of different traffic characteristics, two main coding technologies are used: One Hot Encoding and Label
Encoding to convert classified variables into numerical data. Unique hot coding realizes the digitization of
classification variables by creating a new binary column for each category, but this method may lead to a
sharp expansion of the feature space, which will adversely affect the feature extraction and generalization
capabilities of the model. The three feature data of 06 proto, 07 service, and 11conn_state in the service
configuration file connection have different limitations, and it is suitable to use unique hot coding numerical
to maintain the rationality of the feature space and optimize the feature extraction process. In the encoding
process, the feature space needs to be expanded according to the number of different labels in the feature,
and the corresponding label position is marked as 1, and other positions are marked as 0. Therefore, the
new features corresponding to the three features after unique heat coding are shown in Table 2. For other
non-numerical features that do not use unique heat coding, this study uses the tag coding method, that is,
by assigning a unique digital identifier to each different category to achieve numerical value. This method
simplifies feature representation and reduces feature dimensions, thus improving the efficiency of model
training. There are 23 features in DNS, such as 17dns_query, 21dns_AA, and 44weird_notice in exceptions.
The tag encoding method is used to assign a digital tag to each category to realize the feature digitization.
The missing value processing strategy ensures that the numerical characteristics of the dataset can accurately
represent the original non-numerical information without increasing the burden of model training. This
processing method improves the efficiency of model training and helps to improve the performance and
accuracy of the model in malicious traffic detection tasks.
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Table 2: One-hot coding

Feature No. One-hot coding Feature No. One-hot coding

07 service

07 conn_state_OTH
06 proto

06 proto_icmp
45 conn_state_REJ 57 proto_tcp
46 conn_state_RSTO 58 proto_udp

47 conn_state_RSTOS0

11 conn_state

11 service_-
48 conn_state_RSTR 59 service_dce_rpc
49 conn_state_RSTRH 60 service_dhcp
50 conn_state_S0 61 service_dns
51 conn_state_S1 62 service_ftp
52 conn_state_S2 63 service_gssapi
53 conn_state_S3 64 service_http
54 conn_state_SF 65 service_smb
55 conn_state_SH 01 service_smb;gssapi
56 conn_state_SHR 34 service_ssl

Data division: The purpose of data division is to divide the original data set into two independent parts:
one part is used as the training set for model training, and the other part is used as the test set to evaluate the
test performance or final effectiveness of the model. To prevent data leakage in subsequent data preprocessing
steps (such as normalization and feature dimensionality reduction) and deep learning, data partitioning
should be completed before these steps. In addition, to ensure that the trained model has good generalization
ability, the category proportion of the test set should be consistent with the category distribution of the
training set, to simulate the real environment of the Internet of Things network. Based on this, this paper uses
a stratified sampling method to divide the data into the training set and test set according to the proportion
of 8:2. 80% of the data is used for feature selection and model training to optimize the model performance;
The remaining 20% is used for the effective evaluation of the model. This data division method ensures the
model is more accurate and reliable in practical applications.

Data normalization: Data normalization maintains the relative proportion between features and avoids
the deviation of the model from features with a large range of values. Relevant research shows that [21],
normalization technology can effectively scale features. Therefore, this study uses the Min-Max scaling
method to normalize data and scale the value of each feature to [0, 1] interval to ensure that different features
have the same influence in the model training process. The calculation process of the Min-Max standardized
formula is as follows:

M i =
M i −Mmin

Mmax −Mmin
, (1)

where Mmin is the minimum value in the characteristic value, Mmax is the maximum value in the
characteristic value, and M i is the value in the characteristic line.

3.3 Feature Selection
For example, the traditional Pearson correlation coefficient ranking can only deal with linear rela-

tionships is sensitive to outliers, and cannot consider the impact of interaction between variables on
target variables. As an integrated learning method, random forest evaluates the importance of features by
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constructing multiple decision trees. Compared with traditional feature selection techniques, random forests
have unique advantages in detection accuracy and model complexity. Therefore, in the research of malicious
traffic characteristics, a random forest algorithm is used to select the importance of features.

The random forest constructs each decision tree by randomly selecting samples and feature subsets
to provide a more comprehensive way to evaluate the importance of features. The threshold value is set
iteratively through the feature importance score in the random forest algorithm, the uncertainty of samples
is measured by entropy, and the descending order is sorted according to the feature’s impact on the model
prediction ability.

An entropy-based method can effectively measure the effectiveness of data. The entropy H (X) of the
dataset X is defined as:

H (X) = −
n
∑
i=1

pi log2 pi , (2)

where pi is the probability of the class i sample in the dataset. Partition the dataset by constantly
selecting features.

The feature selection algorithm, as shown in Algorithm 1, uses the preprocessed dataset as input.

Algorithm 1: One-hot coding
Input: Preprocessed dataset: X (sample feature matrix), Y (sample label vector),
param_grid (hyperparameter grid), k (cross-validation folds), scoring (evaluation metric, here using
“accuracy”)
Output: sorted_feature_indices (feature indices sorted by importance in descending order)
1. NoneInitialize best_model to None
2. Initialize best_score to negative infinity
3. For each hyperparameter combination params in param_grid, perform:

3.1 Initialize an empty list of scores to store cross-validation results
3.2 Perform k-fold cross-validation:

For each fold (train_indices, test_indices) in k splits:
Extract training set (X_train, y_train) and test set (X_test, y_test) from X and Y
Create a Random Forest model rf with hyperparameter params
Train rf on X_train and y_train
Predict on X_test to obtain y_pred
Calculate the evaluation score between y_pred and y_test using the scoring metric
Append score to scores

3.3 Calculate average score: mean_score =mean(scores)
3.4 If mean_score > best_score:

- Update best_score to mean_score
- Create a new Random Forest model best_model with hyperparameters params
- Train best_model on the full dataset (X, Y)

4. Extract feature importance scores from best_model, denoted as feature_importances
5. Sort feature indices by feature_importances in descending order to obtain sorted_feature_indices
6. Return sorted_feature_indices



Comput Mater Contin. 2025;84(1) 1291

3.4 FSMMTD Feature Encoder
To synthesize the advantages of the above three models, this paper studies the state space model (SSM).

SSM can be seen as the combination of a convolutional neural network and cyclic neural network, which is
composed of a linear layer, gating unit, and selective state space model. The model block is shown in Fig. 4.
First, after the normalization of data, linear projection is performed, respectively. Then, one-dimensional
CNN is used to extract local features to achieve parallel training. Then, after Silu is activated, a selection
state space model is adopted, in which the SSM layer is selected to map the input sequence xt to yt . In the
SSM layer, after the initial linear projection of xt , the linear projection A, B, C will be generated. Then the
input token and state matrix are transferred to the selected SSM layer, and the output yt is generated by
parallel scanning. To alleviate the problem of information forgetting that often occurs in the process of model
training, linear mapping is carried out once, and the feature sum is reused in connection with the residual.
Finally, the model is constructed by stacking blocks, standard normalization, and residual connection.

1. Linear mapping: the input data is first transformed into a new space through a linear projection layer.
2. Layer normalization, one-dimensional convolution, and Silu activation: the model captures local

features and enhances its understanding of sequence data. Currently, the input sequence is:

xt = σ (Conv (Win put ⋅ LayerNorm (H(n+1)
v ))) , (3)

where σ is the activation function Silu, Win put is the convolution layer weight matrix, and LayerNorm
is the layer normalization operation.

3. Select the SSM layer, which comprises the state update formula and the output formula. The details of
these two formulas are as follows:

ht = Aht−1 + Bxt , (4)
yt = Cht + Dxt , (5)

here ht ∈ RN is the latent state at time t and is the derivative of the previous state ht−1. xt ∈ R is the
mapping input sequence at time t. A ∈ RN×N is the state transition matrix that describes how states
change over time. B ∈ RN×1 is the matrix that controls the impact of inputs on state changes. yt ∈ R
signifies the predicted output sequence at time t. C ∈ R1×N represents the output matrix that generates
output based on the current state. D ∈ R indicates that coefficients can directly affect the output. Most
SSMs incorporate Dxt = 0, which is the residual connection in deep learning models.

During training, a convolutional structure is employed to bypass the state function, leveraging GPUs
to facilitate parallel computation throughout the training process. When the input data x = [x0, x1 , . . .] ∈ RL

is given, a set of convolutions and kernels K = (CB, . . . , CAk B, . . .) are created, resulting in the following
output:

yt = Kx , (6)

here, y = [y0, y1 , . . .] ∈ RL , and L is the sequence length.
Given an input xt with D dimensions, SSM calculates each dimension separately, producing a D-

dimensional output yt . The input matrix is B ∈ RN×D , the output matrix is C ∈ RD×N , the command matrix
is D ∈ RD×D , while the state transition matrix remains unchanged A ∈ RN×N .

During prediction, we use an RNN with a nonlinear activation function to obtain yt = Cht + Dxt .
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Figure 4: Schematic diagram of model block

Matrices A, B, C are obtained through gradient optimization based on data. Typically, there are d
SSMs existing in parallel, each corresponding to a hidden dimension. In SSMs, the retention and forgetting
mechanism of the matrix A determines the performance. To capture long-term temporal dependencies and
better process a large amount of information, by integrating HiPPO and Legendre Scales (LegS), a unified
weight is assigned to all past data, ensuring the extraction of global information. Matrix A is represented as
follows:

AHiPPO
nk = −

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(2n + 1)
1
2 (2k + 1)

1
2 n > k

n + 1 n = k
0 n < k

, (7)

here, n is the number of polynomials, k is a specific discrete time step. Based on the HiPPO theory, the
initialization methods for complex and real numbers in this paper are S4D-Lin and S4D-Real, respectively,
which are represented as:

Adn = −{
1
2 − ni
n + 1

S4D − Lin
S4D − Real′ , (8)

where n is the nth element in the input dimension d = 1, 2, . . . , D. Through initialization, the model learns
the relationship of long-term dependent memory by compressing and reconstructing the input information
signal (so that the newer the input information, the less it is lost, and the older the input information, the
more it is lost).

Selection Mechanism: Traditional SSM exhibits time invariance, treating all features equally without
distinguishing between important and unnecessary ones. To enhance performance in handling complex
tasks, a time-varying selection mechanism has been devised on top of the traditional SSM, parameterizing
the weight matrix based on model inputs. This innovation enables SSM to filter out irrelevant information
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while retaining key information over the long term. Formally, the selection mechanism involves setting the
interval Δ and matrix B, C as functions of input x ∈ RB×L×D , which can be expressed as:

B → SB =W Bx , (9)
C → SC =W C x , (10)
Δ → SΔ = So f tplus (W Δx) . (11)

SB ∈ RB×L×N , SC ∈ RB×L×N and SΔ ∈ RB×L×D are the selection space matrices of the content-aware
model. B, L, D and N represent batch size, input length, input feature size, and number of hidden channels,
respectively. W B ∈ RN×D , W C ∈ RN×D and W Δ ∈ RD×1 are selection weights (i.e., linear parameterized
projections), while So f tplus is a smooth nonlinear activation function. Subsequently, zero-order hold
(ZOH) is used to discretize the selective SSMs, resulting in:

A→ SA = exp (SΔA) ,
B → SB = (SΔA)−1 (exp (SΔA) − I) ⋅ SΔSB ,

(12)

where SA ∈ RB×L×D×N and SB ∈ RB×L×D×N are the selective state transition matrix and input matrix,
respectively, and are functions of the input x. In this way, the discrete state space model changes from being
time-invariant to being time-varying.

y = SSM(A,B ,C) (x) , (13)

here, SSM is the state space model function. The final output is:

y =W1 (y ⊙ σ ⋅W2 ⋅ LayerNorm (x)) , (14)

here, ⊙ is element-wise multiplication, W1 and W2 are weight matrices.

3.5 Loss Function Construction
The cross-entropy loss function is based on the probability of samples belonging to various categories

and typically has a high computational complexity. IoT edge devices have limited computational resources,
and in the process of traffic detection, the proportion of positive samples is relatively large, which is a
practical problem.

Due to the significant class imbalance problem in the training set, it is necessary to prevent the loss
function from optimizing one class while suppressing other classes. Instead of using cross-entropy, the
FocalLoss function is adopted during model training. Unlike the cross-entropy loss function, when the
number of easily trainable examples is quite large, the FocalLoss function alleviates the problem of class
imbalance by reducing the influence of specific samples on the overall loss. The definition of the FocalLoss
function is as follows:

FL = −∑K
k=1 αk (1 − ptk)⋎ log (ptk) , (15)

here, K represents the number of categories in the current sample, ptk denotes the probability of a sample
being predicted to belong to the category k by the model, and αk signifies the balance weight coefficient.
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3.6 Testing and Detection Stage
In the testing phase, the test set is first subjected to data preprocessing, namely data normalization, to

ensure consistency between the test data and the training data in terms of feature distribution. Subsequently,
feature selection is performed on the test data based on the subset of features selected during the training
phase to ensure consistency with the features of the training set. Finally, load the optimized training model
and perform malicious traffic detection and classification on the test samples to evaluate the model.

4 Experiment and Result Analysis
In this section, we introduce the datasets used in the experimental design and their characteristics and

provide a detailed description of the key metrics for evaluating the model performance. Meanwhile, exper-
iments are designed to illustrate the validation of the methodology of this paper, and the experimental part
includes the evaluation of the model with feature selection, feature selection experiments, and comparison
experiments of models with different classification methods.

4.1 Experimental Environment and Dataset
This experiment was conducted on a server cluster based on the x86-64 architecture, equipped with

an Intel Xeon Silver 4214R processor supporting the IA-32/x86-64 dual instruction set and AVX2/AES-
NI accelerated instructions. The system integrates 48 logical processors with 2 × DDR4-2666 memory
controllers, configured with a 512 GB NVMe SSD system disk and a 10 × 4 TB SATA HDD storage array,
and achieves high-speed network interconnection through 2 × 10 GbE interfaces. The graphics card used
is a Tesla V100-SXM2-32 GB. The programming environment includes Python 3.10, Mamba-ssm2.2.2,
Torch2.3.1 + cu118, and Scikit-learn version 1.5.

To validate the effectiveness and detection performance of FSMMTD in real IoT environments, we
utilized two datasets: the public IoT intrusion detection dataset ToN_IoT and the private dataset Mali-
cious_TLS. The ToN_IoT dataset, which is the primary focus of this paper, consists of traffic captured in real
IoT environments. It contains 44-dimensional features and 9 categories of attack classes. The Malicious_TLS
dataset [15], used as supplementary validation, is a four-year dataset of malicious traffic captured from real
edge network devices, where all benign traffic is encrypted using TLS technology. This dataset includes
87-dimensional features and 21 categories of attack classes.

4.2 Model Evaluation
The experiment selects four common evaluation criteria in the field of malicious traffic detection and

classification: Accuracy (Acc), Precision (Pr), Recall (Rc), and F1 score (F1) to evaluate the classification
performance of the model. The calculation method of evaluation indicators is shown in Formulas (16)–(19):

Acc = TP + TN
TP + TN + FP + FN

, (16)

Pr = TP
TP + FP

, (17)

Rc = TP
TP + FN

, (18)

F1 = 2 × Pr × Rc
Pr + Rc

, (19)

here, q is the number of samples, d is the number of categories, the numerical type is the processed one hot
encoding (a string composed of 0 or 1), and ŷid is the output value∑d=9

d=1 ŷid = 1 of the SoftMax function.
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TP is the true class (referring to correctly classifying malicious samples as malicious samples), FN is the
false negative class (referring to incorrectly classifying malicious samples as normal samples), FP is the false
positive class (referring to incorrectly classifying normal samples as malicious samples), and TN is the true
negative class (referring to correctly classifying normal samples as normal samples).

The model loss function can be used to measure the difference between the predicted and actual results
of the model. This article uses the cross-entropy loss function for evaluation, and the calculation method is
shown in the formula:

CE (y, ⌢y) = −∑m
i=1 yi log (⌢yi) . (20)

4.3 Comparative Experiment of Different Feature Selection Methods
This section presents a comparative analysis conducted on the TON_IoT dataset. Five machine learning

models—Naive Bayes (NB), K-Nearest Neighbors (kNN), Multilayer Perceptron (MLP), Decision Tree (DT),
and Random Forest (RF)—are employed for evaluation. All models are implemented using their default
hyperparameter settings. A five-fold cross-validation strategy is applied across all features, with the average
performance metrics computed over the five iterations. Table 3 provides a summary of the performance
metrics for the machine learning models when utilizing all features, where the best-performing results are
indicated in bold font.

Table 3: Classification performance of machine learning algorithms (%)

Model ACC (%) Precision (%) Recall (%) F1 Score (%)
NB 59.57 71.04 67.75 59.20

KNN 80.55 80.74 83.44 80.19
MLP 86.58 85.15 86.38 85.66
DT 78.28 76.59 75.24 75.79
RF 88.22 86.99 89.56 87.69

As shown in Table 3, the Random Forest (RF) model exhibits superior performance metrics compared
to other classifiers when using all features. Specifically, the accuracy, precision, recall, and F1-score of the RF
model are enhanced by 1.64%, 1.84%, 3.18%, and 2.03%, respectively, over the Multilayer Perceptron (MLP)
model, which ranks second in accuracy.

To validate the effectiveness of the feature selection algorithm proposed in this study, performance
comparison experiments were conducted based on multi-classification tasks. The proposed FSMMTD
method was evaluated alongside the Pearson Correlation Coefficient (Pearson) algorithm and the Principal
Component Analysis (PCA) algorithm, with the feature dimension reduced to 30 dimensions in all cases.
The experimental results, presented in Table 4, highlight the best-performing feature selection and extraction
results in bold.
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Table 4: Comparison experiment of different feature selection (%)

Model ACC (%) Precision (%) Recall (%) F1 Score (%)
Pearson 96.59 89.10 88.32 88.65

PCA 95.12 93.44 90.77 90.76
FSMMTD 98.37 96.28 95.36 96.79

The experimental results demonstrate that the FSMMTD method proposed in this study significantly
outperforms the traditional Pearson Correlation Coefficient (Pearson) algorithm and Principal Component
Analysis (PCA) algorithm across all evaluation metrics. Specifically, FSMMTD achieves optimal perfor-
mance in accuracy, precision, recall, and F1-score, surpassing the Pearson algorithm by 1.78%, 7.18%, 7.04%,
and 8.14%, and the PCA algorithm by 3.25%, 2.84%, 4.59%, and 6.03%, respectively.

The Pearson algorithm is limited to measuring only linear relationships between variables, and its
performance heavily depends on the characteristics of the training data, which directly influences the model’s
training effectiveness. Similarly, the PCA algorithm relies primarily on variance during dimensionality
reduction, which may exclude non-principal components with low variance but significant information
about sample differences, thereby impacting subsequent data processing. These limitations explain why
neither method achieves superior results.

In contrast, the proposed FSMMTD method leverages the intrinsic properties of the data itself to more
accurately capture nonlinear feature relationships and effectively filter redundant information. This approach
enables the selection of more discriminative features, ultimately enhancing the classification accuracy of
the model.

4.4 Hyperparameter Setting
The optimal parameter combination was determined using the grid search algorithm with five-fold

cross-validation, and the specific configuration is provided in Table 5.

Table 5: Hyperparameter setting

Hyperparameter Names in the code Setting
Number of decision trees n_estimators [50, 100, 200]

The maximum depth of a tree max_depth [None, 5, 10, 15]
Split quality measurement standards criterion [“gini”, “entropy”]

Random seeds random_state 42
Minimum sample size required for splitting min_samples_split [2, 5, 10]
Minimum sample size for terminal nodes min_samples_leaf [1, 2, 4, 5]

Maximum feature Max_features [8, 16, 32, 44]

As shown in Table 5, the number of decision trees ranges from 50 to 200 with a step size of 10; the
maximum depth of the tree includes “None” and integer values from 3 to 14; the minimum number of samples
required for splitting ranges from 2 to 10. The optimal hyperparameters selected for the final experiment are
as follows: the number of decision trees is 150, the split quality measure is “entropy”, the maximum depth of
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the tree is 12, the minimum number of samples required for splitting is 5, the minimum number of samples
at the terminal nodes is 5, and the maximum number of features used in constructing each tree is 34.

The hyperparameters of the FSMMTD model are selected as shown in Table 6. In actual training, when
the accuracy of the model evaluation index is not optimized within 50 rounds, the training is stopped.

Table 6: Hyperparameter setting

Hyperparameter Setting
Learning rate 6.2 × 10−64

Local convolution width 2
Block 1

Activation function Gelu
Training frequency 200

4.5 Feature Selection Experiment
For the malicious traffic dataset, the random forest method is used to calculate and rank the importance

of the 65-dimensional features mentioned above, and the importance values are normalized within the range
of [0, 1]. During the calculation process, eliminate the features with the importance of 0 [‘sslw_version’,
‘ssl_Subject’, ‘ssl_issuer’, ‘service_gssapi’]. Due to the significant difference in feature importance, it is difficult
to distinguish smaller values after visualization. Therefore, the first 35 dimensions of important feature data
are visualized, as shown in Fig. 5.

Figure 5: Selection of important features



1298 Comput Mater Contin. 2025;84(1)

As shown in Fig. 5, the top 35-dimensional features are ranked in descending order of importance,
spanning the network layer, transport layer, application layer, and anomaly detection-related features.
Feature importance exhibits a highly skewed distribution: src_ip (source IP) dominates with an importance
score approaching 0.25—significantly higher than other features confirming its role as a critical identifier
for malicious traffic detection. Subsequent network layer features include dst_port (destination port),
dst_ip (destination IP), and proto_tcp (TCP protocol), collectively emphasizing the significance of network
connectivity patterns.

Within the transport layer, statistical metrics such as src_pkts (source packet count), dst_pkts (desti-
nation packet count), and duration (connection duration) demonstrate notable importance, highlighting
traffic behavioral characteristics. Application-layer protocol identifiers like service_dns (DNS service) and
service_http (HTTP service) exhibit moderate relevance, suggesting their auxiliary role in traffic classifica-
tion. Conversely, anomaly detection markers such as conn_state_REJ (connection rejected) and dns_rejected
(DNS query rejection) show limited individual importance yet retain utility in flagging aberrant behaviors.

SSL-related attributes (e.g., ssl_version) display weak malicious traffic correlations, likely due to encryp-
tion obfuscation. Features like service_gssapi (GSSAPI service) were excluded from the analysis owing to
their low dataset prevalence and minimal classification impact.

The importance spectrum of these 35 features ranges from 0.25 to near-zero values, necessitating
grouped visualization for clearer interpretation, as shown in Fig. 6. They were categorized into six groups
according to the importance intervals. Among them, it can be analyzed that the features with importance
values in the interval [0.016, 0.5] rank from 1 to 12 in importance; Features with importance values in the
range of [0.0002, 0.012], ranked from 13 to 23 in importance; Features with importance values in the range
of [0.0001, 0.0015], ranked between 24 and 34 in importance; The importance of the following features is
infinitely close to zero. Further observation from the figure reveals that the first group is dominated by the
network layer and transport layer, with significantly higher feature importance than the other groups, which
plays a dominant role in model decision-making; the second group mainly contains DNS-related features
and connection state features; the third group involves application layer protocols and complex connection
states; and after that, features such as SSL-related protocols are of relatively low importance. The grouped
histograms visually highlight the differences in feature importance levels, enabling the rapid identification
of key features.

Feature selection based solely on feature importance is relatively limited. To further select features, a
correlation matrix was drawn for the first 35 dimensions of features, as shown in Fig. 7. From the graph,
there are relationships and dependencies between different variables. The darker the color, the higher the
correlation, the highest correlation is 1, dark green is used, green indicates a positive correlation; the closer
the correlation is to 0, the closer it is to white; the lowest correlation is −1, dark red is used, red indicates a
negative correlation. The correlation graph uses different colors to annotate the strength of the relationship
between two variables, visually enhancing the interpretability of the correlation between variables.
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Figure 6: Selection of important features

Then, based on the correlation coefficients of important features, calculate the average correlation score
for each feature, as shown in Fig. 8. Select features within the range of [−0.1, 0.1]. After a comprehensive
analysis, the final dataset retains 30-dimensional features.
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Figure 7: Correlation coefficient diagram of important features

Using the FSMMTD method proposed in this article, the model loss and accuracy as shown in Fig. 9
were obtained, with a learning rate of 6.2 × 10−64.

As shown in Fig. 9, the FSMMTD model exhibits the evolving trends of training loss, training accuracy,
validation loss, and validation accuracy across training epochs: the training loss progressively decreases from
an initial value of 0.070 to stabilize around 0.050, while the training accuracy rapidly increases to 98.4%
with sustained stability. The validation metrics demonstrate synchronized trajectories with the training
curves, where the validation accuracy achieves 98.37%, collectively indicating effective training data fitting
and robust generalization capability without observable overfitting. After 50 epochs, the loss curves plateau
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with accelerated convergence rates and strong tolerance to hyperparameter perturbations. The smooth
optimization patterns in Fig. 9 empirically validate FSMMTD’s architectural efficacy.

Figure 8: Correlation coefficient diagram of important features

Figure 9: Model loss function and accuracy
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4.6 Comparative Experiment of Different Classification Methods
To verify the detection performance of the proposed method, the classification performance of multi-

classification was validated on the TON_IoT dataset. Four evaluation metrics, Accuracy (ACC), Precision,
Recall, and F1 score, were used to compare the performance of the proposed method on nine network
traffic detection methods. The test results are shown in the Table 7 below. This article selects six methods,
RF, ExtraTrees IDS [23], E-GraphSAGE [14], LSTM, GRU-FCN [24], and XCM [25], for comparative
experiments. Bold values denote the optimal results under each specified evaluation metric.

Table 7: Comparison experiment of TON_IoT classification (%)

Model ACC (%) Precision (%) Recall (%) F1 Score (%)
RF 88.22 86.99 89.56 87.69

ExtraTrees-IDS – 56.42 85.24 67.90
E-GraphSAGE – 82.79 81.82 82.30

LSTM 92.7 76.49 76.00 75.97
GRU-FCN 96.17 88.30 96.57 87.30

XCM 96.05 87.68 83.96 85.02
FSMMTD 98.37 96.28 95.36 96.79

As shown in Fig. 3, despite the severe imbalance of various types of traffic samples in the TON_IoT
dataset and the high requirements for detection methods, FSMMTD still achieved excellent detection
performance. As shown in Table 7, the FSMMTD proposed in this paper achieved 98.37%, 96.28%, 95.36%,
and 96.79% in accuracy, precision, recall, and F1 score, respectively, achieving the best detection performance
in comparative experiments. Compared with the second-ranked GRU-FCN, it improved by 2.2%, 7.98%, and
9.49% in accuracy, precision, and F1 score, respectively; The recall rate is slightly lower by 1.21%, indicating
that the FSMMTD model is slightly inferior to the GRU-FCN model in distinguishing positive samples,
and the model is more cautious in predicting malicious traffic. Compared with RF, ExtraTrees IDS, E-
GraphSAGE, and XCM, the four advanced methods have improved accuracy, precision, recall, and F1 score
by over 2.32%, 8.6%, 5.8%, and 9.1%, respectively. Compared to traditional LSTM-based IoT malicious traffic
detection methods, FSMMTD has improved accuracy, precision, recall, and F1 score by over 5.67%, 19.79%,
19.36%, and 20.82%, respectively, demonstrating its superiority and effectiveness.

To ensure the generalization of the model, 22 classification performance experiments are conducted
on the Malicious_TLS dataset to validate the experimental results, which are shown in the following table
(Table 8).

From Table 8, it can be seen that the FSMMTD proposed in this paper achieves 98.25%, 97.43%,
97.21%, and 97.27% in accuracy, precision, recall rate, and F1 score, respectively, and demonstrates the best
detection performance in the comparative experiments. Compared with the second-ranked GRU-FCN, the
accuracy, precision, recall rate, and F1 score show improvements of 1.3%, 2.16%, 2.34%, and 2.2%, respectively.
Compared with RF, XCM, and Transformer, the accuracy, precision, recall rate, and F1 score improved by
1.76%, 2.13%, 3.94%, and 4.03%, respectively. Compared with the traditional LSTM-based malicious traffic
detection methods, FSMMTD improves the accuracy, precision, detection rate, and F1 score by 3.1%, 4.6%,
5.65%, and 5.81%, respectively, which demonstrate its superiority and effectiveness. Bold values denote the
optimal results under each specified evaluation metric.
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Table 8: Comparison experiment of Malicious_TLS classification (%)

Model ACC (%) Precision (%) Recall (%) F1 Score (%)
RF 86.45 85.02 86.30 85.54

LSTM 95.15 92.83 91.56 91.46
GRU-FCN 96.95 95.27 94.87 95.01

XCM 96.49 95.30 93.27 93.24
Transformer 88.47 77.30 78.32 75.77
FSMMTD 98.25 97.43 97.21 97.27

5 Conclusion
This paper proposes an IoT malicious traffic detection method called FSMMTD, which uses a random

forest method for feature selection, and then uses Mamba block to process high-dimensional features of IoT
network traffic, efficiently extracting deep global features of network traffic. Focal Loss is used to solve the
class imbalance problem faced by IoT intrusion detection and enhance the model’s attention to minority
class samples. To verify the effectiveness of the proposed method, it was validated on the publicly available
dataset ToN_IoT for detecting malicious traffic in the Internet of Things. Compared with other advanced
methods, it has achieved better performance in all indicators.

Although this paper has achieved some results in detecting malicious traffic, further research is needed
for scenarios with unlabeled data where only positive samples are available. The next step will focus on
addressing this challenge to enhance the model’s generalization capability in such cases.
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