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ABSTRACT: Image-based similar trademark retrieval is a time-consuming and labor-intensive task in the trademark
examination process. This paper aims to support trademark examiners by training Deep Convolutional Neural
Network (DCNN) models for effective Trademark Image Retrieval (TIR). To achieve this goal, we first develop a
novel labeling method that automatically generates hundreds of thousands of labeled similar and dissimilar trademark
image pairs using accompanying data fields such as citation lists, Vienna classification (VC) codes, and trademark
ownership information. This approach eliminates the need for manual labeling and provides a large-scale dataset
suitable for training deep learning models. We then train DCNN models based on Siamese and Triplet architectures,
evaluating various feature extractors to determine the most effective configuration. Furthermore, we present an Adapted
Contrastive Loss Function (ACLF) for the trademark retrieval task, specifically engineered to mitigate the influence of
noisy labels found in automatically created datasets. Experimental results indicate that our proposed model (Efficient-
Net_v21_Siamese) performs best at both True Negative Rate (TNR) threshold levels, TNR = 0.9 and TNR = 0.95, with
respective True Positive Rates (TPRs) of 77.7% and 70.8% and accuracies of 83.9% and 80.4%. Additionally, when
testing on the public trademark dataset METU_v2, our model achieves a normalized average rank (NAR) of 0.0169,
outperforming the current state-of-the-art (SOTA) model. Based on these findings, we estimate that considering only
approximately 10% of the returned trademarks would be sufficient, significantly reducing the review time. Therefore, the
paper highlights the potential of utilizing national trademark data to enhance the accuracy and efficiency of trademark
retrieval systems, ultimately supporting trademark examiners in their evaluation tasks.

KEYWORDS: Trademark; image retrieval; similar search; similar retrieval; content-based image retrieval; similar
ranking; contrastive learning; Siamese; triplet; citation list

1 Introduction
In the globalized era, trademark registration has become a crucial element in safeguarding IP rights

and preventing legal disputes for companies worldwide [1]. In developing countries, trademark image
verification predominantly relies on conventional methodologies, where examiners manually categorize
trademark images into classification tables [2]. This process is not only time-consuming but also prone to
errors, especially as the number of registered trademarks in the database grows over time. At Intellectual
Property (IP) Offices, examiners analyze the visual characteristics of trademark images and classify them
using the Vienna Classification (VC) international design codes. However, the classification of images based
on the fixed VC has several limitations. First, the manual VC performed by examiners relies heavily on
their subjective judgment, and different examiners may assign different codes to the same image. This leads
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to many cases of similar images being missed because of inaccurate and incomplete labeling of the older
registered trademarks. Secondly, the VC system includes 29 categories, 145 divisions, and 1771 sections [3],
yet it still cannot cover all possible shapes of trademarks. Another limitation is that the search results based
on VC are not sorted by similarity, requiring examiners to check all found results, consuming a considerable
amount of time and effort.

For these reasons, several leading countries have begun researching and experimenting with TIR
using machine learning models or by combining them with VC search methods [4,5]. However, building
a trademark image classification model poses several differences and challenges compared to regular
image classification models. First, trademark images are often graphics-based and not directly captured
photographs, making them prone to copying, assembling, and editing. These images usually consist of a
few dominant colors but vary significantly in structural shapes. Another difficulty is that the trademark
classification problem often lacks specific class labels, and training data labels typically involve pairs or groups
of similar images. Additionally, evaluating similar images is also relative, and finding a comprehensive set
of similar images with a given trademark in a vast trademark database is challenging. Moreover, trademark
images often include both the protective graphic and textual components in the input image (see Fig. 1b).
Many trademarks have protective graphic elements that occupy a very small area within the entire trademark
image. Accurately identifying the protective graphic component is crucial to improving the accuracy of
the classification model. However, in practice, image data in most countries usually store entire trademark
images without specifying the exact region containing the protective graphic component [6], leading to
challenges in constructing the training dataset.

Figure 1: Trademark image samples in the Vietnamese IP Office trademark dataset

One of the biggest challenges in TIR is the extremely limited amount of labeled data available for
training Deep Convolutional Neural Network (DCNN) models, like Siamese Neural Networks (SNNs).
Public datasets like METU [7] and USPTO contain around one million images but lack the necessary
similar/dissimilar pairs or classification labels for training SNNs. The ability to retrieve images at a high
conceptual level of similarity remains limited due to the lack of training data for such cases, a limitation that
cannot be addressed through augmentation transformations. Our research aims to fill this gap by proposing
a method to automatically generate a large labeled dataset using the national trademark dataset instead of
public ones to train DCNN models. We employ Siamese and Triplet NNs, which are well-suited for learning
similarity metrics from paired or triplet data. SNNs consist of two identical subnetworks that share weights
and are trained to minimize the distance between similar pairs and maximize it for dissimilar pairs [8]. Triplet
networks extend this concept by considering three inputs: anchor, positive, and negative, aiming to make
the anchor closer to the positive than to the negative. These architectures have shown promise in various
image retrieval tasks, and we adapt them to the specific requirements of TIR. Our approach introduces
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the first key distinction from previous studies, which trained the model using a publicly available and pre-
labeled dataset. Second, the enhanced architecture of the DCNN, coupled with an optimized loss function,
significantly improves accuracy. As a result, our method effectively reduces both the time and effort required
for evaluators, achieving a substantial efficiency gain.

Specifically, our work concentrates on four key innovative contributions, as follows. Firstly, we introduce
a novel approach that enhances the effectiveness of TIR by incorporating additional structured information
alongside trademark images. Secondly, we propose a method for constructing a suitable training and testing
dataset through the automated generation of similar and dissimilar trademark data pairs, eliminating the
need for manual labeling. Thirdly, we contribute a distinctive backbone model design for similarity com-
parison, integrated into both the Siamese and Triplet architectures. Another contribution is an adjustment
to the Contrastive loss function (CLF) for SNN to better suit the specific characteristics of trademark data.
This adjustment addresses challenges related to incorrect image pair labels, ensuring more accurate learning
during training. As a result, the model achieves superior performance (NAR 0.0169 on the METU dataset),
thereby minimizing subjective errors and manual processing time.

We structure the remaining sections as follows. Section 2 reviews the related research on machine
learning and deep learning techniques for TIR, focusing on Siamese and Triplet models used for matching
and extracting similar images in various fields, including trademark recognition. Section 3 describes the
national dataset and outlines the procedures for building Siamese and Triplet models. Section 4 details the
experimental setup and presents the results. The conclusions, limitations, and future research development
are indicated in the final section.

2 Related Works
TIR is a class of Content-Based Image Retrieval (CBIR), specifically applied to trademark images.

Over the past decades, various works have developed various schemes for CBIR [2,9]. Studies focused on
using traditional techniques for extracting global features, such as color, edge, boundary, shape, spatial
information, and texture [10–13]. These methods could effectively retrieve similar images invariant to
transformations like translation, color variation, and scaling. However, they have not fully exploited local
features containing crucial information for retrieving partially similar image instances. This perspective has
also been partially highlighted by Li et al. [2].

To incorporate local features, subsequent research has extensively employed key-point-based methods,
such as SIFT [14], SURF [15], LBP [16], and HOG [17]. These methods have enhanced the ability to retrieve
similar images invariant to rotation and scaling transformations and to detect important and distinctive
points in the images. As a result, they improved accuracy compared to earlier approaches. Nevertheless,
these approaches exhibit constrained performance due to the restricted expressiveness and computational
complexity associated with traditional feature extraction. Additionally, key-point-based methods still faced
limitations in retrieving similar images at a high conceptual level of similarity, where similar trademarks
might not have any common key points. Therefore, their practical use remained constrained.

With the explosive development of machine learning and especially various DCNN architectures
[18–21], studies applying DCNNs for trademark similarity search have become the dominant direction. The
results of these studies have shown a significant improvement in the effectiveness of DCNNs over traditional
methods. Tursun et al. [18] utilized a pre-trained VGG16 model and an Extremal Region detector to locate
and remove text components from images. Perez et al. [22] introduced a method for training two separate
VGG19 models: one for learning visual similarities and the other for learning conceptual similarities. These
models were trained on two datasets: one consisting of 151 classes, each containing 15 similar images collected
from the web, and the other containing images and VC codes from a sub-dataset of USPTO [23]. This study
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achieved an NAR of 0.066. This performance could be further improved by effectively leveraging local data
and making adjustments in the training model. Tursun et al. [24] proposed using hard attention (ATRHA)
and soft attention (SSA/CAMSA) methods to automate the removal of text components in images. These
attention components were integrated into the model, with feature aggregations applied through MAC and
R-MAC. This was also the best-performing model, achieving an NAR of 0.040, as synthesized by Li et al. [2]
in the analysis of advanced TIR models on the METU dataset. The model’s shortcomings could be addressed
by utilizing advanced end-to-end deep learning architectures and refining pre-trained deep models through
soft attention mechanisms. Tursun et al. [25] enhanced the R-MAC pipeline with three modifications: multi-
resolution (MR), sum and max pooling (R-SMAC), and unsupervised attention (UAR). This study achieved
remarkable results, with an NAR of 0.028 and a mAP@100 of 31.0%. Vesnin et al. [26] utilized a BEiT Vit
model fine-tuned on the ImageNet-21k dataset, combined with PCAW/aQE/reranking techniques and local
features, achieving the highest mAP@100 of 31.23%, but NAR was not reported. Bernabeu et al. [8] proposed
a multi-label deep learning approach for trademark image retrieval (TIR), achieving the SOTA NAR of 0.018.
The study did not describe the selection of the optimal weight ratio independently from the METU test set.

Apart from publicly available trademark datasets, some studies have developed recognition models
based on mobile phone-captured datasets specifically for wine. Wine label image retrieval presents two
key challenges. Firstly, the vast quantity of wine label images spans numerous brands, with varying sample
sizes across different brands. Secondly, significant variations exist among wine label images of the same
brand, whereas some labels from different brands exhibit only subtle distinctions. Lim et al. [27] developed
an edge-histogram combined MLP model for wine label extraction, achieving an accuracy of 97.5% on a
dataset of 517 samples. However, the system performed well only when the text on the wine labels was in
English. Additionally, detecting candidate text regions using edge-based methods was often inaccurate in
cases where font styles varied and character sizes differed significantly. The challenges of previous studies
were solved by proposing a CNN-SURF Consecutive Filtering and Matching (CSCFM) framework [28,29].
The model achieved an average accuracy of 88.3% and a standard evaluation metric of 3.92 on the Oxford5k
and UKB databases. The Transformer-based model, developed and tested on the Microsoft COCO (MS-
COCO) and Flickr30K datasets, also demonstrated improved accuracy compared to previous studies [30].
Furthermore, a deep learning architecture integrating multimodal fusion was proposed to minimize the
discrepancy between target and retrieved images within sensitive, domain-specific datasets [31]. Trappey
et al. [32] proved that applying the advanced convolutional neural network model (VGG19) with a novel
transfer learning approach enabled the test set to achieve a Recall@10 of 95%. The study emphasized that
a significant limitation of the model could be the lack of diversity and quantity of images within the same
category. Consequently, the sample selection process in the sampling strategy remains constrained. Future
research should prioritize enhancing the organization of the training dataset and increasing data diversity to
significantly improve the model’s performance in retrieving visual semantic similarity.

In recent years, Siamese and Triplet architecture models have gained attention in many CBIR, tracking,
identification, verification, and image object comparison studies [33,34]. SNN is an NN architecture
containing two or more identical subnetworks with the same configuration, parameters, and weights. SNN-
based algorithms currently dominate research in various fields [35] due to several notable advantages.
Firstly, training SNNs only requires labeled similar/dissimilar pairs, which is often easier to implement
than assigning classification labels to each image. Secondly, its unique learning mechanism sets SNN apart,
allowing seamless integration with other conventional classifiers. This often leads to superior outcomes.
Lastly, SNN focuses on considering features at deeper layers, strategically positioning similar features in
proximity. Consequently, it demonstrates an aptitude for discerning aspects of semantic similarity within
input data.
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To our knowledge, some notable scientific studies have implemented SNN and Triplet networks to
retrieve similar trademark images. Using the METU public dataset, Lan et al. [36] proposed a CNN model
that combines Siamese and Triplet architectures, extracting handcrafted features from the convolutional
feature maps. Trappey et al. [37] employed SNN to develop advanced models for assessing the similarity of
trademark spelling, pronunciation, and images. Tursun et al. [38] introduced an approach using a Triplet NN
to optimize a learned ensemble of Test-time Augmentation (TTA). The model was trained on 317 groups of
similar trademarks, each containing at least two images. The study achieved impressive results across various
test datasets, reaching a mAP@100 of 30.5% on the METU dataset. This model has yet to fully leverage local
features that contain essential information for retrieving partially similar image instances.

Based on our review, we observe that most studies on TIR rely on publicly available datasets or
relatively small self-constructed labeled datasets [22,24,26,36,38]. As mentioned in Section 1, the lack of a
large-scale labeled dataset has limited the effectiveness of applying SNN models to TIR. By utilizing our
proposed approach to create a large labeled dataset from the National IP Office database, our proposed
model outperforms the SOTA NAR. This advancement demonstrates the great potential of applying national
trademark data to enhance the model’s ability to retrieve trademarks with higher accuracy and efficiency.

3 Methods

3.1 Trademark Database Description
This paper utilizes a dataset of Vietnamese trademarks maintained and managed by the IP Office of

Vietnam. The dataset comprises over 750,000 trademark applications in Vietnam and more than 150,000
international trademark applications designated for protection in Vietnam as of the end of 2023. The
registered trademarks accepted for protection are published by the IP Office of Vietnam [39]. They utilize
the Oracle database management system, developed based on the WIPO IPAS (World Intellectual Property
Organization Industrial Property Automation System), to store trademark applications and registrations.
This volume of data is sufficient to train large data models and artificial intelligence systems. The database
includes comprehensive fields that describe trademarks, the application process, and examination results,
which can be leveraged for various problem-solving tasks.

Since the evaluation process involves examiners assessing images using the VC system, there are no
pre-existing lists of trademarks labeled as similar in the Vietnamese trademark database, akin to publicly
available labeled trademark datasets, such as the METU dataset [7]. However, the Vietnamese dataset offers
additional information in several data fields that are not present in global public datasets, including:

- Data on trademark application rejections due to similarity with already protected trademarks.
- Information on the citation dataset for trademark applications and registrations.
- Information on the duration and history of trademark protection, including expiration dates.
- Information on trademarks that have been protected by companies over time.

3.2 Data Processing and Augmentation
The national trademark database comprises both textual and image trademark applications, and the

citation list includes both other textual and image trademarks. A “citation list” is a compilation of trademark
applications or registrations that share similarities with the trademark application under examination and
were filed before it. This list is generated by the examiner during the evaluation process. To ensure effective
preprocessing, we implement the following procedures:

- Selection of image-based trademarks: We retain only those trademarks that have visual components
of interest to trademark protection. This is a crucial step because it concerns itself with visual trademarks
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only that consist of trademark images comprising graphics only and trademark images comprising text
and graphics.

- VC filtering: We further filter the dataset by selecting only those image-based trademarks that have an
associated VC.

- Curating relevant citation: In the citation list, we retain only those trademarks with images that share
at least one VC in common with the trademarks under examination.

The data processing workflow consists of critical steps, including image enhancement, image resizing
to 224 × 224 pixels, and background removal. To improve the model’s robustness and prevent overfitting, we
apply data augmentation procedures in the training procedure, including random cropping, scaling, flipping,
rotation, translation, color jittering, brightness/contrast, adding noise, erasing, and blurring.

3.3 Proposed Training Dataset Construction
Leveraging the dataset including additional data fields of VC details, application owner information,

and citation list, we develop algorithms to automatically match trademark images. To automatically generate
similar image pairs, we propose using the following four methods (Algorithm 1). By incorporating a weighted
balancing mechanism, we ensure that the training dataset maintains a harmonious distribution of similar and
dissimilar image pairs across different methods. This prevents any single method from disproportionately
influencing the dataset and enhances the overall quality and robustness of the model. Creating suitable pairs
of similar/dissimilar images for input to Siamese architectures is necessary. For the Triplet architecture, it is
required to provide triplets consisting of anchor, positive, and negative samples as input. To generate triplets
for the Triplet model, we first select a random pair of data that may be similar or dissimilar, and then find
the remaining trademark for the triplet using feasible methods (as some trademarks may not have other
trademarks with the same owner, the citation list may lack suitable trademarks, or some VC codes may not
have corresponding trademarks). Due to this limitation in creating image triplets, the training dataset is
constructed with pairs, which are more suitable than triplets, making it more suitable to construct the model
using a Siamese architecture rather than a Triplet architecture. The process of creating a dataset of brand
image pairs for training the system is displayed in Fig. 2.

Algorithm 1: Automatic generation of similar trademark image pairs
Input: Trademark database D with images, citation lists, VC, and ownership information
Output: Selected similar pairs based on the chosen method

1. For each trademark t ∈ D:
• Add (t, t, “self-pairing”) to S as a similar pair
• For each citation c ∈ Ct (Ct is citation list of t):

• If c has an image and shares at least one VC with t:
• Add (t, c, “citation”) to S as a similar pair

• For each trademark o ∈ Ot (Ot is same owner list of t):
• If o has an image and shares at least one VC with t:
• Add (t, o, “owner”) to S as a similar pair

2. Perform a weighted selection on S to obtain the final set of similar pairs.
3. Apply real-time augmentation to images in selected similar pairs (e.g., rotation, cropping, color

adjustment, brightness modification).
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Figure 2: Schematic of creating trademark image pairs dataset for training

3.4 Model Training Architecture
3.4.1 Siamese Architecture

An SNN is a specialized NN architecture designed to work with pairs of input data [40]. The primary
purpose of SNNs is to measure the similarity between two input data points by comparing the feature
vectors that are extracted by the subnetworks (see Fig. 3). The CLF is commonly used in SNNs to guide
the learning process. This loss function quantifies how well the network distinguishes between similar and
dissimilar pairs.

Figure 3: Training process using a Siamese architecture model
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Mathematical formulation: In [41], the general Contrastive loss can be defined as:
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where m > 0 is a margin value that defines the minimum distance between dissimilar pairs [41].

3.4.2 Triplet Architecture
A Triplet NN is a type of NN architecture specifically designed to learn how to differentiate between

similar and dissimilar data points by using a set of three inputs: an anchor, a positive sample, and a negative
sample [42]. The Triplet NN structure comprises three primary branches, including Anchor (A), Positive
(P), and Negative (N) (see Fig. 4). The goal of the Triplet loss is to minimize the distance between the anchor
and positive pair while maximizing the distance between the anchor and negative pair. This process refines
the model’s ability to accurately distinguish between similar and dissimilar samples.

Mathematical Formulation: The Triplet loss can be defined as:

Ltriplet (A, P, N) =max (d (A, P) − d (A, N) + α, 0) (8)

where A, P, N are three data points: anchor, positive, and negative; d (A, P) is the distance between the
anchor and the positive in the representation space; d (A, N) is the distance between the anchor and the
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negative in the representation space; α is a margin value used to ensure that the distance between anchor
and positive is smaller than the distance between anchor and negative before the loss is computed.

Figure 4: Training process using a Triplet architecture model

3.5 Backbone Model Design
The backbone model integrates the embedding model and additional layers, enhancing overall perfor-

mance. The two main components are:
- Embedding Model: The embedding model is essential in extracting features from input images. It

captures various aspects such as color, shape, and texture. In this study, we evaluate multiple embedding
models, each differing in architecture and model size. This allows for a comprehensive comparison of
embedding effectiveness. The selected architectures, ResNet, VGG-19, EfficientNet, and Vision Transformer
(ViT), have been shown to perform well on various image datasets. The approach identifies a wide range of
features and allows one to study how various model architectures influence embedding performance.

- Fully Connected (FC) Layers: The output features from the embedding model undergo refinement
through two FC layers:

• The first FC layer (1024 features, ReLU activation) performs a non-linear transformation of the embed-
ding features. The selection of 1024 features in the first FC layer allows for a higher-dimensional space
where complex relationships among the features can be captured. This higher dimensionality helps to
preserve the richness of the extracted features from the embedding model, enabling more intricate
patterns and characteristics to be learned.

• The second FC layer (128 features, normalized activation) stabilizes and scales feature values, signifi-
cantly improving the training process. This is particularly beneficial in models like Siamese and Triplet,
where consistent and balanced features are crucial for similarity comparison tasks. Normalization
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ensures well-distributed feature values, enhancing the model’s ability to learn accurate similarities and
differences between input pairs.

The refined features from each image pair are used to train the embedding model and FC layers using
Contrastive Loss or Triplet Loss. This design incorporates established embedding models and critical layers,
optimizing feature learning for similarity comparison tasks.

3.6 Adapted Contrastive Loss Function (ACLF) for Trademark Data
As seen in Eqs. (5)–(7), we observe that from the similar-loss function LS , the backpropagation process

ensures that the two output embeddings GW (
→

X 1) and GW (
→

X2) converge as closely as possible when
→

X 1 and
→

X2 are deemed similar. Conversely, the dissimilar-loss function LD will cause
→
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→

X2 to diverge further
apart when

→

X 1 and
→

X2 are dissimilar and the distance DW is less than m. When DW exceeds m, LD equals
zero, and the model will stop pushing

→

X 1 and
→

X2 apart.
We introduce the Adapted Contrastive Loss Function (ACLF) for SNN. The idea behind our modi-

fication stems from two main reasons. First, we observe that labeled datasets automatically created from
citation lists contain significant noise due to incorrect labeling. This is unavoidable because many trademarks
in citation lists overlap with the trademark under examination in the text, while the images are completely
different. Moreover, since citation lists are built over decades with hundreds of different examiners, errors
may inevitably occur during the examination process. If the original CLF formula is used, the model’s
accuracy will be significantly affected by these incorrect trademark pairs.

The second reason arises from the specific characteristics of TIR compared to other image comparison
models. In TIR, specifically in finding citations for trademarks, we observe that a pair of data points is
considered a citation if they share an essential part of the image that differentiates them. It is possible for
trademark A to be similar to trademark B in one aspect, and B to be similar to trademark C in another
aspect, while A and C are completely different with no common features. In the original formulation, LS

makes GW (
→

XA) and GW (
→

XB) converge to a distance of 0, and GW (
→

XB) and GW (
→

XC) also converge to 0.

Consequently, GW (
→
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XC)will also converge to 0 even though A and C are completely different.

To address this limitation, we propose ACLF with the following formulation:
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The gradient of LS and LD :

∂LS

∂W
= { (DW − k) ∂DW

∂W if DW > k
0 if DW ≤ k (13)

∂LD

∂W
= { −(m − DW) ∂DW

∂W if DW < m
0 if DW ≥ m (14)

Fig. 5 visualizes the components of the Contrastive similar-loss function LS and dissimilar-loss function
LD in the original formulation, while Fig. 6 visualizes the component of the adapted Contrastive similar-
loss function in our modified formulation within the 2D Euclidean embedding space. From Eq. (10) and as
illustrated in Fig. 6, it is evident that this modification to the LS formulation will cause the vectors GW (

→

X 1)

and GW (
→

X2) to converge towards a distance of k instead of zero. If the distance between GW (
→

X 1) and

GW (
→

X2) is less than k, the model will no longer attempt to bring them closer together.

Figure 5: The Contrastive similar-loss function (LS ) and dissimilar-loss function (LD) according to the original
formulation in the 2D Euclidean embedding space

Comparing both the similar loss function (Eqs. (5) and (9)), we modify the DW component by
introducing max (0, (DW − k)). This adjustment shifts the optimization target for DW from absolute zero to
a predefined threshold k. This modification is conceptually similar to the LD term in the original Contrastive
Loss but, instead of restricting DW from exceeding a margin m, we introduce a lower bound k, ensuring
that DW does not become arbitrarily small. This modification prevents the model from overly compressing
similar pairs, allowing for a more nuanced representation of similarity. Furthermore, enforcing a minimum
distance between similar pairs makes the model less sensitive to noisy labels.

To illustrate the impact of this adjustment, we present Fig. 7, which visualizes the embedding space
before and after training with the ACLF. When using the original CLF, PCA Component 1 and 2 values are
primarily concentrated within the range (−0.5, 0.5). This occurs because LS attempts to minimize the distance
between images within the same group to near zero, reducing the available degrees of freedom. However, due
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to some labels belonging to multiple citation lists and the presence of mislabeled noisy samples, LS not only
pulls together labels from the same citation list but also causes entire citation list groups to converge. While
the LD term is designed to push different groups apart, it becomes inactive (i.e., zero) when DW > m = 1,
leading to all embeddings collapsing into a circular region with a diameter of 1.

Figure 6: The adapted Contrastive similar-loss function in the 2D Euclidean embedding space

Figure 7: Comparison of original CLF and ACLF in PCA visualization (same color denotes the same citation list)

In contrast, applying the ACLF results in a significantly expanded PCA distribution. This modified loss
function reduces the attraction force between different groups and increases the flexibility of the parameter
space, preventing DW from collapsing to zero. While intra-group distances slightly increase, the separation
between different citation list groups becomes much more distinct.

3.7 Similarity Measurement
To evaluate our models, we split the Vietnamese trademark dataset into a training set (80%) and a

validation set (20%). This split ensures sufficient data for training while maintaining a large enough validation
set to reliably assess model performance. To ensure fairness of the evaluation, after splitting the dataset, we
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perform additional data processing: in the citation list of samples in the training dataset, we remove citations
that belong to the validation dataset.

From the training dataset, we generate pairs of data to serve as input for the Siamese model and triplets
for the Triplet model, using the methodologies outlined in Section 3.3. These models are then trained using
either the CLF or the Triplet loss function.

To compare and evaluate the effectiveness of the Siamese and Triplet models, we only create similar
pairs on the validation dataset, then compute the embeddings of the images and predict the labels Y based on
a cut-off threshold. Additionally, in this evaluation, similar pairs are exclusively generated using the “chosen
citation pairs” and “non-chosen citation pairs” methods, while dissimilar pairs are created using the “random
pairs with VC level 3” method. We use citation list pairs for similar images because citations represent the key
trademarks examiners seek. Dissimilar pairs are selected using the “random pairs with VC level 3” method, as
these pairs are harder to distinguish due to shared VC similarities, while other methods may ease recognition,
inflating performance metrics that do not align with the practical goals of examiners.

Additionally, since the models are trained with different loss functions, the cut-off thresholds for the
models vary significantly. Therefore, instead of adhering to the conventional 0.5, we select additional metrics
to evaluate the model’s performance. From an overview of other TIR works, we observe that the two most
commonly used metrics for evaluating results are NAR (Normalized Average Rank) and mAP@k (mean
Average Precision of the top k results). The mAP@k metric is calculated using the following formula:

mAP@k = 1
Q

Q
∑
i=1

1
E

k
∑

j

r j

j
(15)

where Q is the number of queries; Ei is the number of expected results of the query i; r j is similar-rank of
the image when the image with rank j is the expected image, and otherwise is zero.

The formula for NAR is as follows:

NAR = 1
N × Nrel

(
Nrel

∑
i=1

Ri −
Nrel (Nrel + 1)

2
) (16)

where Nrel is the number of relevant images, Ri is the rank of the i-th relevant injected image, and N is the
total size of the image dataset.

We observe that using NAR and mAP@k to evaluate the National IP Office trademark dataset has
significant drawbacks. First, with mAP@k, given by Eq. (15), this metric is heavily influenced by the order
of a few correctly retrieved images at the top of the results. However, for assisting examiners, a TIR system
requires a very high recall to avoid missing too many cases. This is the reason we exclude mAP@k as a
performance evaluation metric.

Next, with Eq. (16), NAR reflects the ability to evaluate the average ranking of retrieved similar images.
However, this also makes NAR heavily dependent on the order of the least similar images. When applied to
the labeled dataset, which contains a significant number of noisy labels, this dependence leads to inaccurate
evaluations. Therefore, while NAR is relatively effective for assessing the carefully curated query dataset of
METU, it cannot be reliably applied to our automatically generated dataset.

After considering various metrics, we evaluate model performance based on TPR at fixed and very high
TNR thresholds of 0.9 and 0.95. This decision stems from the practical reality that the number of true positive
(TP) labels—similar trademark images—is extremely small compared to the number of true negative (TN)
labels—dissimilar trademark images. Setting a high TNR threshold helps to significantly reduce the number
of incorrect labels that examiners need to review. At a TNR threshold of 0.95, examiners still need to review
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5% of the dissimilar images predicted as similar, amounting to tens of thousands of labels. While this is
a substantial number, requiring additional filtering measures for practical applications, it represents a step
toward feasibility.

Another advantage of evaluating TPR at high TNR thresholds is that it remains relatively stable even
when the number of negative labels increases, as the number of positive labels typically stays constant. This
situation is common since newly protected trademarks are required not to overlap with existing ones. In
contrast, metrics like mAP@100 are likely to decline significantly as the number of negative labels grows
rapidly while the number of positive labels remains unchanged. The choice of a high TNR threshold (0.9,
0.95) is justified by the significantly larger number of applications with differing labels compared to those
with matching labels. A high TNR helps efficiently filter out many irrelevant applications, which is crucial
for practical applications.

4 Experimental Results and Evaluation

4.1 Experimental Environment
To experiment with the proposed methods and algorithms, we use the following testing environments:

CPU 24 cores, 128 GB RAM, 2 GPU A100; Ubuntu server 22.04; Search Engine and Vector Database: Elastic
Search 8.8.1; Programming Language: Python 3.9.

4.2 Data Processing Results
We find that only 332,972 samples, representing 35.3% of the trademarks (see Table 1), include both

images and VC codes, making them suitable for inclusion in the training and testing dataset. We then split
the data into training and testing sets with an 8:2 ratio. After eliminating entries that lack counterparts or
whose counterpart lists include only trademarks without images, there are 198,270 trademarks in the training
dataset (21% of the total number of trademarks) and 51,474 trademarks in the validation dataset (5.5% of the
total number of trademarks).

Table 1: Statistics on image-based trademarks within the trademark dataset in the Vietnamese IP Office

Description Quantity Proportion (%)
Trademarks without images 510,829 54.2%

Trademarks with images but without Vienna codes 99,504 10.5%
Trademarks with images and Vienna codes 332,972 35.3%

Total number of trademarks 943,305 100%

Subsequently, we perform background removal utilizing the Rembg tool based on U2-Net [43], enhance
the images, and resize them to dimensions of 224 × 224 pixels. Fig. 8 illustrates some pairs of original
image data and the processed image data. Through the processed trademark images, we observe that the
background and text components are effectively removed, retaining only the dissimilar areas of the images
that need to be considered for protection.
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Figure 8: Sample pairs of original trademark images and images after background removal and enhancement

4.3 Trademark Image Pairs
After obtaining a suitable training and validation dataset, we develop functions to create pairs of similar

image pairs and dissimilar image pairs according to the methods proposed in Section 3.3. Among the
methods for constructing trademark image pairs, the two most important and meaningful for examiners
are the methods for selecting similar image pairs: chosen citation pairs and non-chosen citation pairs. These
represent the citation trademarks that examiners most want to identify. Our training pair dataset includes
13,144 chosen citation pairs and 490,355 non-chosen citation pairs, generated from 198,270 distinct images.
The validation pair dataset includes 4090 chosen citation pairs and 154,480 non-chosen citation pairs.

From the images of trademarks in the chosen citation list and the non-chosen citation list presented
in Fig. 9, we observe that the pairs of images generated using this method are very suitable for training the
SNN and Triplet NN models. This is because the contrastive image pairs are both diverse and not entirely
identical to the original images, yet the main protective components share enough similarity to serve as
valid comparisons from the examiner’s perspective. Although the citation list may still contain some images
that differ significantly from the trademarks under examination due to various reasons, this proportion is
minimal. We believe the citation list is the most important component for enabling the model to learn to
identify pairs of images that are considered similar in the field of trademark protection.

4.4 Pre-Trained and Non-Pre-Trained Model Evaluation
With nearly 200,000 trademark images in the training set, we assess this sample size as average-sufficient

for training models but relatively low compared to other image datasets, the most notable being ImageNet-
1k, which contains 1,281,167 training images across 1000 classes. While the images in ImageNet-1k are
photographs, those in the trademark dataset are primarily graphic images designed by humans. Nevertheless,
models can inherit many features from pre-trained models.

Therefore, we conduct experiments and evaluations of embedding models trained from scratch as well
as models fine-tuned from pre-trained models based on the ImageNet-1k dataset. The evaluation results are
presented in Fig. 10 and Table 2; for the models trained from scratch, we add the symbol/n at the end of the
model’s name.

From the experimental results, we find that among the models trained from scratch, the
VGG19bn Siamese model performs better than both the ResNet50 Siamese and ResNet50 Triplet.
The VGG19bn_Siamese/n model achieves a TPR of 0.447 at a TNR of 0.9, improving by 13.4% on
ResNet50_Triplet/n and 15.5% on ResNet50_Siamese/n. Even those models trained from scratch fare much
worse compared to the models that were fine-tuned using the pre-trained models of ImageNet-1k. For
a TNR of 0.9, the pre-trained models exhibit an increase in TPR compared to scratch-trained models:
39.2% for ResNet50_Triplet, 43.3% for ResNet50_Siamese, and 26.2% for VGG19bn_Siamese. Based on these
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evaluation results, we only fine-tune the models that have been pre-trained on the ImageNet-1k dataset in
the subsequent experimental sections.

Figure 9: Sample pairs of original trademarks, top 2 trademarks from the chosen citation list, and top 5 trademarks
from the non-chosen citation list

Figure 10: True positive rate comparison: training from scratch and fine-tuning from pre-trained ImageNet-1K
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Table 2: Experimental results of the models with the validation dataset

Model Pretrained k TNR = 0.9 TNR = 0.95 ROC_AUC

TPR Accuracy TPR Accuracy
ResNet50_Triplet/n No – 0.313 0.607 0.225 0.563 0.68

ResNet50_Siamese/n No 0.5 0.375 0.638 0.288 0.594 0.726
VGG19bn_Siamese/n No 0.5 0.447 0.674 0.367 0.634 0.756

ResNet50_Triplet Yes – 0.705 0.803 0.618 0.759 0.883
ResNet152_Triplet Yes – 0.725 0.813 0.638 0.769 0.888

EfficentNet_v2m_Triplet Yes – 0.717 0.809 0.631 0.766 0.887
Vit_b32_Triplet Yes – 0.7 0.8 0.62 0.76 0.878

ResNet50_Siamese Yes 0.5 0.725 0.813 0.646 0.773 0.895
ResNet152_Siamese Yes 0.5 0.745 0.823 0.661 0.781 0.902
VGG19bn_Siamese Yes 0.5 0.709 0.805 0.626 0.763 0.887

EfficentNet_v2m_Siamese Yes 0.5 0.763 0.832 0.682 0.791 0.909
EficentNet_v2l_Siamese Yes 0.5 0.777 0.839 0.708 0.804 0.914

Vit_b32_Siamese Yes 0.5 0.714 0.807 0.624 0.762 0.89

4.5 ACLF Performance
As mentioned in Section 3.6, we propose the use of the ACLF according to Eq. (10) to better align with

the task of finding similar trademarks. To test and evaluate the effectiveness of this new formulation, we
experiment with the ResNet50_Siamese model using different values of the coefficient k from the set [0.0,
0.1, 0.3, 0.5, 0.7]. The coefficient m is set to the default value of 1.0, as specified in the original algorithm.
Given that we perform normalization in the final neural layer, the Euclidean distance between the two output
embedding vectors lies within the range [0, 2], making the choice of m = 1.0 appropriate.

The results of the experiments with the ResNet50_Siamese model using various k coefficients are
illustrated in Fig. 11 and Table 3. From the experimental results, we observe that for k > 0, the outcomes are
significantly better compared to k = 0 (where the ACLF is equivalent to the original unmodified Contrastive
loss function). Table 3 indicates that the optimal coefficient k is 0.5, which resulted in an increase in TPR of
41.7% compared to k = 0. The experimental results also demonstrate that models trained with k = 0.3 and
k = 0.7 perform very well, with only minor differences in TPR compared to the model trained with k = 0.5.

Figure 11: TPR for Siamese models with varying k-values using ACLF
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Table 3: Experimental results of the ACLF with different k parameters

Model Pretrained k TNR = 0.9 TNR = 0.95 ROC_AUC

TPR Accuracy TPR Accuracy
ResNet50_Siamese/k0.0 Yes 0 0.308 0.604 0.215 0.558 0.661
ResNet50_Siamese/k0.1 Yes 0.1 0.703 0.802 0.596 0.748 0.878
ResNet50_Siamese/k0.3 Yes 0.3 0.722 0.811 0.627 0.764 0.892
ResNet50_Siamese/k0.5 Yes 0.5 0.725 0.813 0.646 0.773 0.895
ResNet50_Siamese/k0.7 Yes 0.7 0.722 0.811 0.643 0.772 0.887

4.6 Siamese Model vs. TRIPLET Model
We test the Siamese and Triplet models using the embedding models. The results of the experiments

for the Siamese and Triplet models are presented in Table 2. From the experimental findings, we observe
that for models fine-tuned from the pre-trained ImageNet-1k dataset, utilizing the Siamese architecture
combined with the ACLF yields superior results compared to employing the Triplet architecture and Triplet
loss function across all embedding models we examine.

In our view, the superior performance of the Siamese model compared to the Triplet model is driven by
two factors:

- The ACLF is specifically designed for SNN architectures, whereas Triplet NN architectures do not
require such adjustments. This modification significantly enhances the effectiveness of SNN models.

- The training dataset is more compatible with the Siamese architecture than with the Triplet architec-
ture. This has been mentioned in Section 3.3.

As Siamese models paired with the ACLF yield better performance than Triplet models with identical
backbone architectures, subsequent experiments focus on training Siamese models using diverse backbones
to assess the effectiveness of each.

4.7 Compare Embedding Models
* The dataset of 521 images: 9 images from the citation list (marked with blue scores) and 512 other images

with the same Vienna code 03.07.03, described as “Cocks, hens, chickens” (marked with red scores). The results
are sorted by descending similarity scores.

We employ the same Siamese architecture to train models utilizing various embedding models,
each pre-trained from the ImageNet-1k dataset, including ResNet-50, ResNet- 152, EfficientNet-v2_m,
EfficientNet-v2_l, VGG19_bn, and ViT_b_32, to assess their effectiveness. From the experimental results pre-
sented in Table 2, the models based on the EfficientNet architecture yield the best performance, followed by
the ResNet models, with ViT_b_32 and VGG19_bn trailing behind. Notably, while VGG19_bn demonstrates
superior performance compared to ResNet50 in models trained from scratch, its performance is lower when
utilizing pre-trained weights. The EfficientNet_v2l_Siamese model achieves the highest performance at both
cut-off thresholds of TNR = 0.9 and TNR = 0.95, with corresponding TPRs of 77.7% and 70.8% and accuracies
of 83.9% and 80.4%, respectively. The model also exhibits the highest ROC_AUC of 91.4%.

Fig. 12 illustrates the results of a similar image search for a query image within the test dataset (the query
image is the first image in Fig. 12a). The search results are ordered by descending similarity score (which
ranges from [−1, 1]). In this example, we retrieve 6 out of 9 images from the citation list within the top 30
images and 9 out of 9 citations within the top 60 images. The three citation images found between the top
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30–60 (two of which can be seen in Fig. 12b) show significant differences from the query image, whereas the
6 citation images within the top 30 are quite similar.

Figure 12: Result of searching for similar images (using model EfficientNet_v2l_Siamese)

Additionally, as shown in Fig. 12a, many images within the top 20 are visually similar to the query image,
even though they are not part of the citation list. This demonstrates the model’s effectiveness in searching
and ranking results by similarity score, which can be leveraged to reduce the effort and time and improve
the accuracy of examiners assessing new applications.

The similarity score of 0 is a particularly significant threshold because we set the parameter m = 1 in the
CLF formula. During training, if the distance between the embeddings of two images exceeds 1 (equivalent
to a similarity score of 0 in our calculation), the model stops pushing the two embeddings further apart, as
the images are already different enough to confirm that the pair is dissimilar. As a result, when the similarity
score drops below 0, the retrieved images are significantly different from the query image (similarity score <
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0 begins from the 59th image out of 521). Thus, by using a similarity score threshold of 0 as a cutoff point, the
number of images an examiner needs to compare in this query image example could be reduced by nearly
9 times.

4.8 Comparison with Other Studies
To compare our results with other studies, we test the EfficientNet_v2l_Siamese model on the METU_v2

trademark dataset. METU_v2 comprises two main subsets: a test dataset containing over 930,000 unlabeled
trademark images and a query dataset consisting of 417 trademark images categorized into 35 similar groups.
Following the standard testing protocol adopted in other studies [7], we inject the 417 query images into
the unlabeled test dataset. Next, we sequentially query each image from the query dataset and compute the
Euclidean distance between the query image and the images in the combined dataset. Then we rank the
images within the same group of the query image and compute the Average Rank (AR), the NAR score.

Table 4 shows a comparison of our model’s result with those reported in other studies when tested on the
METU dataset. Our model achieves a NAR score of 0.0169, outperforming the current SOTA NAR. The AR
of 15,498.4 shows that while our model outperforms the SOTA NAR and AR, additional filtering methods,
such as those based on VC or time, are still necessary for effective real-world application. This is because,
in practice, examiners usually prefer to review only a few hundred results or fewer. This highlights the need
for future research to explore more effective solutions. Compared to the SOTA NAR achieved by Bernabeu
et al. [8], both approaches incorporate additional metadata beyond images. However, they employed a hybrid
model combining color (30%) and shape (70%) optimized for the METU dataset, which risks overfitting
to a specific dataset. In contrast, our method does not require hyperparameter tuning on the test set,
ensuring better generalization. Furthermore, while they relied on the EU trademark dataset, which included
information on color, shape, and categories, our model utilizes a national trademark database enriched
with citation networks, VC codes, and ownership details. This approach allows for a deeper exploration of
semantic relationships between trademarks, resulting in significantly enhanced performance.

Table 4: Comparison of our model with other works

Approach AR NAR
Tursun et al. [7] (TRI-SIFT) 66,117.9 0.07

Tursun et al. [18] (Hand-crafted & CNN) 56,844.1 0.062
Feng et al. [44] (VGG16) 79,538.5 0.086

Feng et al. [44] (SIFT) 79,425.4 0.083
Perez et al. [22] (Visual) – 0.066

Perez et al. [22] (Conceptual) – 0.063
Perez et al. [22] (Visual & Conceptual) – 0.047
Tursun et al. [24] (ATR CAM MAC) – 0.04

Cao et al. [45] (Attention, Unsupervised) – 0.051
Tursun et al. [25] (MR-R-SMAC w/URA) – 0.028

Bernabeu et al. [8] (Weighted fusion: 30% color, 70% shape) – 0.018
EfficientNet_v2l_Siamese (our model) 15,498.4 0.0169

Fig. 13 shows the top-10 retrieved results for METU example queries. We select query samples similar
to those used in previous models to provide readers with a comparative perspective for evaluation. From
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our perspective, we find that our model performs well in retrieving relevant results with varying levels
of similarity, and there are fewer completely irrelevant images. However, there are some queries where
our model shows certain limitations. First, we observe that the model does not rank the top images as
effectively as some other studies. This may be explained by our ACLF, which prioritizes retrieving images with
partial similarity rather than attempting to retrieve the most identical ones. Secondly, for queries involving
both text and images, retrieval performance is relatively poor. Upon further analysis, this is due to the
inadequate separation of text from images. This suggests the need for improvement in text removal models
in future studies.

Figure 13: The top-10 retrieved results for METU example queries are displayed in the leftmost column

Through experimental examples, we observe that only about 10% of the images have a similarity score
greater than 0. Thus, it may be sufficient to review only around 10% of the returned trademarks, significantly
reducing the review time. This still comes with the risk that images with similarity scores less than 0 might
still be similar, especially when the text removal process in the image is not optimal. To evaluate this model,
we believe that using TPR or TNR would be better than NAR, as NAR can be significantly influenced by very
difficult images, overshadowing the evaluation of other images.

5 Conclusions
In this paper, we propose a method to automate the construction of a large labeled image pair

dataset by leveraging the rich information available in a national IP Office trademark database. Our study
makes several key contributions to the field of TIR. First, we demonstrate the effectiveness of leveraging
national trademark databases to automatically generate large labeled datasets, overcoming the limitations
of small, manually curated datasets. Second, we introduce an ACLF that better suits the characteristics of
trademark data, leading to improved model performance. Third, our experimental results show that the
EfficientNet_v2l_Siamese model achieves state-of-the-art performance on the METU dataset, highlighting
the potential of our approach. Extensive experiments on various models and parameters reveal that the
EfficientNet_v2l model, when integrated into the Siamese architecture and pre-trained on the ImageNet-1k
dataset, achieves the best performance. The model achieves the highest performance at both TNR threshold
levels, TNR = 0.9 and TNR = 0.95, with TPRs of 77.7% and 70.8% and accuracies of 83.9% and 80.4%. When
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evaluated on the METU dataset for comparison with prior studies, our model achieves a new SOTA NAR of
0.0169.

We acknowledge the limitations in our research. Query 5 in Fig. 12 yields suboptimal results, retrieving
only 4 out of 10 similar images while returning 5 entirely incorrect results. Notably, the latest model by Tursen
et al. [25] also struggled with this query, correctly retrieving only 2 images in the top 10 and 7 in the top
20. We identify that the primary cause of mis-retrieval is the ineffective text removal process. Specifically,
the text in the image is not properly removed, leading to feature embeddings being contaminated by textual
characteristics. This issue likely arises because the image contains a combination of a white background,
red uppercase text positioned prominently on the left side, and graphical elements. Such configurations are
rare in the training data used for the text removal model, making it challenging for the model to process
effectively. Also, for future research, solutions to reduce input noise caused by incorrect image pair labels
should be developed. Additionally, other information fields from the National IP Office trademark data
should be explored, such as the historical examination process, to expand the dataset and improve the
reliability of input labels. Furthermore, the development and experiment with solutions to enhance the
accuracy of text removal models should be implemented, employing more powerful model architectures and
utilizing ensemble models to improve the effectiveness of TIR.
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