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ABSTRACT: Semantic segmentation provides important technical support for Land cover/land use (LCLU) research.
By calculating the cosine similarity between feature vectors, transformer-based models can effectively capture the global
information of high-resolution remote sensing images. However, the diversity of detailed and edge features within the
same class of ground objects in high-resolution remote sensing images leads to a dispersed embedding distribution.
The dispersed feature distribution enlarges feature vector angles and reduces cosine similarity, weakening the attention
mechanism’s ability to identify the same class of ground objects. To address this challenge, remote sensing image
information granulation transformer for semantic segmentation is proposed. The model employs adaptive granulation
to extract common semantic features among objects of the same class, constructing an information granule to replace
the detailed feature representation of these objects. Then, the Laplacian operator of the information granule is applied to
extract the edge features of the object as represented by the information granule. In the experiments, the proposed model
was validated on the Beijing Land-Use (BLU), Gaofen Image Dataset (GID), and Potsdam Dataset (PD). In particular,
the model achieves 88.81% for mOA, 82.64% for mF1, and 71.50% for mIoU metrics on the GID dataset. Experimental
results show that the model effectively handles high-resolution remote sensing images. Our code is available at https://
github.com/sjmp525/RSIGT (accessed on 16 April 2025).
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1 Introduction
LCLU serves as a critical foundation for understanding earth system changes and human activities [1]. It

provides a scientific foundation for the optimal allocation of land resources, ecosystem conservation, climate
change assessment, and disaster management. In LCLU research, semantic segmentation techniques based
on high-resolution remote sensing imagery have been widely applied. Semantic segmentation technology
precisely labels and classifies each pixel within a high-resolution image. It effectively enhances the accuracy
and efficiency of researchers in identifying and analyzing surface features. Thus, semantic segmenta-
tion technology of high-resolution remote sensing images has been instrumental in the advancement of
LCLU research.

In recent years, deep learning-based high-resolution image segmentation networks have been widely
applied in LCLU research. Current deep learning network approaches primarily encompass CNN-based
models [2] and transformer-based models [3]. CNN-based models primarily focus on spatial and detailed
feature extraction by stacking multiple convolutional layers [4]. This has enabled CNN-based models
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to achieve promising performance in semantic segmentation tasks for high-resolution remote sensing.
Nevertheless, CNN-based models still face inherent limitations stemming from the local receptive fields
of convolutional neural networks. To address this issue, researchers have focused on transformer-based
networks with global context modeling capabilities [5]. The core of transformer-based models lies in the
attention mechanism [6]. Through calculating the cosine similarity between feature vectors, the attention
mechanism can obtain the similarity between the geographical objects embedded therein. This enables the
model to effectively pay attention to all geographical objects with high similarity in high-resolution remote
sensing images. The characteristic of the attention mechanism has propelled transformer-based models to
become a major research focus in the domain of high-resolution remote sensing image semantic segmenta-
tion.

However, there remains a significant challenge for transformer-based approaches when dealing with
high-resolution remote sensing images. High-resolution remote sensing images exhibit two distinctive
characteristics. Firstly, in high-resolution remote sensing images, objects of the same class exhibit varying
sizes and details [7]. Secondly, the complex and diverse backgrounds in high-resolution remote sensing
images can blur the boundaries of ground objects [8]. These characteristics lead to markedly different feature
representations for ground objects belonging to the same category. As shown in Fig. 1a, the diversified feature
representations lead to an expansion and dispersion of the embedding distributions of objects belonging
to the same class in the feature space [9]. Dispersed feature distributions imply significant angles between
feature vectors. The larger the angles between feature vectors, the smaller the values obtained from cosine
similarity calculations. This reveals that attention scores among objects of the same class are relatively low
and consequently the attention mechanism might overlook some objects from that class, as shown in Fig. 1b.
The semantic segmentation performance of transformer-based models is limited by their incomplete focus
on information. Therefore, it is necessary to address the significant differences in feature representations
among objects of the same class.

Figure 1: Schematic representation of the challenges of high resolution remote sensing images on transformer
performance (a) Features distribution of objects within the same class is dispersed. (b) The cosine similarity between
the eigenvectors where the decentralized feature distribution is located decreases
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Existing approaches to this problem have primarily focused on leveraging multi-scale information [10]
or incorporating supplementary data. But these methods often encounter challenges related to data insep-
arability. As a result, it is essential to seek new solutions. Notably, although objects of the same class in
a high-resolution remote sensing image show significant differences in feature representations, intrinsic
relationships still exist among their feature points [11]. This inspired us to leverage intrinsic relationships to
reconstruct feature representations of the same class objects in high-resolution remote sensing images.

Information granulation is a commonly used method for reconstructing feature representations based
on intrinsic relationships [12]. The process of information granulation involves calculating the relationships
between feature points and encapsulating related feature points into an information granule. An information
granule is a novel information entity that represents the shared semantic features of its internal feature
points [11]. The shared semantic features of information granules ensure consistent feature representation for
the same type of objects. In the feature space a unified representation forms a more compact distribution.
This yields smaller angles between feature vectors and higher cosine similarity. Such a structure enhances
the effectiveness of attention mechanisms in focusing on critical information. This highlights the necessity of
utilizing information granulation to address the significant feature representation differences of same class
objects in high-resolution remote sensing images.

Numerous information granulation methods are currently utilized in deep learning [13]. These methods
establish the correlation between feature points by calculating the spatial distance between feature points
and a manually specified fixed reference point. Nevertheless, since the distribution of feature points within
the same category in the feature space is typically stochastic and dispersed. The presence of varying optimal
reference points for different feature distributions presents a substantial challenge in manually identifying
the most suitable reference point. Therefore, conventional granulation methods are not well-suited for high-
resolution remote sensing images. Developing a granulation method capable of automatic reference point
selection is essential.

In deep learning, the Laplacian operator is frequently employed to extract the edges of geographic
objects. The Laplacian operator captures second-order variations in the input image, thereby serving
as a parameter-free method to extract high-frequency details such as edges and contours. These high-
frequency features play a pivotal role in delineating the boundaries of geospatial objects, particularly by
discriminating between the boundaries and background in scenarios where the background information is
complex. It is conceivable that applying the Laplacian operator to information granules could also extract
the edge features of objects. However, there is currently no research that applies the Laplacian operator to
information granules.

Based on the above analysis, the adaptive granulation method and the Laplacian operator of information
granule applicable to high-resolution remote sensing image segmentation are proposed. Subsequently,
remote sensing image information granulation transformer for semantic segmentation is developed. The
contributions of the article are as follows:

1. An adaptive granulation method suitable for high-resolution remote sensing images is proposed. Adap-
tive granulation captures relationships between same-class feature points and constructs information
granules. These granules are then used to reconstruct unified feature representations for objects of the
same class.

2. The Laplacian operator for information granule is defined. The Laplacian operator for information
granule is specifically designed to process the information granule. The core function of the Laplacian
operator of information granule is to extract the edge information of the features represented by the
information granule.
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3. Remote sensing image information granulation transformer for semantic segmentation is presented.
The model includes Swin with adaptive granulation, a feature transformation structure, and a dilated
convolutional block, among other components.

The remainder of this paper is organized as follows: Section 2 provides the related works of this
paper. Section 3 provides a detailed description and explanation of the remote sensing image information
granulation transformer for semantic segmentation. Then, Section 4 demonstrates the effectiveness of the
proposed method through experiments, and Section 5 concludes the study.

2 Related Works
This section begins with a concise review of the transformers for semantic segmentation of high-

resolution remote sensing images in LCLU research. Following this, it will discuss research on information
granulation within deep learning.

2.1 Transformers for Semantic Segmentation of High-Resolution Remote Sensing Images in
LCLU Research
In recent years, scholars have shown increasing interest in using transformers for high-resolution remote

sensing image semantic segmentation in LCLU analysis.
Zhang et al. introduce high-order transformer blocks to model global dependencies and a global

enhancement attention module (GEAM) to enhance global feature representation, addressing the challenge
of segmenting complex ground objects [14]. Yang et al. propose a multi-scale Transformer (MSTrans) with a
plug-and-play multi-scale transformer module based on atrous spatial pyramid pooling (ASPP) to enhance
multi-scale feature extraction for building extraction from high-resolution remote sensing images [15]. Yu
et al. employ the Swin transformer as the backbone to model global information interaction, effectively
capturing long range dependencies and overcoming the limitations of CNNs in remote sensing image
super-resolution [16].

Although transformers have achieved significant success in the semantic segmentation of high-
resolution remote sensing images, the challenges posed by high intra-class variance in these images limit
their segmentation performance.

2.2 Resolving the Impact of High-Resolution Remote Sensing Images on Transformers Performance
Research
Currently, numerous scholars have proposed various methods to mitigate the impact of high intra-

class variance on the performance of transformer. Yang et al. introduced a spatial-frequency multiscale
transformer framework that effectively captures global multiscale features of the target by employing
spatial multiscale modeling and a frequency-domain texture enhancement encoder. The framework further
integrates spatial and frequency information using an adaptive feature fusion module [17]. Li et al. addressed
high intra-class variance in remote sensing segmentation by proposing the Synergistic Attention Module
(SAM), which jointly models spatial and channel affinities in a unified attention map. This approach enhances
feature consistency and reduces attention bias, leading to improved segmentation accuracy when integrated
into SAPNet [10]. Yang et al. proposed a method combining global spatial features and Fourier frequency
domain learning to reduce intra-class variance. High-frequency components enhance boundaries, while
low-frequency components improve internal consistency, resulting in clearer road features [18].

Despite promising results achieved by existing methods, these approaches primarily focus on enhancing
data description from a multi-scale perspective, which can lead to issues with data separability. Therefore, it is
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necessary to explore new methods to overcome the shortcomings of existing approaches. Notably, although
objects of the same class in a high-resolution remote sensing image show significant differences in feature
representations, intrinsic relationships still exist among their feature points. This inspired us to leverage
intrinsic relationships to reconstruct feature representations of the same class objects in high-resolution
remote sensing images.

2.3 Information Granulation in Deep Learning
Information granulation is a widely used approach to analyze similarity relationships, emphasizing the

creation of information granules by grouping feature points with similar properties. Numerous scholars have
incorporated information granulation into deep learning research.

Yu et al. proposed the GGI-DDI model, which decomposes drugs into information particles of key
substructures through information granulation. This approach enhances feature expression and model
interpretability, enabling more effective prediction of drug-drug interactions [19]. Behzadidoost et al.
enhance the accuracy of classifiers in natural language processing tasks by decomposing data into multiple
granular matrices and introducing combinatorial algorithms along with regularized numerical information
granules to improve feature representation [20]. Chen et al. enhanced feature expression through infor-
mation granulation and employed a granular convolutional neural network for feature extraction from
information granules, thereby improving the recognition efficiency of the convolutional neural network [21].

Current granulation methods assess feature relationships by calculating distances from individual pixels
to a fixed reference point. However, the feature points of the same category are often dispersed in the feature
space, with different distributions requiring distinct optimal reference points. This presents a substantial
challenge for manually identifying the most suitable reference points. Therefore, it is essential to develop a
granulation method capable of automatically selecting reference points.

3 Methodology
This section begins by introducing the adaptive granulation method and the feature transformation

method. Following this, a comprehensive analysis is presented on the integration and application of
these methods within the transformer. Finally, this section defines the remote sensing image information
granulation transformer for semantic segmentation.

3.1 Overview of the Model Architecture
As shown in Fig. 2a, the model is divided into a feature extraction phase and an up-sampling phase.

In the feature extraction phase, the deep semantic features of the image are extracted using both the Swin
with AG and ResNet-50. The semantic features extracted by ResNet 50 will be further processed by a dilated
convolutional block for feature extraction. The features extracted by Swin with AG are then concatenated
with the semantic features processed by the dilated convolutional block. In the up-sampling phase, the feature
resolution is progressively restored through up-sampling and the residual block. Finally, the segmentation
result is obtained through a 1 × 1 convolution.



1490 Comput Mater Contin. 2025;84(1)

Figure 2: Schematic structure of remote sensing image information granulation transformer for semantic segmentation
and the transformer block with adaptive granulation (AG)

There has been much interest in how to solve the problem of gradient vanishing in deep neural
networks. Residual connections [22] and the oriented stochastic loss descent proposed by Abuqaddom
et al. [23] provide different perspectives for addressing this problem. The transformer architecture leverages
residual connections to address this issue. Fig. 2b shows the structure of the transformer block with adaptive
granulation. The input represented as embedded patches (EP) is processed through adaptive granulation and
the Laplacian operator of information granule (LOIG). The outputs of these modules are then passed to the
core components of the transformer block, including layer normalization (LN), multi-head self-attention
mechanism (MSA), and multilayer perceptron (MLP). Residual connections are applied after the MSA and
MLP using summation operations. This structure is iteratively stacked L times.

3.2 Adaptive Granulation Methods
This chapter provides a comprehensive introduction to adaptive granulation methods.

First, Section 3.2.1 defines the concept of adaptive granulation. Subsequently, Section 3.2.2 introduces
the matrix representation of information granules. Section 3.2.3 presents the application of information
granulation to image patches.

3.2.1 Definition of Adaptive Granulation
For the information system U = {X, C}. X = {x1 , x2, x3, ..., xn} is a sample set, where n represents the

number of samples. C = {c1 , c2, c3, ..., cm} is the attribute set, where m denotes the number of attributes.
Each sample possesses m attributes. p = {p1 , p2, p3, ..., pm} is an adaptive reference sample set. pc denotes
the reference sample under attribute c. The granulation method for the sample set X with respect to any
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property c is defined as follows:

g(X , c) = {ri}
n
i=1 = {r1 , r2, ..., rn}, (1)

where ri =
1

1+ex p(xi+pc)
.

g(X , c)denotes the information granule of the sample set X under attribute c. ri denotes the information
kernels constituting the information granule. The calculation of ri is based on the relationship between the
sample xi and the reference point corresponding to attribute c.

The collection of information granules for the sample set X paired with the attribute set C =
{c1 , c2, ..., cm} can be expressed as:

g(X , C) = {g(X , c1), g(X , c2), ..., g(X , cm)}. (2)

g(X , C) represents the set of all information granules of the sample set X under the attribute set C.
Each information granule is defined as a fundamental feature unit that provides a uniform representation
of features. It is essentially characterized as a collection, where each value explicitly describes the spatial
relationship between a sample x and an adaptive reference point p. Additionally, each value within the
information granule quantitatively represents the degree of correlation with the feature encapsulated by
the granule.

3.2.2 Matrix Representation for Information Granules
Since information granules are inherently collections, they cannot be directly processed by neural net-

works. To address this limitation, we define a matrix representation for the collection of information granules.
For the information system U = {X, C}, the matrix representation of the information granule set

g(X , C) is defined as follows:

g(X , C) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r11 r12 ⋅ ⋅ ⋅ r1m
r21 r22 ⋅ ⋅ ⋅ r2m
⋮ ⋮ ⋱ ⋮

rn1 rn2 ⋅ ⋅ ⋅ rnm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3)

Eq. (3) provides the matrix representation of g(X , C). In the matrix representation of information
granules, each column corresponds to a distinct information granule, while each row represents a specific
attribute within the attribute set C = {c1 , c2, c3, . . . , cm}. ri j represents the i-th granular kenerl in the j-th
information granule. Once the set of information granules g(X , C) is transformed into a feature matrix,
various matrix operations such as addition, subtraction, multiplication, division, and decomposition can be
systematically performed.

3.2.3 Adaptive Granulation Method Based on Image Patch
Based on the adaptive granulation method, we take the input image patches of the transformer as the

objects of information granulation. Its information granulation method is as follows:
Each patch is considered an attribute in the attribute set C = {c1 , c2, . . . , cm}. The feature points in each

patch are considered as a single sample in the sample set X = {x1 , x2, . . . , xn}. In our work, sample set p =
{p1 , p2, . . . , pm} is a learnable parameter. The reference set p effectively identifies similar boundary elements
across different classes by determining appropriate reference points during the model’s training process.
Subsequently, the information granulation operation is applied to the image patches using Eq. (1).
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In our work, each patch is granulated into information granules. The information granules generated
from all the patches collectively form a set of information granules, which are represented using the matrix
representation defined in Section 3.2.2. The collection of information granules, represented in matrix form,
enables the execution of any basic matrix-related operations.

3.3 The Laplacian Operator of Information Granule
The Laplacian operator captures second-order variations in the input image, serving as a parameter-

free and harmonious method for extracting high-frequency details such as edges and contours. To improve
computational efficiency, we approximate the Laplacian operator using a difference operator. Assume that
the set of information granules of sample set X over attribute set C is denoted as g(X , C). Based on the matrix
representation of information granules, the Laplacian operator of information granule is defined as follows:

g(X , C) = g(X , C) − u(d(g(X , C))). (4)

As defined in Eq. (4), d represents downsampling with a stride of 2, and u represents upsampling.
The downsampling operation primarily reduces the spatial dimensionality of the information granule. This
effectively decreases the maximum representable frequency within the granule. As a result, information near
the high-frequency region in the frequency domain is lost, leaving primarily low-frequency information. The
upsampling operation is primarily used to restore the original matrix dimensions of the information granule.
The high-frequency information, including edge details within the information granule, can be obtained by
calculating the difference between the granule and its low-frequency components.

3.4 Feature Transformation Architecture
Within the field of deep learning, feature enhancement is a technique that expands the feature repre-

sentation of input data, thereby effectively improving the performance of the model [24]. This paper designs
a feature transformation architecture for feature augmentation. The feature transformation architecture
comprises 1 × 1 convolutions followed by LeakyReLU activation functions, which processes the input
features through multiple branching augmentations.

Fig. 3 illustrates the schematic diagram of the feature transformation architecture. Within the feature
transformation architecture the process begins with an input X. This input is then partitioned into two
distinct subsets labeled X1 and X2 using the split operation. Each branch independently undergoes 1 × 1
convolutions, followed by activation with LeakyReLU and Sigmoid. The outputs from these transformations
are then fused through summation to generate intermediate features Y1 and Y2. Finally, Y1 and Y2 are
concatenated and further aggregated through an additional summation operation to produce the final
output Y.
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Figure 3: Illustrative schematic of the feature transformation architecture

3.5 Dilated Convolutional Block
Fig. 4 illustrates the structure of a dilated convolutional block, designed to efficiently extract multi-scale

features through the use of dilated convolutions with varying dilation rates. The input is processed through
four parallel branches, each involving a 3 × 3 convolution with dilation rates of 1, 3, 6, and 9, respectively.
Each convolutional layer is followed by a batch normalization (BatchNorm) layer and a ReLU activation
function. The outputs of the four branches are concatenated to aggregate features from multiple receptive
fields. The concatenated result is subsequently processed by a 1 × 1 convolution, followed by another batch
normalization layer and a ReLU activation. The final output represents the enhanced multi-scale feature map.

Figure 4: Schematic diagram of the dilated convolutional block

4 Experiments and Analysis
This chapter presents the experiments and analysis. Section 4.1 introduces the datasets and con-

figurations used in the experiments. Section 4.2 describes and analyzes the results of the comparative
experiments. Section 4.3 details the ablation experiments, which validate the effectiveness of the pro-
posed components.
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4.1 Datasets and Experiment Setting
This study selects the BLU, GID, and PD as the experimental datasets. A detailed introduction to these

datasets is provided below:

(1) The BLU dataset is a high-resolution satellite benchmark dataset developed to support multi-class
semantic segmentation research in remote sensing. Collected in June 2018 by the Beijing-2 satellite
from 21st Century Aerospace Technology Co., Ltd., the dataset comprises RGB optical images with
a ground sampling distance of 0.8 meters. It features fine-grained annotations across six land-use
categories: background, building, vegetation, water, farmland, and road.

(2) The GID dataset is a large-scale land-cover dataset created from high-resolution images of the Gaofen-
2 (GF-2) satellite. It consists of two components: a large-scale classification set with 150 GF-2 images
and pixel-level annotations, and a fine classification set with 30,000 multi-scale image patches and 10
annotated GF-2 images. The GlD dataset includes 15 categories: industrial land (IDL), urban residential
(UR), rural residential (RR), traffic land (TL), paddy field (PF), irrigated land (IL), dry cropland (DC),
garden plot (GP), arbor woodland (AW), shrub land (SL), natural grassland (NG), artificial grassland
(AG),river (RV), lake (LK) and pond (PN).

(3) The PD dataset is a high-resolution aerial image dataset used for semantic segmentation in urban
scenes. It contains 38 ortho-rectified aerial images, each with a resolution of 6000 × 6000 pixels and
a ground sampling distance of 5 cm. The dataset includes six labeled classes: buildings, trees, low
vegetation, impervious surfaces, cars, and clutter/background.

In this experiment, a Tesla V100 GPU with 16 GB video memory is used for training, and the deep
learning framework is Pytorch. The visual tasks selected in the experiment are segmentation tasks. In this
experiment, the input size is set to 256 ∗ 256 pixels, with a learning rate of 1e–4, using Adam as the optimizer
and employing a cosine annealing strategy for learning rate optimization. The epoch for training is 100
rounds. All image processing methods used in this experiment are referenced from the methods described
in [25].

4.2 Comparison Experiments
To evaluate the efficacy of our method, we conduct comparative analyses with predominant semantic

segmentation networks, we utilize data from the original paper (results not provided in the original papers
are denoted as “-”). In all tables, bolded numbers signify optimal results.

4.2.1 Comparison with State-of-the-Art Methods on the BLU
To evaluate the performance of the proposed model, experiments were conducted on the BLU

dataset. Fig. 5 presents a visual comparison of segmentation results among the proposed model, WicoNet,
LANet, Deeplab v3+, and DANet. Table 1 compares the quantitative metrics of the proposed model with
those of state-of-the-art models in recent years. The experimental results demonstrate that the proposed
model achieves the best segmentation performance. Although the F1 score for the road class is slightly lower,
all other evaluation metrics surpass those of the comparison models.
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Figure 5: Visualization of segmentation outcomes for various methods applied to the BLU

Table 1: Comparative analysis of segmentation indices across various segmentation methods applied to BLU

Method Per-class F1 (%) mOA (%) mF1 (%) mIoU (%)

Background Building Vegetation Water Agriculture Road
PSPNet [26] 72.66 87.40 90.41 85.15 86.42 68.88 86.59 82.05 70.35

DeepLabv3+ [27] 73.99 87.93 90.76 86.46 87.32 68.85 87.08 82.55 71.07
DANet [28] 73.06 87.73 90.55 85.45 86.77 69.07 86.76 82.10 70.40

SCAttNet [29] 73.21 87.62 90.54 86.26 86.87 69.32 86.77 82.30 70.68
MSCA-Net [30] 73.71 88.34 90.74 85.92 86.86 70.31 87.17 82.64 71.21

LANet [31] 73.81 87.48 90.60 85.99 87.02 68.49 86.89 82.28 70.60
UnetFormer [32] – – – – – – 86.04 80.66 68.56

WiCoNet [25] 57.91 78.83 83.13 75.91 77.65 52.58 86.99 82.51 71.02
ST_Unet [33] 54.15 76.47 81.87 80.89 86.33 67.32 86.43 80.86 68.68

MSGCNet [34] – – – – – – 87.16 82.34 70.85
TCNet [35] – – – – – – 87.42 82.93 71.58

OURS 75.23 88.59 91.12 87.30 87.86 68.95 87.61 83.11 71.90

Fig. 5 illustrates the segmentation results of our model alongside other models, including DANet,
DeepLabv3+, LANet, and WiCoNet, on the BLU dataset. The comparison highlights the superior segmen-
tation performance of our model, particularly in preserving fine-grained details and accurately identifying
boundaries between different classes. Our model demonstrates exceptional capability in processing complex
spatial structures, such as small buildings, road networks, and farmland patches, which are often misclas-
sified or poorly segmented by other methods. This performance improvement is evident in the sharper
boundaries, reduced noise, and higher consistency with the ground truth, as compared to other models.
These results validate the effectiveness of our proposed approach in achieving more precise and robust
segmentation outcomes.
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Table 1 reports the quantitative comparison results on the BLU dataset. SCAttNet integrates both spatial
and channel attention mechanisms, demonstrating superior performance in key metrics when compared
to DANet and PSPNet. WiCoNet leverages a contextual transformer to surpass UnetFormer and LANet,
achieving higher performance. The integrated multi-scale interaction module of MSGCNet outperforms
DeepLabv3+, which incorporates the ASPP module and a distinctive decoder structure. By incorporating
relevant category semantic enhancement modules, TCNet respectively surpasses MSGCNet by 0.26%, 0.59%,
and 0.73% in the mOA, mF1, and mIoU metrics. The proposed model. The proposed model achieves
improvements of 0.19%, 0.18%, and 0.32% over TCNet in terms of mOA, mF1, and mIoU, respectively. This
illustrates that TCNet facing high intra-class variance is still insufficient. In contrast, the proposed model
enhances the accuracy of information processing by computing intrinsic data relationships through AG to
form information granules.

4.2.2 Comparison with State-of-the-Art Methods on the GID
We further validated the effectiveness of the proposed model on the GID dataset. Fig. 6 illustrates the

visual segmentation results of representative models. Table 2 presents the performance of each semantic
segmentation method on the GID dataset. Overall, the proposed model achieves the best comprehensive
performance, although it does not reach the optimal level in terms of mIoU.

Figure 6: Visualization of segmentation outcomes for various methods applied to the GID
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Fig. 6 presents the segmentation visualizations across different models. In the semantic segmentation
results, our proposed model achieves the best boundary delineation performance between different LCLU
classes. Our model demonstrates the highest segmentation quality, whereas the comparison models exhibit
incomplete segmentation or misclassification in certain image regions. The road portion in the example
image is heavily occluded by trees and the pixel feature representation of the road is severely weakened.
Compared to the rest of the models, our segmentation is the best.

Table 2 provides a comparative evaluation of segmentation metrics for different methods applied to
the GID dataset. DANET integrates the dual-attention mechanism and outperforms PSPNet, DeepLabv3+,
and C2F in composite metrics. MANet integrates a novel kernel attention mechanism that more effectively
captures the contextual information in remote sensing images. In the experiments, MANet outperforms
SCAttNet and LANet across all performance metrics. GFFNet integrates a grouped Transformer structure
with grouped convolutions to model spatial information, and achieves higher performance metrics than
HRCNet and MSGGNet in the experiments. Although MDANet can fully obtain spatial information, its
feature extraction ability for boundary details is poor, so there is still space for improvement. In the
experiments, the mOA and mF1 metrics of MDANet are 1.71% and 2.74% lower than those of the proposed
model. This is primarily because the LOIG can effectively extract boundary information. Notably, GFFNet
achieves 2.2% higher mIoU than the proposed model.

4.2.3 Comparison with State-of-the-Art Methods on the PD
We further demonstrate the effectiveness of the proposed model on the PD dataset. Fig. 7 presents a

visual comparison of the segmentation results obtained by the proposed model with those produced by
CMLFormer, DeepLabv3+, SwinUnet, and UnetFormer. Table 3 reports the quantitative comparison results
on the PD dataset. Based on the experimental results, our proposed model not only demonstrates superior
segmentation performance but also achieves optimal results across all comprehensive evaluation metrics.

Figure 7: Comparison of segmentation results across different models on the PD
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Table 3: Comparative assessment of segmentation metrics for various methods applied to the PD

Method Per-class F1 (%) mOA (%) mF1 (%) mIoU (%)

Imp surf Building Low veg Tree Car
PSPNet [26] 87.87 92.81 81.83 80.02 84.66 85.51 85.44 74.86

DeepLabv3+ [27] 87.71 92.69 81.72 79.57 84.03 87.23 85.14 74.42
TansFuse [40] 89.75 93.92 82.91 83.61 88.51 86.71 87.74 78.40
SCAttNet [29] 90.04 94.05 84.05 79.75 89.06 87.97 87.39 77.94
MsanlfNet [41] 89.08 93.64 82.37 80.49 86.14 86.41 86.34 76.28
SwinUnet [42] 90.30 94.41 83.05 82.83 88.84 – 87.89 78.68
CSBNet [43] 91.75 95.81 84.91 84.73 90.12 – 88.81 81.20
CTFNet [44] 91.48 96.30 86.04 86.00 91.70 89.38 90.70 83.20

UnetFormer [32] 90.14 94.44 83.15 83.15 83.16 – 88.19 79.16
CMLFormer [45] 90.70 94.96 84.01 83.91 90.31 – 88.79 80.06

EMRT [46] 90.87 94.86 84.12 85.23 90.32 88.12 83.59 73.62
MSINet [47] 91.34 94.88 87.10 84.72 95.15 88.88 90.64 83.14

OURS 92.19 96.46 85.58 86.92 95.57 89.49 91.34 84.37

Fig. 7 presents a comparative visualization of segmentation performance across different models on the
Potsdam dataset, highlighting the effectiveness of our proposed method. The comparison includes models
such as CMLFormer, DeepLabv3+, SwinUnet, and UnetFormer. In the third example image, the Cluster class
is misclassified by all other models, whereas our method accurately identifies and classifies these pixels. This
demonstrates the robustness of our approach in capturing subtle and fine-grained features that other models
fail to distinguish, especially in complex regions with high intra-class variance or overlapping boundaries.

Table 3 presents quantitative comparison between the proposed model and leading approaches pub-
lished in recent years. TransFuse integrates transformer and convolutional neural network to effectively
fuse local and global features, surpassing PSPNet, DeepLabv3+, and MsanlfNet in performance. MSINet
employs multi-scale interpolation to extract scale information, providing prior knowledge for segmentation
networks and outperforming EMRT and CMLFormer in experiments. CTFNet introduces channel and
spatial attention fusion modules, enabling adaptive fusion of deep semantic features with shallow detail
features. However, it is prone to feature loss during the fusion process, which consequently leads to reductions
of 0.11%, 0.70%, and 1.23% in mOA, mF1, and mIoU, respectively, compared with the proposed model. In
contrast, AG and LOIG are able to extract the internal knowledge representations of the data more effectively,
thus avoiding the problem of feature loss.

4.2.4 Complexity Comparison
To evaluate the computational resources required by the model, this experiment selected two commonly

used metrics for assessment, the total number of parameters and floating point operations per second
(FLOPs). Table 4 presents the results of comparisons between the complexities of several representative
models.

Table 4: Comparison of FLOPs and Params for different models

Model PSPNet DANet CMLFormer MSGCNet DeepLabV3+ SwinU-Net MsanlfNet Ours
FLOPs (Gbps) 49.24 49.52 46.39 28.64 31.77 28.06 32.24 28.08
Params (Mb) 51.31 47.44 56.17 27.02 26.12 33.73 69.53 50.56
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DANet models the semantic features on both spatial and channel dimensions by introducing the posi-
tion attention module and channel attention module, respectively. However, the dual attention mechanism
requires more computational resources, which results in higher FLOPs for DANet compared to PSPNet
and CMLFormer. MsanlfNet, which introduces a multi-scale attention mechanism, requires substantial
computational resources. As a result, MsanlfNet has higher FLOPs compared to DeepLabv3+. In addition,
the number of parameters in MsanlfNet is also higher than that of PSPNet and CMLFormer. By comparison,
it can be observed that the proposed model is similar to MSGCNet and SwinUnet in terms of FLOPs, but
its number of parameters is larger than both of these models. This is because the proposed model uses AG
to process the image into information granules as objects, which reduces the number of objects the model
needs to process to some extent, thereby lowering the required computational resources.

4.2.5 Comparative Experimental Analysis
In the comparative experiments, the proposed model attained the highest scores across the performance

metrics. Our model demonstrates superior performance compared to the transformer network employing
multi-scale features. This is mainly due to the fact that existing models are susceptible to data inseparability.
In contrast, our model, by extracting internal knowledge representations, is better able to capture the
intrinsic features of the data, thereby mitigating this issue. However, our model did not achieve the highest
F1-score for certain classes. Through our analysis, we conclude that this is primarily due to two factors.
Firstly, the imbalanced proportion of sample counts across different categories in the training dataset results
in inconsistent training effectiveness for each class. Secondly, when preprocessing the training dataset by
slicing large-scale images into smaller ones, the class imbalance within individual images was not taken
into consideration. This demonstrates that our proposed model can better handle high-resolution remote
sensing images. In the visualization comparison experiments, the model proposed in this study exhibits the
best performance in segmenting high-resolution remote sensing images. Particularly in scenarios involving
feature objects influenced by complex backgrounds, our model demonstrates superior performance in
capturing fine details. This is because our proposed model is less susceptible to receiving high intra-class
variance. The effectiveness of our model is validated through comparative experiments.

4.3 Ablation Experiment
In this section, we will evaluate the effectiveness of AG and LOIG in enhancing transformer perfor-

mance. Section 4.3.1 visually analyzes the attention matrices, demonstrating that our model can capture more
critical information. The validity of LOIG for edge feature extraction is verified in Section 4.3.2. Section 4.3.3
validates the performance improvement provided by different components.

4.3.1 Attention Matrix Visualization
The attention mechanism captures global dependencies by calculating the correlations between different

positions [48]. In this experiment, by visualizing the attention matrix, it was validated that the proposed AG
and LOIG enable the attention mechanism to capture more comprehensive information.

Fig. 8 provides a visualization of the attention matrix. Incorporating AG and the LOIG into Swin enables
the model to capture more critical information. The attention mechanisms are averaged and visualized across
three datasets, including BLU, GID, and PD, providing a comprehensive analysis of attention behavior. By
comparison, the AG and the LOIG demonstrated notable advantages in attention allocation. Specifically, AG
and LOIG correspond to matrices where the highlighted regions are clearer and more uniformly distributed,
indicating their ability to capture more essential information. In addition, the features extracted by AG and
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LOIG exhibit a more organized structure, reflecting their ability to accurately identify and retain the relevant
key information.

Figure 8: Attention matrix visualization of the AG and the LOIG used in the Swin

4.3.2 Visualization Experiment on the Effectiveness of LOIG
To evaluate the effectiveness of LOIG in boundary feature extraction. In this expriment, Grad-CAM was

employed to visually analyze the segmentation results obtained with and without the LOIG model. In the
resultant visualizations, the blue regions denote the areas that the model attends to, with a more intense blue
hue corresponding to a higher level of attention. The experimental results indicate that LOIG demonstrates
significant advantages in boundary feature extraction.

Fig. 9 shows the segmentation visualization results of the model without LOIG and the model with
LOIG. In the BLU dataset, the model without LOIG demonstrated a relatively limited capacity for discerning
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building and road boundaries, whereas the incorporation of LOIG markedly enhanced boundary detection.
In the GID dataset, due to the similarity in object features, clearly delineating the boundary between irrigated
land and the background proved challenging. The model without LOIG struggled to effectively address
these boundary issues, whereas the introduction of LOIG enabled the model to better capture the boundary
characteristics. In the PD dataset, due to the influence of lighting conditions, the edges between parked
cars and the road became difficult to distinguish. The AG model’s focus deviated from the object, whereas
the LOIG model maintained more precise boundary segmentation. The experimental results show that the
model with LOIG demonstrates significant advantages in handling complex boundary scenarios.

Figure 9: Segmentation visualization results comparing models with and without LOIG

4.3.3 Ablation Experiments with Different Components
In the ablation experiments, we assess the individual contributions of the AG and the LOIG. Table 5

presents the ablation study results across various datasets, providing a comparative analysis of performance.

Table 5: Comparison of segmentation metrics for different components with different datasets

Dataset Swin AG LOIG mOA (%) mF1 (%) mIoU (%)

BLU
✓ 87.56 82.82 71.48
✓ ✓ 87.46 82.90 71.60
✓ ✓ 87.66 83.00 71.79

GID
✓ 88.49 82.01 70.72
✓ ✓ 88.75 82.80 71.91
✓ ✓ 88.49 82.39 71.06

PD
✓ 88.02 89.64 81.50
✓ ✓ 89.87 91.10 84.01
✓ ✓ 89.14 90.66 83.34
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Since the model with AG can effectively represent the shared semantic features of data through
information granules. This effectively mitigates the impact of high intra-class variance on the attention
mechanism, enabling it to focus on more critical information. On the BLU dataset, the model with AG
achieves mOA, mF1, and mIoU of 87.46%, 82.90%, and 71.60%, respectively. On the GID dataset, the model
with AG improves mOA, mF1, and mIoU by 0.26%, 0.79%, and 1.19%, respectively. On the PD dataset, the
model with AG achieves mOA, mF1, and mIoU scores of 89.87%, 91.10%, and 84.01% in order. Since LOIG can
effectively extract edge features, it enables the segmentation model to achieve improved performance. As the
LOIG can effectively extract edge features, the segmentation model achieves better performance. In the BLU
dataset, the model with LOIG achieved mOA, mF1, and mIoU of 87.66%, 83.00%, and 71.79%, respectively.
In the GID dataset, the model with LOIG achieved mOA, mF1, and mIoU of 88.49%, 82.39%, and 71.06%,
respectively. In the PD dataset, compared with the model without LOIG, the model with LOIG improved
mOA, mF1, and mIoU by 1.12%, 1.02%, and 1.84%, in that order.

The experimental metrics substantiate the efficacy of the components proposed in this paper in enhanc-
ing the model’s performance. This is because adaptive granulation harmonizes the feature representation of
terrestrial objects within the same category, while the Laplacian operator of information granule augments
the expressive power of boundary features.

4.3.4 Analyze of Ablation Experiments
Ablation experiments include visualization experiments and segmentation metric comparison experi-

ments. In the attention visualization experiments, the network incorporating the AG and the LOIG exhibits
richer and more accurate feature attention. The visualization experiments on LOIG effectiveness indicate
that models incorporating LOIG achieve superior edge feature perception. In the segmentation metric
comparison experiment, the network employing AG and LOIG demonstrates significant improvements in
segmentation performance. This is due to the fact that AG can effectively extract the common semantic
features of land objects, while LOIG excels at capturing edge features. The ablation study systematically
validates the effectiveness of each component proposed in this research.

5 Conclusion
In this paper, remote sensing image information granulation transformer for semantic segmentation is

proposed. The model includes Swin with AG, a feature transformation structure, and a dilated convolutional
block, among other components. Swin with AG applies adaptive granulation techniques and utilizes the
Laplacian operator for information granules. The adaptive granulation method employs a dynamic learning
strategy to ascertain the optimal reference point and produce information granules. Information granules can
represent common semantic features for similar pixels. This attribute is leveraged to address the substantial
discrepancies in feature representations among objects belonging to the same class. The core of Laplacian
operator of the information granule lies in using the Laplace operator to extract the boundary features of the
objects. This facilitates the expression of boundary features through information granules.

In the comparison experiments, our model achieves superior performance across segmentation metrics.
In particular, the model achieves mOA of 88.81%, mF1 score of 82.64%, and mIoU of 17.50% on the GID
dataset. Meanwhile, on the PD dataset, the model reaches mOA of 89.49%, mF1 score of 91.34%, and mIoU
of 84.37%. It also demonstrates outstanding segmentation quality in the visualized segmentation results.
In the complexity comparison experiment, the model’s FLOPs are 28.08. This indicates that the model
maintains higher inference performance while consuming fewer computational resources. The attention
visualization experiment indicates that the model utilizing the proposed method captures key information
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more comprehensively. In ablation studies, the effectiveness of the adaptive granulation and the Laplacian
operator of the information granule was validated separately.

Although the proposed model exhibits high segmentation performance, there are still some limitations.
For example, our model does not achieve optimal performance on certain types of ground objects. Upon
analysis, we found that this is due to the differing proportions of various classes in the training dataset.
Classes with a smaller proportion will not receive sufficient training. In the future, we will explore various
methods for granulating information to describe data from multiple perspectives, such as the adaptive multi-
granularity method.
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