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ABSTRACT: With the emergence of new attack techniques, traffic classifiers usually fail to maintain the expected
performance in real-world network environments. In order to have sufficient generalizability to deal with unknown
malicious samples, they require a large number of new samples for retraining. Considering the cost of data collection
and labeling, data augmentation is an ideal solution. We propose an optimized noise-based traffic data augmentation
system, ONTDAS. The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain
optimized noise. The noise is injected into the original samples for data augmentation. Then, an improved bagging
algorithm is used to integrate all the base traffic classifiers trained on noised datasets. The experiments verify ONTDAS
on 6 types of base classifiers and 4 publicly available datasets respectively. The results show that ONTDAS can effectively
enhance the traffic classifiers’ performance and significantly improve their generalizability on unknown malicious
samples. The system can also alleviate dataset imbalance. Moreover, the performance of ONTDAS is significantly
superior to the existing data augmentation methods mentioned.

KEYWORDS: Unknown malicious traffic classification; data augmentation; optimized noise; generalizability
improvement; ensemble learning

1 Introduction
Network traffic is an important carrier of Internet data which contains a lot of valuable information.

Traffic classification can classify network traffic into specific categories and enable effective analysis and
handling. Therefore, traffic classification plays an important role in many fields, such as joint cloud computing
monitoring, Internet of Vehicles, and cyberspace security. Especially in cyberspace security, it is necessary
to identify malicious traffic for network anomaly detection [1,2].

In recent years, many traffic classification methods have been developed for different application
scenarios. The existing methods fall mainly into four types: port-based, payload-based, machine learning-
based, and deep learning-based [3–5]. Classic port-based methods achieve good performance in applications
that use specific port numbers, but now they are rarely reliable due to dynamic port allocation [6]. Payload-
based methods rely on payload or data packet inspection (DPI), and focus on patterns or keywords
in these data. Since encrypted traffic contains less constant features and discriminative patterns, these
methods are only suitable for unencrypted traffic [7,8]. Machine learning-based methods are developed
to overcome this problem. Researchers select features that reflect the characteristics of traffic and train
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classical machine learning algorithms for classification [9]. However, the quality of features largely limits
the performance of these methods. Compared to machine learning-based methods, deep learning-based
methods can automatically perform feature extraction from large amounts of traffic data and select the
optimal feature combination. They also have high learning capacity for the non-linear relationship between
the original input traffic and the corresponding output categories [10].

As more attackers utilize encryption technology to hide traffic content, learning-based methods are
increasingly appealing for traffic classification [11]. However, traffic in real-world network environments
often differs from that in datasets. Models are required not only to correctly classify known traffic, but
also to have sufficient generalizability to deal with unknown malicious traffic. As a result, learning-based
methods need large amounts of labeled data for model training, while collecting and correctly labeling traffic
is time-consuming and requires massive manual work [12]. Moreover, it is much more difficult to collect
malicious samples than benign samples. The resulting imbalanced category distribution has posed serious
challenges. Traffic classifiers trained by imbalanced datasets lead to anomalously high recognition for specific
categories [13]. In addition, the rapid evolution of attack techniques makes current datasets obsolete, even
combining different datasets does not yield sufficient diversification.

These issues make data augmentation an ideal solution. Data augmentation aims to improve the size
and diversity of datasets by generating new data points or entirely new samples [14]. Data augmentation
has been widely used in computer vision and natural language processing. However, classical methods in
these fields cannot be directly applied to traffic data augmentation. Unlike image and natural language, traffic
features are highly heterogeneous. Unlike pixels and words, traffic data have different physical meanings [15].
In order to apply data augmentation to traffic data, this paper proposes a novel optimized noise-based traffic
data augmentation system, ONTDAS. This system uses optimized noise for traffic data augmentation. Its
advantages include:

1. The system uses optimized noise for data augmentation. Optimized noise can enrich datasets, prevent
traffic classifiers from overfitting, and improve their generalizability when dealing with unknown
malicious traffic.

2. A noise conversion module generates classical noise from special distributions and transforms it into
converted noise. Subsequently, an noise optimization module optimizes the converted noise in terms
of shape and scale. These two modules enable the noise to adapt to different traffic features and ensure
that the noised samples follow the distribution of original samples.

3. By synthesizing noised samples, the system expands the size of datasets. These noised samples are labeled
as malicious and combined with original samples for training. This approach helps traffic classifiers fully
learn the category boundary.

4. An improved bagging algorithm calculates the weights of trained base traffic classifiers according to
their precision and integrates all classification results. This balances the performance between benign
and malicious samples, and further improves the generalizability.

The remainder of this paper is organized as follows. Section 2 reviews important and recent learning-
based methods of traffic classification, as well as data augmentation, bagging algorithms, and noise
injection. Section 3 offers a thorough introduction to ONTDAS. Section 4 presents the experimental
results. Section 5 proposes possible future directions for work based on ONTDAS. Section 6 concludes
the paper.
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2 Related Work

2.1 Machine Learning-Based Traffic Classification Methods
Machine learning-based methods do not require complex analysis on traffic data. They can be well

applied to both encrypted and unencrypted traffic classification. Ma et al. [16] propose an improved
K-Nearest Neighbors (KNN) to weight the features, and further establish a three-layer framework for
encrypted traffic classification. Zhang et al. [17] propose an encrypted traffic classification scheme employing
Random Forest (RF) for imbalanced learning, which balances the number of majority class and minority
class by traffic features selection. Draper-Gil et al. [18,19] publish the ISCX VPN-nonVPN and ISCX Tor-
nonTor datasets and use machine learning models such as C4.5 decision tree and KNN to perform encrypted
traffic classification. Shafiq et al. [20] make a systematic review on machine learning-based methods step
by step and apply four machine learning models, Bayes Net, C4.5 decision tree, Naive Bayes and SVM for
comparative analysis.

2.2 Deep Learning-Based Traffic Classification Methods
Compared to machine learning-based methods, deep learning-based methods can automatically

perform feature selection through training. Adaptive Clustering based Intrusion Detection (ACID) [11]
uses a novel adaptive clustering algorithm to learn low-dimensional representations of traffic features.
This model resolves the challenge of traffic classifiers’ sensitivity to slight changes in traffic features.
Huang et al. [21] propose an encrypted malicious traffic classification method, which captures global
semantic features through the Bidirectional Encoder Representations from Transformers (BERT) model and
extracts local spatiotemporal features through the Bidirectional Gated Recurrent Unit (BiGRU) model and
the Text Convolutional Neural Network (TextCNN) model. The fusion of these features serves as the final
representation of malicious traffic. Hong et al. [22] construct attribute KNN graphs based on encrypted
traffic and employ the Graph SAmple and aggreGatE (GraphSAGE) to detect malicious traffic. Pan et al. [23]
employ graph convolution network and Long-Short Term Memory (LSTM) to extract spatial and temporal
features from network flow data, and further propose a traffic classification model based on these features.

2.3 Data Augmentation
Data augmentation can increase the size and diversity of datasets by adding synthetic samples and

has been widely used in traffic classification. Li et al. [24] propose an abnormal traffic detection method
based on a novel Denoise AutoEncoder-Generative Adversarial Network (DAE-GAN) model. This method
employs multiple DAEs to perform efficient data augmentation. Hajaj et al. [14] propose an innovative data
augmentation system which relies on the LSTM model to create data points. This system can significantly
enrich the dataset and improve classification efficiency. Rapier [25] fully utilizes different distributions of
normal and malicious traffic in the sample space to correct label noise and address the problem of low-
quality dataset. Liu et al. [10] propose a data augmentation scheme based on the Variational AutoEncoder
(VAE) to address the dataset imbalance, the model learns the probability distribution of real traffic and
generates reconstructed traffic to enhance the number of minority samples. Qing et al. [26] propose a
attention-based Synthetic Minority Over-sampling Technique (SMOTE) to improve the generalizability in
DDoS detection tasks.

2.4 Bagging Algorithms
The main idea behind bagging algorithms is using a combination of multiple models instead of a single

model to improve the performance. They are very efficient and powerful in improving the stability and
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generalizability of traffic classifiers. Chowdhury et al. [27] propose a novel network intrusion detection
system, which uses the decision tree-based bagging ensemble algorithm and Moth Flame Optimization
(MFO) algorithm to detect malicious traffic. Wang et al. [28] propose a highly accurate and robust traffic
classification model based on an ensemble learning framework, in which three Convolutional Recurrent
Neural Networks (CRNN) are integrated into the bagging to train traffic classifiers using only small-scale
datasets. Xu et al. [29] use bagging algorithm to combine three types of base neural network and form a
strong traffic classifier. These networks are trained separately, and the final prediction result is determined
by weight voting.

2.5 Noise Injection
Noise injection, as a classical data augmentation method, is able to inhibit overfitting in models and

provide more generalization. Liu et al. [30] introduce a noise-based data augmentation method to improve
model’s generalizability towards unknown malicious inputs in black-box test settings. The noise used for
augmentation is composed of Gaussian noise and Salt-and-Pepper noise. Bilali et al. [31] employ adaptive
boosting models and noise-based data augmentation to overcome the limitation of predicting the faecal
coliform using small datasets. The data augmentation module significantly improve the generalizability.
Khadidja et al. [32] use Synthetic Minority Over-sampling Technique (SMOTE) and the additive noise to
improve model’s performance in malware identification. The noise is composed of Gaussian noise, Laplacian
noise and Poisson noise. Xiao et al. [33] calculate the pathwise stochastic gradient estimate regarding the
standard deviation of Gaussian noise added to each neuron of the network, in order to optimize the noise
distribution and obtain the optimal model parameters during training to improve robustness and maintain
original performance. Duan et al. [34] optimize the level of injected noise by gradient descent to obtain a
wide range of useful activation functions and improve the generalizability of neural networks. Wang et al. [15]
employ two searching algorithms to generate optimized smoothing noise and propose a general robustness
certification framework for deep learning-based traffic analysis systems.

In summary, most existing data augmentation systems address the hot issues in traffic classification,
such as correcting label noise and alleviating dataset imbalance. Generalizability is merely an additional
benefit brought by these systems. There are also some studies that inject fixed noise into samples. However,
the magnitudes of noise are not manually controlled, but set in an arbitrary manner, which requires a lot
of work to strike a balance between original task performance and generalizability. In addition, researchers
are also committed to adding optimized noise to the model. This approach is limited by the structure of
traffic classifiers and completely ignores the potential role of samples. The system we proposed focuses on
generalizability improvement and innovatively optimizes noise based on training samples. The optimized
noise is injected into samples rather than models for data augmentation. As a result, it can effectively solve
the above problems.

3 Methodology

3.1 System Architecture
In this paper, we introduce the ONTDAS for data augmentation of network traffic. ONTDAS mainly

includes three modules: noise conversion, noise optimization, and ensemble learning. Fig. 1 illustrates the
framework of ONTDAS.

In the noise conversion module, isotropic classical noise is generated from three symmetrical distri-
butions. Subsequently, the noise is transformed into anisotropic noise through a conversion formula. The
formula uses the shape factor to represent the relative noise distributions between different dimensions and
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the scale factor to represent the overall scale of noise distributions in all dimensions. Significantly, these
factors serve as weights to superimpose the classical noise from different distributions in the form of a
weighted linear sum.

Figure 1: Framework of ONTDAS

The converted noise is optimized separately in terms of shape and scale. The shape factors are
determined by a gradient-based searching algorithm. The scale factors are determined by the improved
Bayesian optimizer Heteroscedastic Evolutionary Bayesian Optimization (HEBO) [35]. The combination of
shape factors and scale factors, called a factor group, is collected after optimization. Significantly, there are
some differences between the optimization of scale factors for benign samples (benign scale factors) and
malicious samples (malicious scale factors). For benign scale factors, the original dataset is divided into
multiple sub datasets before optimization, and each sub dataset is used for independent optimization. For
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malicious scale factors, multiple superior factors are collected after optimization instead of the single optimal
factor. These strategies allow for the acquisition of multiple factor groups from a single dataset. These factor
groups are then applied to the conversion formula to obtain optimized noise. The optimized noise is injected
into original samples for data augmentation.

The ensemble learning module treats noised samples as pseudo-malicious samples and combines
them with original samples. Subsequently, multiple base traffic classifiers are trained on these samples. An
improved bagging algorithm calculates these traffic classifiers’ weights based on their precision, and inte-
grates them into a strong traffic classifier. The details of ONTDAS will be explained in the following sections.

3.2 Noise Conversion
Traditional noise-based data augmentation simply adds the same noise to all features, regardless of their

diversity, which is not flexible enough to handle high-dimensional traffic data. The noise conversion module
generates classical isotropic noise from three symmetrical distributions, and converts it into anisotropic noise
by dimension. Each dimension of noise is added separately to the corresponding feature. This strategy enables
the converted noise to adapt to the diverse distributions of features, improves its representation capability
for different physical meanings, and ensures that the noised samples can be more realistic. The framework
of noise conversion module is shown in Fig. 2.

Figure 2: Framework of noise conversion

Given the original sample x and the additive noise ε, the noised sample xn can be defined as:

xn = x + ε (1)
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Consider that classical isotropic noise follows the distribution Dc, and converted anisotropic noise
follows the distribution Do, the noise conversion formula can be defined as a map from classical noise to
converted noise. Thus, the overall conversion formula is:

εo = Ψ(εc) (2)

where εc is the classical noise, εo is the converted noise, Ψ is the overall conversion.
Suppose that the number of features is Nf and the number of special distributions is Nd, the detailed

conversion formula for the i-th dimension of noise is as follows:

Ψ (εci) = t ⋅
Nd
∑
d=1
(wsd +wii ,d) (Fsd)

−1 (Fc (εci)) , i = 1, 2 . . . , N f (3)

where εci is the i-th dimension of classical noise added to the i-th feature, t is the weight parameters
shared by all special distributions in all dimensions, wsd is the weight parameters shared by the d-th special
distribution in all dimensions, wii ,d is the weight parameters only used by the d-th special distribution in the
i-th dimension independently, Fsd is the cumulative distribution function of the d-th special distribution,
Fc is the cumulative distribution function of the standard normal distribution.

Among the above parameters, wsd and wii ,d compose the trainable shape factors, and t represents the
trainable scale factor. These factors will be optimized in the following module.

3.3 Noise Optimization
Noise optimization module uses a searching algorithm to optimize the shape factor and an improved

Bayesian optimizer to optimize the scale factor. The optimized noise ensures that the noised samples can
simulate real samples, enables traffic classifiers to learn a more general boundary between benign and
malicious samples. The framework of noise optimization module is shown in Fig. 3.

Figure 3: Framework of noise optimization
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3.3.1 Shape Factor Optimization
Noise shape represents the relative noise distributions between different dimensions. It should be as

close to the classification boundary as possible to adapt to heterogeneous traffic features.
When optimizing shape factors, inspired by the Generative Adversarial Network (GAN), the noise

conversion module serves as a generator. It generates converted noise based on Eq. (3), and injects it into
original samples to obtain noised samples. The traffic classifier, trained by original samples, serves as a
discriminator. It uses the noised samples as the testing set and perform classification. The loss function
in Eqs. (5)–(7) is calculated according to the traffic classifier’s performance. In each round of optimization,
the shape factors (parameters ws and wi in Eq. (3) are updated based on gradients back-propagated from the
loss function. After a certain number of rounds, the optimized shape factors are obtained.

Given a traffic classifier f, the classification for a traffic sample can be defined as:

f (x) = arg max
c∈CS

P(m(x) = c) (4)

where m is the model of the traffic classifier, x is the traffic sample, Cs is the class set, c is a class in Cs, P is the
probability that the output of the model is equal to c. The classification obtains the class to which x is most
likely to belong.

Considering the number of original samples used for training is Ns and the set of shape factors to be
optimized, ws and wi, is θ, the loss function is:

L = 1
Ns

Ns
∑
i=1
(Lw (xi , εo) + Lc (xi , εo)) + λ∑

w∈θ
log (1 + e−w) (5)

where L is the overall loss function which consists of three parts including the loss function for wrongly-
classified noised samples Lw, the loss function for correctly-classified noised samples Lc and a regularizer
with a hyper-parameter λ controlling the regularization strength.

The loss function for wrongly-classified noised samples Lw is defined as:

Lw (xi , εo) = I{ f (xi + εo) ≠ f (xi)} ⋅
1
∣Cs∣ ∑c∈Cs

log (1 + e(I{c≠ f (xi+εo)}−I{c= f (xi+εo)})⋅Sf(c)) (6)

where I is the indicator function, f is the trained traffic classifier, Sf is the softmax probability of f, xi is an
original sample, εo is the converted noise, Cs is the class set, c is a class in Cs. When the noised sample xi +
εo is wrongly-classified, Lw calculates a value based on the softmax probability and adds it to the overall loss
function L.

The loss function for correctly-classified noised samples Lc is defined as:

Lc (xi , εo) = I{ f (xi + εo) = f (xi)} ⋅
1
∣Cs∣ ∑c∈Cs

log (1 + e(I{c= f (xi+εo)}−I{c≠ f (xi+εo)})⋅Sf(c)) (7)

where I is the indicator function, f is the trained traffic classifier, Sf is the softmax probability of f, xi is an
original sample, εo is the converted noise, Cs is the class set, c is a class in Cs. When the noised sample xi +
εo is correctly-classified, Lc calculates a value based on the softmax probability and adds it to the overall loss
function L.
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3.3.2 Scale Factor Optimization
Noise scale represents the overall scale of the noise distributions in all dimensions. It determines the

location of noised sample in sample space. The categories of traffic in the training set are limited, resulting
in the existence of empty regions in sample space. These regions are likely to contain unknown malicious
samples. Noise scale factors should make noised samples move to the empty regions as possible.

Similarly to shape factor optimization, scale optimization also treats the noise conversion module as
a generator. The module generates converted noise based on Eq. (3), and injects it into original samples
to obtain noised samples. A traffic classifier serves as a discriminator. It performs classification according
to Eqs. (8)–(11). The loss functions are calculated based on its performance.

HEBO is a novel parameter optimizer. It uses the Gaussian process model to fit the black-box function,
and obtain the optimal parameter by an improved acquisition function. When optimizing scale factors,
HEBO treats the above process as a black-box function. The input of the function is the noised samples, and
the output is the scale factor (parameter t in Eq. (3). In each round of optimization, the scale factor is updated
based on the loss function. After a certain number of rounds, the optimized scale factor is obtained.

There are some differences between the optimization of benign scale factors and malicious scale factors.
Noised benign samples are treated as pseudo-malicious samples. The benign scale factor should enable
the traffic classifier to learn the boundary between these samples and the real benign samples as much as
possible. Therefore, the discriminator is trained on the dataset composed of noised benign samples (labeled
as malicious) and real benign samples. After training, it performs classification on real malicious samples.
Additionally, to obtain multiple optimized benign scale factors from a single dataset, the original dataset is
divided into several sub datasets before optimization. Each sub dataset is further divided into a training set
Tr, a testing set Te, and an optimizing set To. The size of To is the same as that of Te, but only To is used
in the current optimization, while Te is reserved for subsequent ensemble learning module. Based on these
datasets, the loss function of benign scale factors can be defined as:

Lb = AccBi (Trb , To) (8)
Trb = Xb ∪ (Xb + εo) (9)

where Lb is the loss function. The discriminator is trained by the dataset Trb . Trb consists of two parts:
all benign samples Xb within Tr, and noised benign samples Xb + εo, where εo is the converted noise. The
trained discriminator performs binary classification on To, its accuracy is represented as AccBi. Considering
the number of sub datasets is Nb, hence, the number of benign scale factors is also Nb.

Noised malicious samples are treated as pseudo-malicious samples. The malicious scale factor should
enable the traffic classifier to correctly classify malicious samples of all categories as accurately as possible
based on the noised samples of a single category. Therefore, the discriminator is trained on the dataset
composed of noised malicious samples (labeled as malicious) and real malicious samples, both of which
belong to the same single category. After training, it performs classification on real malicious samples of
all categories. Additionally, to obtain multiple optimized malicious scale factors from a single optimization,
several superior factors are collected instead of the single optimal factor. The loss function of scale factors
for malicious samples of class c can be defined as:

Lmc = AccBi (Trm , To) (10)
Trm = Xb ∪ Xnb ∪ Xc ∪ (Xc + εo) (11)

where Lmc is the loss function of class c. The discriminator is trained by the dataset Trm . Trm consists of
four parts: all benign samples Xb within Tr, noised benign samples Xnb , all malicious samples Xc of class c
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within Tr, and noised malicious samples Xc + εo, where εo is the converted noise. The trained discriminator
performs binary classification on To, its accuracy is represented as AccBi. Given that the number of factors
collected each time is Nc, and the number of malicious classes is Nm, the total number of malicious scale
factors is Nb × Nc × Nm.

3.3.3 Noise Injection
The distributions of benign and malicious samples are different [25]. The benign samples are relatively

representative and tend to have a denser distribution. The malicious samples are relatively manifold and their
distribution tends to be more sparse. In sample space, samples with high densities are benign while those
with low densities are malicious. Unknown malicious samples that are hard to detect are mainly located in
two specific regions. First, they may move closer to benign samples over time and be located in the boundary
region. The region is outside the benign samples and yet very close to it, since sophisticated attackers are
likely to imitate normal behaviors to avoid detection. Second, considering that unknown malicious samples
use more novel attack techniques compared to known malicious samples, they may be different from both
benign and known malicious samples, and located in the empty regions outside all known samples.

In noise injection, each factor group is used to generate a corresponding batch of optimized noise, both
benign and malicious samples are augmented by these noise. The noised benign samples simulate unknown
malicious samples that are close to benign samples, while the noised malicious samples simulate unknown
malicious samples located in empty regions. The sample spaces before and after noise injection are shown
in Fig. 4.

Figure 4: Sample spaces before and after noise injection

The scale factor optimization is carried out on every category. Shape factors are combined with scale
factors of all categories to form a factor group. Given that the number of sub dataset is Nb, the number
of malicious scale factors collected each time is Nc, the number of factor groups is Nb × Nc. Each factor
group can independently and effectively perform noise injection. As a result, there are Nb × Nc groups of
noised samples.
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3.4 Ensemble Learning
The noise optimization module generates Nb × Nc groups of noised datasets. Each dataset is used to

train a base traffic classifier separately. The ensemble learning module uses an improved bagging algorithm
to aggregate the results of all base traffic classifiers. Compared to traditional bagging algorithms, the
applied algorithm obtains training subsets by noised sample generation instead of extraction from the
original samples.

When noised benign samples are treated as pseudo-malicious samples, base traffic classifiers can learn
the category boundary more thoroughly. However, this approach also makes base traffic classifiers biased
towards the malicious category during classification, and slightly reduces their precision on benign samples.
As a result, the applied algorithm sets the precision as the standard for weight calculation. This strategy
balances the performance on both unknown malicious and benign samples. These weights are used to weight
the results of all base traffic classifiers. The improved bagging algorithm is shown as Algorithm 1.

The input of the algorithm consists of three parts: N (Nb × Nc) noised training sets Tn1, ⋅ ⋅ ⋅ ,TnN , an
optimizing set Tob , and a testing set Teu . Tn are the noised datasets generated after noise optimization.
These datasets are used to train base traffic classifiers. Tob and Teu are derived from the optimizing set To
and the testing set Te when optimizing benign scale factors. Tob contains only the benign samples within
To and is used to measure the precision. Teu includes all the samples within Te and additional unknown
malicious samples. It is used to calculate the final generalizability. The algorithm uses Tn to train all base
traffic classifiers and performs classification on Teu . Then, it calculates the error rate e and the weight update
factor β according to the precision. These two parameters are used to update base traffic classifiers’ weights.
Finally, the algorithm outputs the weighted classification result F.

Algorithm 1: Improved Bagging Algorithm
Input: N noised training sets Tn1, ⋅ ⋅ ⋅ ,TnN , an optimizing set Tob, a testing set Teu.
Output: classification result F.

1: Define a weight vector W.
W = (w1 , . . . , wN)

2: Train a base traffic classifier using each noised training set, and obtain N trained base traffic classifiers
f1, ⋅ ⋅ ⋅ , fN .

3: Perform classification on Tob by trained base traffic classifiers to initialize W. AccBi represents the
accuracy of the base traffic classifier, Tni is the noised training set.

wi = AccBi (Tni , Tob)
4: for each sample x in Tob do
5: Normalize the weight vector W.

wi =
wi

∑N
j=1 w j

6: Calculate the error rate e. I is the indicator function, fi(x) and c(x) represent the classified category
and the true category of sample x.

e = ∑N
i=1 wi ⋅ I{ fi(x) ≠ c(x)}

7: Calculate the weight update factor β according to e.

β =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e
1 − e

, e ∈ (0, 1/2)

1, else
(Continued)
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Algorithm 1 (continued)
8: Update weight vector W. I is the indicator function, f (x) and c(x) represent the classified category

and the true category of sample x.
wi = wi ⋅ βI{ f (x)≠c(x)}

9: end for
10: Perform classification on Teu by trained base traffic classifiers, and use W for weighting to obtain F. F is

the final classification result, fi(Teu) is the result of the i-th base traffic classifier.
F = ∑N

i=1 wi ⋅ fi(Teu)
11: Return the classification result F.

4 Experiments

4.1 Dataset
For the classification task in this paper, we use the CIC-IDS2017, CIC-IDS2018, CIC-DDoS2019 and

NSL-KDD datasets [36–38]. These datasets contain benign and the latest common malicious samples,
which resemble the real-world data. In preprocessing, we clean these datasets by filtering out samples that
contain missing and infinite values. We then remove traffic features related to IP address, port number and
timestamp, which are difficult to be augmented. Finally, we normalize the remaining features. Table 1 shows
the statistical information of the datasets.

Table 1: Statistical information of the datasets

Dataset Number of samples Number of labels
CIC-IDS2017 87,500 5
CIC-IDS2018 122,000 8

CIC-DDoS2019 87,500 5
NSL-KDD 97,000 4

To comprehensively evaluate the effectiveness of ONTDAS, we perform a detailed analysis and quan-
tification of the preprocessed datasets, and construct five classification tasks that utilize ONTDAS for data
augmentation. We categorize samples into two types according to their availability for training. Samples with
a sufficient quantity are marked as “known”, while samples with a smaller quantity are marked as “unknown”.
Known samples are included in both training sets and testing sets for data augmentation and model training.
Unknown samples are exclusively reserved for testing sets to calculate the generalizability. The distributions
of samples in five classification tasks are shown in Table 2.

Table 2: Distributions of samples in four classification tasks

Task Type Label Number of samples

Task1

Unknown Reflection 3000
Known Benign 65,000
Known SYN flood 6500
Known UDP flood 6500
Known UDP-Lag 6500

(Continued)
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Table 2 (continued)

Task Type Label Number of samples

Task2

Unknown DoS slowloris 3000
Known Benign 65,000
Known DoS Hulk 6500
Known DoS goldenEye 6500
Known DoS slowhttptest 6500

Task3

Unknown Patator 1000
Known Benign 80,000
Known Botnet 8000
Known DoS 8000
Known DDoS 8000
Known Port scan 8000
Known Brute force 8000

Task4

Unknown Web attack 1000
Known Benign 80,000
Known Botnet 8000
Known DoS 8000
Known DDoS 8000
Known Port scan 8000
Known Brute force 8000

Task5

Unknown R2l + U2r 1000
Known Benign 80,000
Known Probing 8000
Known DoS 8000

4.2 Experimental Environment and Setup
The experiments are performed using Python version 3.8, with the Windows10 operating system. The

processor is an Intel(R) Core(TM) i7-12700KF @ 3.60 GHz, and the graphics processing unit is a single
NVIDIA GeForce RTX 4060, with a 8 GB graphics processing unit memory. All experiments are based
on PyTorch.

The model parameters are set as follows: In the noise conversion module, the number of features Nf
is set to 76 in Task1–Task4 and 33 in Task5, the number of special distributions Nd is set to 3. In the noise
optimization module, we set the hyper-parameter λ to 0.01, the number of sub datasets Nb to 3 and the
number of scale factors collected each time Nc to 3.

Moreover, the base traffic classifier is set as CNN, KNN, RF, C4.5 decision tree, AutoEncoder and
ACID [11]. The special distributions are set to ISRU, Gaussian, and Arctan. In Task1 and Task2, we divide the
dataset into a training set, a testing set, and an optimizing set in a ratio of 9:2:2. In Task3, Task4 and Task5,
the ratio is 6:1:1.
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4.3 Evaluation Metrics
In this study, we use the following metrics: Accuracy, Precision, Recall, and F1-score. When evaluating

the base traffic classifier, TP (True Positive) represents the cases where the benign samples are correctly
classified, TN (True Negative) represents the cases where the malicious samples are correctly classified, FP
(False Positive) represents the cases where the malicious samples are incorrectly classified, and FN (False
Negative) represents the cases where the benign samples are incorrectly classified. The calculation formulas
of these metrics are as follows:

Accuracy = TP + TN
TP + TN + FP + FN

(12)

Precision = TP
TP + FP

(13)

Recall = TP
TP + FN

(14)

F1 − score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

(15)

4.4 Results of Overall Performance
In each classification task, we first train a base traffic classifier with a known training set and employ

it to perform binary classification on a known testing set. Then, we add unknown samples to the known
testing set and employ the trained traffic classifier to perform binary classification on the mixed testing
set. Finally, we train a new base traffic classifier with an noised dataset and employ it to perform binary
classification on the mixed testing set. The first classification result is the original performance of the base
traffic classifier, representing its learning ability for known samples. The second classification obtains the
performance for unknown malicious samples before augmentation, where the base traffic classifier can only
rely on the category boundary learned from known samples. The last classification result is the performance
for unknown malicious samples after augmentation. To measure the overall performance, we calculate the
accuracy, precision, recall and F1-score based on Eqs. (12)–(15).

Table 3 shows the results of CNN. Compared to the original performance, after adding unknown
samples, the average accuracy decreases by 4.79%, the average F1-score decreases by 3.40%, and the average
recall decreases by 6.58%. After data augmentation, the average accuracy increases by 2.17%, the average
F1-score increases by 1.49%, the average recall increases by 3.20%, the average precision decreases by 0.42%.

Table 4 shows the results of KNN. Compared to the original performance, after adding unknown
samples, the average accuracy decreases by 4.36%, the average F1-score decreases by 3.13%, and the average
recall decreases by 6.04%. After data augmentation, the average accuracy increases by 2.09%, the average
F1-score increases by 1.42%, the average recall increases by 3.15%, the average precision decreases by 0.41%.

Table 5 shows the results of RF. Compared to the original performance, after adding unknown samples,
the average accuracy decreases by 4.77%, the average F1-score decreases by 3.31%, and the average recall
decreases by 6.35%. After data augmentation, the average accuracy increases by 1.86%, the average F1-score
increases by 1.27%, the average recall increases by 2.85%, the average precision decreases by 0.45%.

Table 6 shows the results of C4.5 decision tree. Compared to the original performance, after adding
unknown samples, the average accuracy decreases by 4.46%, the average F1-score decreases by 3.16%, and
the average recall decreases by 6.23%. After data augmentation, the average accuracy increases by 1.47%, the
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average F1-score increases by 0.96%, the average recall increases by 2.19%, the average precision decreases by
0.31%.

Table 3: Results of CNN in five classification tasks

Task Stage Accuracy Precision Recall F1-score

Task1
Original 99.65 99.76 99.73 99.75
Before 97.74 99.76 96.72 98.22
After 98.84 99.42 98.74 99.08

Task2
Original 97.17 96.65 99.66 98.13
Before 92.79 96.65 93.48 95.04
After 94.02 96.15 95.51 95.83

Task3
Original 98.97 99.18 99.28 99.23
Before 94.63 99.18 92.73 95.85
After 96.15 98.98 95.06 96.98

Task4
Original 98.97 99.18 99.28 99.23
Before 93.08 99.18 90.63 94.71
After 97.84 98.67 97.90 98.28

Task5
Original 98.93 99.37 99.35 99.36
Before 91.44 99.37 90.44 94.70
After 93.69 99.02 93.20 96.02

Table 4: Results of KNN in five classification tasks

Task Stage Accuracy Precision Recall F1-score

Task1
Original 99.45 99.77 99.52 99.65
Before 97.79 99.77 96.80 98.26
After 98.99 99.62 98.77 99.19

Task2
Original 99.62 99.64 99.86 99.75
Before 97.20 99.64 96.55 98.07
After 98.17 99.27 98.19 98.73

Task3
Original 99.79 99.84 99.85 99.84
Before 95.00 99.84 92.72 96.15
After 96.34 99.29 95.08 97.14

Task4
Original 99.79 99.84 99.85 99.84
Before 93.77 99.84 91.06 95.25
After 98.86 99.30 98.87 99.09

Task5
Original 99.57 99.86 99.63 99.75
Before 92.65 99.86 91.39 95.44
After 94.13 99.42 93.38 96.30
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Table 5: Results of RF in five classification tasks

Task Stage Accuracy Precision Recall F1-score

Task1
Original 99.86 99.88 99.91 99.89
Before 97.14 99.88 95.73 97.76
After 97.84 99.38 97.23 98.29

Task2
Original 99.85 99.91 99.90 99.90
Before 97.59 99.91 96.81 98.34
After 98.61 99.61 98.47 99.04

Task3
Original 99.85 99.88 99.90 99.89
Before 94.52 99.88 92.50 96.05
After 95.73 99.23 94.63 96.87

Task4
Original 99.85 99.88 99.90 99.89
Before 93.69 99.88 91.45 95.48
After 98.36 99.22 98.33 98.78

Task5
Original 99.74 99.89 99.80 99.85
Before 92.36 99.89 91.05 95.26
After 94.04 99.58 93.14 96.25

Table 6: Results of C4.5 decision tree in five classification tasks

Task Stage Accuracy Precision Recall F1-score

Task1
Original 99.95 99.96 99.97 99.97
Before 96.79 99.96 95.15 97.50
After 99.06 99.74 98.77 99.25

Task2
Original 99.79 99.91 99.82 99.87
Before 98.57 99.91 98.12 99.01
After 99.44 99.67 99.55 99.61

Task3
Original 99.91 99.94 99.92 99.93
Before 94.14 99.94 91.48 95.52
After 95.40 99.82 93.29 96.44

Task4
Original 99.91 99.94 99.92 99.93
Before 93.68 99.94 90.86 95.19
After 95.11 99.87 92.84 96.23

Task5
Original 99.16 99.82 99.18 99.50
Before 93.24 99.82 92.06 95.78
After 94.75 99.33 94.17 96.68

Table 7 shows the results of AutoEncoder. Compared to the original performance, after adding unknown
samples, the average accuracy decreases by 4.52%, the average F1-score decreases by 3.20%, and the average
recall decreases by 6.24%. After data augmentation, the average accuracy increases by 2.02%, the average
F1-score increases by 1.39%, the average recall increases by 3.20%, the average precision decreases by 0.49%.
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Table 7: Results of AutoEncoder in five classification tasks

Task Stage Accuracy Precision Recall F1-score

Task1
Original 99.72 99.68 99.91 99.79
Before 97.47 99.68 96.40 98.01
After 99.16 99.54 99.12 99.33

Task2
Original 98.54 99.24 98.86 99.05
Before 96.28 99.24 95.71 97.44
After 97.24 98.94 97.25 98.09

Task3
Original 98.96 99.18 99.26 99.22
Before 94.21 99.18 92.16 95.54
After 95.35 98.28 94.50 96.35

Task4
Original 98.96 99.18 99.26 99.22
Before 93.11 99.18 90.67 94.73
After 97.68 98.58 97.73 98.15

Task5
Original 99.17 99.73 99.27 99.50
Before 91.68 99.73 90.44 94.86
After 93.43 99.20 92.76 95.87

Table 8 shows the results of ACID. Compared to the original performance, after adding unknown
samples, the average accuracy decreases by 5.04%, the average F1-score decreases by 3.63%, and the average
recall decreases by 7.02%. After data augmentation, the average accuracy increases by 2.69%, the average
F1-score increases by 1.90%, the average recall increases by 4.31%, the average precision decreases by 0.64%.

Table 8: Results of ACID in five classification tasks

Task Stage Accuracy Precision Recall F1-score

Task1
Original 99.89 99.92 99.95 99.93
Before 96.79 99.92 95.19 97.50
After 98.76 99.20 98.81 99.01

Task2
Original 98.52 99.37 98.72 99.04
Before 95.96 99.37 95.19 97.24
After 97.24 98.69 97.48 98.08

Task3
Original 99.17 99.66 99.10 99.38
Before 92.98 99.66 90.15 94.67
After 95.85 98.83 94.76 96.75

Task4
Original 99.17 99.66 99.10 99.38
Before 93.00 99.66 90.17 94.68
After 97.93 98.82 97.89 98.35

Task5
Original 99.62 99.92 99.63 99.78
Before 92.41 99.92 91.08 95.29
After 94.79 99.38 94.17 96.71



382 Comput Mater Contin. 2025;84(1)

The experimental results show that the addition of unknown malicious samples leads to a decrease in
performance. The base traffic classifier incorrectly identifies these samples as benign samples, resulting in
the decrease in accuracy, F1-score, and recall. However, the precision focuses only on benign samples and
does not decrease. The experimental results also show that ONTDAS improves the overall performance.
ONTDAS enables the base traffic classifier to correctly classify unknown malicious samples, resulting in the
increase in accuracy, F1-score, and recall. Because all noised benign samples are treated as pseudo-malicious
samples, the precision slightly decreases, but this is acceptable compared to the significant improvement in
other metrics.

4.5 Results of Recall on Unknown Malicious Samples
We use the recall on unknown malicious samples to measure the generalizability of base traffic

classifier. Table 9 and Fig. 5 show the recall before and after data augmentation.

Table 9: Detailed recall before and after data augmentation

Classifier Stage Task1 Task2 Task3 Task4 Task5

CNN Before 89.63 35.94 29.53 4.70 1.50
After 95.93 55.96 51.10 87.39 34.30

KNN Before 90.60 65.87 23.02 3.5 9.51
After 98.30 84.58 50.35 90.59 31.13

RF Before 85.33 68.17 20.02 7.51 3.70
After 90.73 85.79 45.15 86.29 27.83

C4.5 Before 83.03 81.88 8.41 0.20 22.12
After 96.33 96.90 29.53 23.92 46.45

AutoEncoder Before 87.76 66.97 22.92 5.31 1.80
After 97.23 80.98 50.15 84.98 29.83

ACID Before 62.76 83.26 0.10 0.40 5.81
After 86.59 96.13 52.35 86.99 42.44

Figure 5: Overall recall before and after data augmentation
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Unknown malicious samples in Task1 and Task2 simulate samples located in the empty regions, and the
trained base traffic classifier can roughly classify them before augmentation. Unknown malicious samples in
Task3, Task4 and Task5 simulate samples located in the boundary region outside the benign samples, and
the trained base traffic classifier misclassifies them as benign samples before augmentation. These results
demonstrate that ONTDAS can significantly increase the recall and improve the generalizability of base
traffic classifier.

4.6 Comparison with Baselines
To validate the effectiveness of ONTDAS, we select eight methods (Rapier [25], BARS [15], SMOTE [39],

Pyraug [40], Random Over Sampling (ROS), Attention-based SMOTE (Optimized SMOTE) [26], SMOTE-
noise [32] and learnable noise [34]) as baselines. The experiments are carried out on ACID and Task4. For
ROS, we only replicate malicious samples to increase their number. For learnable noise, we add learnable
Gaussian noise to the activation function of ACID. For other baselines, we perform data augmentation on
malicious samples and treat generated samples as pseudo-malicious samples. Table 10 shows the classification
results of all baselines. Fig. 6 shows the recall on unknown malicious samples of all baselines. The experi-
mental results indicate that although the precision is slightly lower, our system achieves the best performance
in accuray, F1-score, and recall, and improves generalizability the most.

Table 10: Results of baselines

Method Accuracy F1-score Recall Precision
Rapier 93.91% 95.34% 91.27% 99.79%
BARS 95.51% 96.51% 93.85% 99.33%

SMOTE 94.25% 95.59% 91.80% 99.71%
Pyraug 95.35% 96.40% 93.34% 99.67%

ROS 94.66% 95.89% 92.33% 99.73%
Optimized SMOTE 95.56% 96.53% 94.39% 98.76%

SMOTE-noise 94.37% 95.79% 95.52% 96.05%
Learnable noise 96.14% 97.62% 96.99% 98.26%

Proposed 97.93% 98.35% 97.89% 98.82%

Upon thorough analysis, the proposed system outperforms all baseline methods, and the reasons can be
summarized as follows. Baseline methods like Rapier and BARS do not focus on generalizability. Instead, they
focus on removing label noise and improving robustness, generalizability is merely an additional benefit. This
makes it difficult for them to effectively deal with unknown malicious samples. SMOTE and its derivative
methods, such as Attention-based SMOTE and SMOTE-noise, overly rely on the original data distribution
when generating new samples. Consequently, the pseudo-malicious samples lack diversity and are unable
to fully expand the sample space of the training set. This greatly limits the generalizability of the base
traffic classifier. Although Pyraug uses a VAE to generate samples, in experimental scenarios involving high-
dimensional traffic, the quality of its generated samples still lags behind that of the proposed system. ROS
simply replicates malicious samples, which not only fails to increase sample diversity but is also likely to
cause overfitting. The strategy of adding learnable Gaussian noise to the activation function is limited by the
model structure. It cannot comprehensively improve generalizability.
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Figure 6: Recall on unknown malicious samples of baselines

4.7 System Parameter Analysis
When optimizing scale factors, HEBO searches for the best parameters within a given range. A search

range that is too large will prevent HEBO from obtaining the best parameters in a short period of time,
while a search range that is too small will cause HEBO to skip the best parameters directly. Therefore, an
appropriate search range is crucial. Considering that the lower bound of the search range is 0, we conduct
experiments on the upper bound based on ACID and Task4. We set the scale factors to 0.01, 0.025, 0.05, 0.1,
0.25, and 0.5, respectively. The results are shown in Fig. 7.

Figure 7: Results of different scale factors

The experimental results show that as the upper bound increases, the improvement in generalizability
weakens. The excessively large factor causes the noised features to deviate from the original distribution, and
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makes noised samples no longer similar to original samples. Therefore, we set the search range to [0, 0.01],
and the scale factors optimized within this range achieve the best performance.

To verify the indispensability of each module, we design three ablation experiments based on ACID
and Task4. The first experiment removes the noise optimization module and injects raw noise for data
augmentation. The second experiment removes the HEBO and directly uses the noise optimized by the shape
factors for data augmentation. The third experiment removes the ensemble learning module and averages
the results of all base traffic classifiers. The results are shown in Fig. 8.

Figure 8: Results of different ablation settings

The experimental results indicate that the proposed system outperforms others. The first experiment
simply injects noise from the combination of different distributions, the second experiment does not
optimize the overall scale of the noise distributions, and the third experiment focuses too much on unknown
malicious samples, without balancing the performance of all samples.

We also conduct experiments on hyperparameters Nb and Nc based on ACID and Task4. Nb controls
the number of sub dataset when optimizing scale factors, Nc controls the number of malicious scale factors
collected each time. Nb and Nc ensure the diversity of noise, enabling the ensemble learning module to
achieve more improvement in generalizability. The results are shown in Figs. 9 and 10.

When Nc is set to 3, the performance first increases and then decreases as Nb increases, reaching its peak
value when Nb is 3. An excessively small Nb fails to bring sufficient diversity to the noised samples, while
an excessively large Nb makes sub datasets too small, reducing the representation capability of optimized
noise. When Nb is set to 3, the performance first increases and then decreases as Nc increases, reaching its
peak value when Nc is 3. Similar to Nb, an excessively small Nc does not bring sufficient diversity to the
noised samples, while an excessively large Nc leads to the scale factors with poor effects being collected,
thus reducing the quality of the noised samples. Moreover, excessively large Nb and Nc increase the time
consumption for optimization and training. Therefore, both of them are finally set to 3.
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Figure 9: Results of different Nb

Figure 10: Results of different Nc

4.8 Results of Dataset Imbalance
In addition to above experiments, we also conduct an experiment which uses ONTDAS to solve

dataset imbalance. We reduce the number of malicious samples in the training set of Task4 to its one
tenth, while keeping the number of benign samples unchanged. At this point, the ratio of the number
of majority and minority categories becomes 100:1. When alleviating dataset imbalance, our main focus
is on minority samples, namely malicious samples. As the amount of malicious samples is no longer
sufficient for optimization, we uniformly set malicious scale factors to 0.1. For the majority samples, namely
benign samples, we neither collect factors nor perform data augmentation. Before augmentation, we use the



Comput Mater Contin. 2025;84(1) 387

imbalanced dataset to train a base traffic classifier and perform multi classification. Then, we train a new
base traffic classifier with the noised dataset and perform multi classification again.

Table 11 shows the results of two classifications. Figs. 11 and 12 show the confusion matrices before and
after augmentation. Confusion matrices are usually used to analyze the classification results and provide
a better understanding of performance. The rows in the confusion matrix represent the true labels of the
samples, and the columns in the confusion matrix represent the predicted labels inferred by the traffic
classifiers. Compared to the performance before augmentation, the accuracy, F1-score, recall and precision
after augmentation increase by 5.89%, 10.11%, 1.27% and 15.03%, respectively. The results show that ONTDAS
can also be used effectively to solve dataset imbalance.

Table 11: Results before and after data augmentation

Stage Accuracy F1-score Recall Precision
Before 93.34% 88.75% 97.95% 83.47%
After 99.23% 98.86% 99.22% 98.50%

Figure 11: Confusion matrix before augmentation



388 Comput Mater Contin. 2025;84(1)

Figure 12: Confusion matrix after augmentation

5 Future Work
The ever-updating attack techniques lead to the emergence of unknown malicious traffic, which poses

challenges to traffic classifiers trained on limited samples. Improving the generalizability of traffic classifiers
through data augmentation requires continuous in-depth research and innovation. Our proposed system has
only been validated on a few publicly available datasets. For real unknown malicious traffic in the complex
network environment, the system needs to evolve accordingly. Potential future work includes, but is not
limited to, the following points:

Optimize noise conversion module. In the proposed system, we use three special distributions to
convert classical noise to anisotropic noise. In the future, we will explore more distributions to improve the
performance of ONTDAS.

Explore more data augmentation applications. ONTDAS processes multi-dimensional traffic data. It can
be applied to other learning-based heterogeneous tabular data analysis systems, such as spam URL detection
and KPI anomaly detection. In addition to tabular data, we will also extend ONTDAS to augment sequence
data and image data.

Better balance of the performance of benign samples and unknown malicious samples. The experimen-
tal results show that, when the generalizability is significantly improved, the precision decreases slightly.
This can be solved in the future by more scientific bagging algorithms or selecting algorithms of noised
benign samples.

Use feature selection techniques. ONTDAS adds noise to all features, which significantly increases
the time consumption of noise optimization. In the future, we will select the features that are sensitive to
generalizability, and perform noise injection only on these features.
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6 Conclusion
In order to address the issues of low generalizability of traffic classifiers, this paper proposes an opti-

mized noise-based traffic data augmentation system, ONTDAS. The system first uses the noise conversion
module and the noise optimization module to obtain optimized noise, and injects it into the original samples
for augmentation. Then, the base traffic classifiers are trained by noised samples and integrated by the
ensemble learning module. The experimental results show that ONTDAS, compared to other methods,
achieves the optimal performance and significantly improves the generalizability on unknown malicious
samples. In addition, ONTDAS can effectively alleviate dataset imbalance. At the same time, the ablation
experiment proves the indispensability of each module. ONTDAS provides a solution for the next generation
of intelligent systems in traffic data augmentation.
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