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ABSTRACT: Brain imaging is important in detecting Mild Cognitive Impairment (MCI) and related dementias.
Magnetic Resonance Imaging (MRI) provides structural insights, while Positron Emission Tomography (PET) evaluates
metabolic activity, aiding in the identification of dementia-related pathologies. This study integrates multiple data
modalities—T1-weighted MRI, Pittsburgh Compound B (PiB) PET scans, cognitive assessments such as Mini-Mental
State Examination (MMSE), Clinical Dementia Rating (CDR) and Functional Activities Questionnaire (FAQ), blood
pressure parameters, and demographic data—to improve MCI detection. The proposed improved Convolutional Mixer
architecture, incorporating B-cos modules, multi-head self-attention, and a custom classifier, achieves a classification
accuracy of 96.3% on the Mayo Clinic Study of Aging (MCSA) dataset (sagittal plane), outperforming state-of-the-
art models by 5%–20%. On the full dataset, the model maintains a high accuracy of 94.9%, with sensitivity and
specificity reaching 89.1% and 98.3%, respectively. Extensive evaluations across different imaging planes confirm that
the sagittal plane offers the highest diagnostic performance, followed by axial and coronal planes. Feature visualization
highlights contributions from central brain structures and lateral ventricles in differentiating MCI from cognitively
normal subjects. These results demonstrate that the proposed multimodal deep learning approach improves accuracy
and interpretability in MCI detection.

KEYWORDS: Magnetic resonance imaging; positron emission tomography; mild cognitive impairment; convolutional
mixer; classification

1 Introduction
Mild Cognitive Impairment (MCI) is a type of dementia that is defined by a cognitive decline that

exceeds what is expected due to normal aging, but does not yet reach the threshold of more serious dementia.
Its amnestic state has a high risk of progression to Alzheimer’s disease [1]. Although MCI typically does
not cause high disruption to an individual’s daily life or functioning, it can still have subtle impacts on
activities that require memory or attention. The importance of diagnosing MCI at an early stage cannot be
overstated. Early identification offers the opportunity for proactive management strategies, such as cognitive
training, lifestyle modifications, and pharmacological interventions, which can help delay the progression
to Alzheimer’s disease and preserve cognitive function for longer periods [2].

Brain imaging technologies have improved our ability to detect and monitor the progression of MCI.
Structural imaging, particularly Magnetic Resonance Imaging (MRI), provides detailed images of the brain’s
anatomy and can detect subtle changes that occur in the early stages of cognitive decline [3], such as
Alzheimer’s [4] or Parkinson’s [5]. Positron Emission Tomography (PET) imaging, on the other hand,
allows visualization of the metabolic activity of the brain and can reveal any alterations related to MCI [6].
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These imaging modalities are invaluable tools in the diagnosis and early detection of MCI, as they enable
clinicians to assess the structural changes in the brain and the biochemical processes underlying cognitive
impairment [7]. Integrating these technologies with clinical evaluations offers a more comprehensive
understanding of MCI, helping to identify people with a higher risk of developing Alzheimer’s and facilitating
the development of customized intervention strategies.

In recent years, many studies have adopted a multimodal diagnostic approach, recognizing its advan-
tages over single-modal methods in detecting MCI. Multimodal diagnostics allow for a more complete and
precise identification of MCI, as each data modality contributes unique and complementary information that
enhances the overall accuracy of classification [8]. Unlike single-modal approaches, which may capture only
a limited aspect of disease progression, multimodal frameworks integrate different neuroimaging biomarkers
to provide a more holistic picture of cognitive decline. This synergy between the modalities enables the
detection of subtle changes in brain structure and metabolism, which are often early indicators of ICM.
Frequently, researchers use a combination of Fludeoxyglucose F18 (FDG) PET with T1-weighted MRI to
detect MCI [9,10]. FDG-PET provides critical insights into reductions in metabolic activity in key brain
regions affected by MCI, while T1-weighted MRI captures structural atrophy patterns, particularly in the
medial temporal lobe. This combination offers improved sensitivity compared to either modality alone.
However, increasing evidence suggests that Pittsburgh compound B (PiB) PET is also highly sensitive to
MCI biomarkers and may, in some cases, offer even greater diagnostic accuracy [11]. PiB-PET can detect
amyloid pathology years before structural or metabolic changes become evident, making it a valuable tool
for identifying individuals at high risk for Alzheimer’s disease (AD) or MCI. Despite its diagnostic potential,
PiB-PET remains underutilized in MCI research, mainly due to the more widespread adoption of FDG-PET
in clinical and research settings. In general, integrating multiple imaging techniques, such as FDG-PET, PiB-
PET, and MRI, improves the diagnostic precision of the MCI classification. As neuroimaging technologies
advance, expanding multimodal research will be essential in enhancing MCI diagnostics and optimizing
clinical decision-making.

The rapid advancement of Artificial Intelligence (AI) and Machine Learning (ML) in medicine has
opened new avenues for innovative solutions that can improve clinical practice. AI and ML models, with their
ability to process vast amounts of data, identify complex patterns, and make predictions, are increasingly
being integrated into healthcare systems to assist in diagnosing diseases, predicting outcomes, and person-
alizing treatment plans. Among the diverse range of AI and ML algorithms, several classification models
have gained prominence in medical research due to their effectiveness in various diagnostic tasks. These
models include Support Vector Machines (SVM), Artificial Neural Networks (ANN), Random Forests (RF),
Multi-Layer Perceptrons (MLP), Convolutional Neural Networks (CNN), and Vision Transformers (ViT),
all of which have shown promising results in tasks such as image analysis, disease detection, and prognosis
prediction [12]. MLP-based architectures have become increasingly popular within the research community.
These architectures offer several advantages, including efficient size and relatively high performance. MLP
models, which consist of multiple layers of interconnected neurons, are well suited for tasks involving
structured data, such as classification problems in medical diagnostics. Another emerging trend in the AI
and ML landscape is the hybridization of CNN and MLP architectures, such as the ConvMixer model. These
hybrid models combine the strengths of both CNNs and MLPs, offering improved classification accuracy
and computational efficiency [13–16]. Even with all emerging innovative classification models, these methods
are rarely applied in practice, and one of the primary reasons for this gap between research and real-world
application lies in the regulatory challenges and the inherent limitations of AI models, particularly their lack
of transparency and interpretability. Many AI models operate as “black boxes”. This means that while these
models can produce highly accurate predictions, they do so without clearly explaining how they arrived



Comput Mater Contin. 2025;84(1) 1807

at their conclusions. This lack of interpretability presents a barrier to their adoption in healthcare settings,
where clinicians must understand, trust, and validate the rationale behind automated decisions [17,18].

This study proposes improvements to the Convolutional Mixer architecture, which allows the use of
multimodal data, improves the model performance by 5%–15% in terms of accuracy in MCI classification,
and visualizes feature contribution maps, enhancing the interpretability of the inference. The contributions
of this study are as follows:

• Convolutional Mixer architecture extension proposed which includes: addition of specialized B-cos
networks modules to visualize feature contribution maps that promote interpretability; higher regu-
larization; multi-head self-attention and custom classifier; which allows to outperform all of the tested
baseline models;

• A multimodal framework that utilizes Pittsburgh Compound B Positron Emission Tomography
(PiB-PET), T1-weighted MRI brain imaging modalities, clinical and demographic data in accurate
classification of Mild Cognitive Impairment (MCI).

The rest of the paper is organized as follows: Section 2 discusses similar works; Section 3 describes the
proposed MCI detection method; Section 4 lists all experimental results; Section 5 further discusses findings
and possible future improvements; Section 6 concludes the study.

2 Comparison of Related Works
To identify similar works, we have searched the Web of Science search index using keywords: mul-

timodal, mild cognitive impairment, detection, classification, MRI, and PET. We have selected to include
articles published since 2020 with open-access repositories to be able to verify the original result. The chosen
works employ various machine learning techniques to classify MCI using different imaging modalities and
datasets. A comparative analysis showed that while traditional methods (SVM, RF) can still offer competitive
results, the future of MCI detection appears to favor deep learning and data fusion approaches for optimal
performance. The approaches are compared in Table 1.

Table 1: Identified related studies

Refs. Model Dataset Modalities Accuracy Sensitivity Specificity
[19] Inception-ResNet

CNN
OASIS3 T1w MRI, FDG-PET 95.3% 96.5% 94.1%

[9] Custom CNN ADNI T1w MRI, FDG-PET 79.0% 66.0% 86.0%
[10] Hybrid Generative

Adversarial Network
(GAN)-CNN

ADNI T1w MRI, FDG-PET 92.5% 92.2% 92.5%

[20] Gaussian Process
(GP)

ADNI T1w MRI, AV45-PET,
demographic

78.8% 81.3% 76.8%

[21] RF, SVM, ANN,
GP-Radial Basis
Function (RBF)

ADNI T1w MRI, Diffusion
Weighted Imaging (DWI),

cognitive tests

91.3% – –

[22] VGG-16, SVM ADNI Diffusion Tensor Imaging
(DTI), T1w MRI

94.2% 97.3% 92.9%

[23] Custom CNN ADNI T1w MRI, FDG-PET,
genetic and demographic

data, cognitive tests

92.84% 97.26% 96.26 %

[24] ResNet-50, SVM ADNI T1w MRI, FDG-PET 94.0% 97% 91.0%
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Forouzannezhad et al. [20] used a Gaussian-based method to classify early MCI (EMCI) and late
MCI (LMCI) from cognitively normal (CN) patients using the ADNI dataset. They integrated MRI and
amyloid AV45-PET with demographic data, focusing on feature fusion from these different sources. In
contrast, Rallabandi et al. [19] applied custom CNN architectures such as Inception and ResNet to classify
MCI from CN, achieving higher accuracy (95.4%) through the fusion of multiple imaging modalities via
Discrete Wavelet Transform (DWT). A similar emphasis on multimodal imaging can be observed in Perez-
Gonzalez et al. [21], where T1w MRI and Diffusion Weighted Imaging (DWI) were fused with cognitive
tests to perform MCI classification. Their use of various classifiers (RF, SVM, ANN, and Gaussian process
classifiers) yielded a peak accuracy of 91.3%, showcasing the impact of diverse feature selection techniques.
Kang et al. [22] also employed a fusion-based method using Diffusion Tensor Imaging (DTI) and T1w MRI
from the ADNI dataset. However, their approach differed by stacking the image modalities into separate
channels. This feature extraction was handled by VGG-16 CNN, followed by classification using an SVM.
Although both Kang and Forouzannezhad utilized ADNI, Kang’s emphasis on DTI and VGG-16 contrasted
with Forouzannezhad’s Gaussian-based approach and multimodal fusion. Kim et al. [9] explored CNN
architectures for MCI detection but adopted a different approach to fusion. Unlike Kang’s stacking technique,
Kim did not fuse the T1w MRI and FDG-PET images; instead, they fed these modalities as separate inputs
into a custom CNN model. This approach yielded a lower accuracy (79%) compared to Kang and Rallabandi’s
higher-performing methods. The concatenation of features at deeper network layers contrasts sharply with
other works where fusion happens earlier in the processing pipeline. Chen et al. [23] took the fusion further
by integrating T1w MRI, FDG-PET, genetic data, demographic data, and cognitive test results, using a custom
CNN to process these diverse inputs. Dwivedi et al. [24] used a fusion strategy similar to Rallabandi’s,
applying DWT to T1w MRI and FDG-PET images from the ADNI dataset. They extracted features using
ResNet-50 and classified MCI using SVM, achieving 94% accuracy, which approaches Rallabandi’s high
accuracy but differs in using the ADNI dataset vs. OASIS3 in Rallabandi’s study. Zhang et al. [10] introduced
an innovative approach employing a Generative Adversarial Network (GAN) to generate missing FDG-
PET images. They then used a custom CNN for MCI classification, contrasting with Dwivedi’s use of DWT
for image fusion. It shows a novel application of GANs in the generation of synthetic data to enhance
CNN performance.

Several studies have focused on optimizing the integration of magnetic resonance imaging (MRI)
and positron emission tomography (PET) data through innovative network architectures and optimiza-
tion strategies. For example, study [25] proposed a Pareto-optimized adaptive learning method that uses
transposed convolution layers to fuse MRI and PET images. Based on pre-trained VGG networks and
morphological pre-processing, this approach demonstrated competitive performance in differentiating
stages of AD by effectively capturing cross-modal features. In addition to this strategy, study [26] introduced
an image colorization technique paired with a mobile vision transformer (ViT) model. This work uses a
Pareto-optimal cosine color map to enhance visual clarity and classification performance across several
datasets, including ADNI, AANLIB, and OASIS. Integrating the swish activation function within the ViT
architecture further improved the sensitivity and specificity of the model to distinguish various stages of
AD. Another line of research has explored the enhancement of image quality before fusion. In [27], the
authors demonstrated that applying super-resolution techniques to structural MRI images improves the
detection of mild cognitive impairment (MCI). Using advanced loss functions and a Pareto optimal Markov
blanket (POMB) for hyperparameter tuning within a generative adversarial framework, the study mitigated
common artifacts, such as checkerboard effects. Hence, it improved the perceptual quality of the images
used for MCI classification. In addition, study [28] focused on optimizing the convolutional fusion process
itself. By varying kernel sizes and employing instance normalization alongside transposed convolution, this
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approach enhanced the extraction of salient features from heterogeneous MRI and PET data. Evaluated on
multiple datasets with metrics such as the Structural Similarity Index Measure (SSIM), the Peak Signal-to-
Noise Ratio (PSNR), the Feature Similarity Index Measure (FSIM), and the entropy. The method showed
notable improvements in fusion quality, which in turn contributed to higher classification accuracy when
integrated with a Mobile Vision Transformer. Extending these fusion techniques to the realm of neural
architecture search, study [29] applied Pareto-optimal quantum dynamic optimization to fine-tune the
architectural hyperparameters of a Mobile Vision Transformer. Using a static pulse-coupled neural network
and a Laplacian pyramid for the initial fusion of sMRI and FDG-PET data, the method achieved robust
performance across several evaluation metrics (e.g., PSNR, MSE, SSIM) on standard datasets such as ADNI
and OASIS.

3 Materials and Methods
In this study, we have developed a robust model capable of detecting Mild Cognitive Impairment

(MCI) by integrating various data modalities. The modalities selected for this model include the following:
T1-weighted Magnetic Resonance Imaging (T1w MRI), 11C Pittsburgh Compound-B Positron Emission
Tomography (PiB-PET) with the 18F-fluorodeoxyglucose radiopharmaceutical, cognitive test results from
the Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR) and Functional Activities
Questionnaire (FAQ), demographic factors such as years of education and gender, and clinical parameters
such as systolic and diastolic blood pressure.

Each modality brings a unique and valuable perspective to the detection process: T1w MRI provides a
high resolution structural view of the brain, allowing the detection of cortical atrophy, loss of hippocampal
volume, and other neuroanatomical markers associated with MCI and its possible progression to Alzheimer’s
disease (AD) [6]. Structural imaging is beneficial for identifying changes in the medial temporal lobe and
the entorhinal cortex, regions known to be among the first affected by MCI [30].

PiB-PET reveals metabolism and beta-amyloid plaques in neural tissue. Amyloid accumulation is a key
biomarker of the pathology of Alzheimer’s and related dementias and often precedes visible structural or
metabolic changes, making PiB-PET a valuable early indicator of MCI. This imaging modality is beneficial
for differentiating between amyloid-positive and amyloid-negative individuals, providing information on
which patients may progress to AD [6].

Beyond imaging, cognitive assessments such as the Mini-Mental State Examination (MMSE), Clinical
Dementia Rating (CDR), and Functional Activities Questionnaire (FAQ) provide important information on
individual cognitive function. These standardized tests measure memory, orientation, executive function,
and daily living abilities, capturing subtle cognitive impairments that may not yet be evident through imaging
alone. Integrating cognitive scores with neuroimaging allows for more accurate classification of MCI, as it
accounts for functional deficits that structural and metabolic markers might not fully capture.

Educational level and gender help to account for demographic variations, while blood pressure can
reveal any related clinical conditions that can influence cognitive decline. Hypertension is also known to
correlate with the progression of MCI [31]. The model can capture vascular contributions to cognitive
impairment by incorporating blood pressure data, further enhancing its predictive capabilities. In particular,
studies have shown that the treatment of hypertension can slow cognitive decline, reinforcing the importance
of integrating vascular health indicators into MCI classification models [32].

The choice of these modalities ensures compatibility across datasets and maximizes the model’s ability
to detect early signs of MCI by combining anatomical, metabolic, cognitive, clinical, and demographic data.
Through this multimodal approach, the model aims to improve early detection of MCI, which is crucial
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for timely intervention and personalized treatment planning in clinical settings. Fig. 1 shows a high-level
overview of the methodology.

Figure 1: Methodology behind the multimodal convolution mixer in MCI detection
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3.1 Dataset
We used three datasets in our study. Alzheimer’s Disease Neuroimaging Initiative (ADNI), The Mayo

Clinic Study of Aging (MCSA), and the 3rd edition Open Access Series of Imaging Studies (OASIS3). Table 2
lists the datasets and their respective parameters.

Table 2: Definition of datasets used in this paper

Dataset # of Patients
(CN/MCI)

Gender
(F/M)

MRI field
strength (T)

MRI voxel
Res. (mm)

PET voxel
Res. (mm)

Age range
(years)

Ref.

ADNI 27/27 57.5%/
42.5%

1.5T/3T 1.0 × 1.0 × 1.2 2.0 × 2.0 ×
2.0

55–90 [33]

MCSA 412/412 44.9%/
55.1%

3T 1.1 × 1.1 × 1.2 2.3 × 2.3 ×
2.3

30–89 [34]

OASIS3 134/134 42.6%/
57.4%

1.5T/3T 1.0 × 1.0 ×
1.0

1.5 × 1.5 × 1.5 42–95 [35]

Note: CN-Cognitive Normal (Healthy Patient), MCI Mild Cognitive Impairment, ADNI-Alzheimer’s Disease Neu-
roimaging Initiative, OASIS-Open Access Series of Imaging Studies, MCSA-The Mayo Clinic Study of Aging, F-Female,
M-Male.

3.1.1 Alzheimer’s Disease Neuroimaging Initiative (ADNI)
ADNI-The study started in 2004 with the primary objective of advancing the understanding of

Alzheimer’s disease. The initiative’s core research areas include early detection of Alzheimer’s disease, track-
ing the progression of cognitive decline, and identifying potential biomarkers for diagnosis and monitoring.

3.1.2 The Mayo Clinic Study of Aging (MCSA)
MCSA-also started in 2004-is another key research initiative aimed at understanding the aging process

and the onset of neurodegenerative diseases, particularly dementia. The MCSA focuses on identifying
neuroimaging biomarkers that could serve as early predictors of cognitive decline, including Alzheimer’s
disease, and understanding the biological changes that occur with aging. One of the main objectives of
the study is to develop predictive tools using neuroimaging to diagnose or prevent dementia, which could
transform the clinical approach to cognitive disorders related to aging.

3.1.3 Open Access Series of Imaging Studies (OASIS)
OASIS-started in 2007 to provide high-quality, freely available neuroimaging data to researchers

studying Alzheimer’s disease and other dementias. By making data publicly accessible, OASIS fosters
collaboration and accelerates progress in dementia research. We have used the OASIS3 dataset, a compilation
of patient neuroimaging data collected over 30 years with many different structural, functional, and diffusion
neuroimaging modalities.

We have merged subjects from different studies into a single dataset to have a greater diversity of patients.
Although the number of patients available in the ADNI and OASIS3 datasets with matching modalities
was relatively low, a diverse set of patients should promote the generalizability of the method compared to
developing it against a single study dataset. The dataset was divided into training and validation sets with a
ratio of 85/15.
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As shown in Table 2, each dataset differs in terms of scanner specifications, voxel resolution, age, and
gender distributions. These factors introduce variability that can affect the generalizability and performance
of the model.

Several pre-processing steps were performed for MRI and PET images to overcome potential biases
arising from imaging modalities. The pre-processing procedures are explained in Section 3.2. Standard
procedures ensure that all imaging modalities can be analyzed under the same conditions, thus minimizing
bias toward differences in imaging equipment and signal intensities.

To assess the impact of the variability of the dataset, we have also performed ablation studies that show
how much each category of characteristics influences the accuracy of the final model. To check how well the
model generalizes given different patient distributions, a 5-fold cross-validation was applied. To check how
well the model generalizes given unseen data, Leave-One-Dataset-Out (LODO) cross-dataset validation was
used. The results of the ablation study are available in Section 4.6.

3.2 Data Pre-Processing
After merging all the patients into one dataset, we performed pre-processing steps for each data modality

group. Tools used in pre-processing are: FSL suite [36]-fslreorient2std (reorientation), flirt (registration
and co-registration), fast (bias correction), and slicer (slicing). FreeSurfer suite [37]-mri_synthstrip (skull
stripping) [38]. PetSurfer suite [39,40]-mri_gtmpvc (partial volume correction), mri_coreg (motion correc-
tion). These specific tools were selected mainly because of previous personal experience. Although there are
many other alternatives, the FSL, FreeSurfer, and PetSurfer software suites are industry-tested tools that the
research community has used for years (10+). They are more than suitable for this study.

3.2.1 T1w MRI Pre-Processing
The pre-processing steps for T1-weighted Magnetic Resonance Imaging (T1w MRI) include several

standard stages to prepare the data for further analysis. The steps performed sequentially are described below:

1. Reorientation
First, the images are reoriented into the standard MNI (Montreal Neurological Institute) space, which
facilitates alignment with all neuroimaging datasets and ensures consistency between subjects.

2. Registration
Following this, the images are registered to the MNI standard atlas, explicitly using the high-resolution
MNI152 NLIN 2009b template with a voxel size of 0.5 mm. This registration step allows for a
uniform spatial alignment of brain structures across all subjects, accounting for individual variations in
brain anatomy.

3. Bias correction
Next, bias correction is applied to the images to correct for intensity variance caused by inhomogeneities
in the magnetic field, which can distort the images and affect the analysis.

4. Skull stripping
Skull stripping removes non-brain structures, such as the skull and surrounding fluids and tissues,
ensuring that only the brain is included in subsequent analyses.

5. Slicing
Finally, the center slice of the brain volume is extracted to reduce computational complexity and provide
a standardized way to detect MCI.
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3.2.2 PiB-PET Pre-Processing
The pre-processing steps for 11C Pittsburgh Compound-B Positron Emission Tomography (PiB-PET)

images involve several crucial stages to prepare data for the further analysis step. The steps performed
sequentially are described below:

1. The first step is motion correction, which is performed to correct any head movements that may have
occurred during the PET scan. PET acquisitions often take several minutes, where even minor head
movements can introduce artifacts and distort the alignment of brain structures. Uncorrected motion
can lead to blurred images, loss of spatial resolution, and inaccurate quantification of tracer uptake.
These distortions are particularly problematic in longitudinal studies or studies with fine-scale regional
analysis, where even subtle misalignment can lead to errors in the MCI classification. Motion correction
is essential to ensure that the PET image accurately reflects the underlying metabolic activity and tracer
distribution to have an accurate and robust diagnostic pipeline.

2. Partial Volume Correction (PVC) is applied to address the issue of partial volume effects, which occur
due to limited spatial resolution and may result in misinterpretation of PET scan images [41]. Since the
spatial resolution of PET is much lower than that of MRI, it can lead to signal spillover between adjacent
regions, especially in smaller structures in the brain. Without correction, tracer uptake in smaller brain
regions may be underestimated due to the mixing of signals from surrounding tissues. By applying
PVC, the accurate tracer distribution is better preserved, improving the accuracy of quantitative PET
measurements and improving the reliability of further analysis.

3. Next, the PiB-PET image is co-registered to a corresponding T1-weighted MRI (T1w MRI) scan. This
step is critical for aligning the PET data with the high-resolution structural information from the
MRI, allowing precise localization of PiB binding in relation to the anatomical regions of the brain.
The coregistration process ensures that both imaging modalities are spatially matched, essential for
combining the data and performing multimodal analysis.

4. Skull stripping is then applied to remove non-brain tissues, such as the skull, scalp, and surrounding
fluids, irrelevant to brain activity analysis. This step is essential to focus exclusively on the brain
regions of interest and eliminate unnecessary noise. By removing non-brain elements, the accuracy of
subsequent processing steps, including classification, is improved.

5. Finally, the mid-slice of the brain is extracted, which provides a representative cross-sectional view of
the brain’s structure and PiB distribution. This standardized slicing approach facilitates comparisons
across subjects and studies, enabling more consistent analyzes.

3.2.3 Other Modalities Pre-Processing
Other data modalities include the results of cognitive tests, the Mini Mental State Examination (MMSE),

the Clinical Dementia Rating (CDR) and Functional Activities Questionnaire (FAQ), education in years and
gender, and systolic and diastolic blood pressure. Each of these modalities was carefully processed to ensure
data quality. The steps are performed sequentially:

1. Replacement of missing values
Missing values were handled by checking if previous visit data was available and using those data
as features; otherwise, we replaced missing values with the mean of the respective variable, ensuring
minimal bias and preserving statistical integrity.

2. Handling outliers
Outliers were replaced with the variable’s mean value. This helps maintain the completeness of the
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dataset while reducing the impact of extreme values on statistical analyses and machine learning models,
thereby improving model robustness and predictive accuracy.

3. Standardization
All data was standardized to ensure consistency and comparability between different measures. Stan-
dardization was performed by transforming each variable with a mean of zero and a standard deviation
of one, using z-score normalization. This step is particularly crucial when combining features with
different units of measurement, as it ensures that variables with larger numerical ranges do not
disproportionately influence machine learning models.

3.3 Fusion of Different Modalities
After data pre-processing, fusion strategies were applied to the dataset to integrate multiple modalities

effectively. Combining T1w MRI and PiB-PET imaging improves the ability to detect MCI using comple-
mentary information from different imaging techniques. Structural MRI provides insights into anatomical
changes, while PiB-PET highlights changes in metabolic activity. By fusing these modalities, we aim to
improve classification accuracy by utilizing more prosperous and diverse data representations. The steps
performed sequentially are described below:

1. Grouping into orthogonal planes
The first step involved splitting the T1w and PiB-PET image slices into three orthogonal planes: sagittal,
coronal, and axial. This approach allows us to analyze each plane separately, as each provides unique
information on brain structure and metabolic activity. The sagittal plane (side view) helps visualize
asymmetries and atrophy patterns in specific brain regions, such as the medial temporal lobe. The
coronal plane (front-to-back view) provides a detailed perspective on loss of hippocampus volume
and cortical thinning, which are crucial markers of MCI. The axial plane (top-down view) enables
examination of whole-brain connectivity and metabolic activity in different lobes.

2. Fusion
Following separation into planes, each set of T1w and PiB-PET image slices from the individual planes
were fused using the Deep Image Fusion library [42]. This advanced fusion technique leverages a com-
bination of Principal Component Analysis (PCA), Wavelet Transform, and Deep Learning algorithms
to merge imaging data to ensure a low signal-to-noise (SNR) ratio. PCA mainly emphasizes critical
structural and functional components while reducing redundant information. Wavelet Transform helps
preserve high-frequency details and overall spatial characteristics, improving texture representation.
Deep learning fusion ensures that the merged images retain meaningful features while minimizing noise
and artifacts.

3. Feature concatenation
Once the image fusion process was completed, the fused images were used as input for the Multimodal
Convolutional Mixer model. The fused images are used during training, where the image features
extracted from the model backbone are concatenated with other data modalities into one feature vector
and passed through the classifier to perform MCI detection. More details about the model architecture
are available in Section 3.4.

3.4 Multimodal Convolution Mixer
The model backbone is an extension of the ConvMixer architecture [16]. The architecture can be divided

into four parts: input embedding, model layers, features preparation, and classifier.
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3.4.1 Input Embedding
Input embedding consists of three layers in front of the model (patch embedding, GELU [43] activation,

and batch normalization). The fused T1w and PiB-PET images are passed through the patch embedding
extraction convolution layer, which essentially uses the same kernel and stride size to calculate the convolu-
tion filters in a patch-based manner. Analyzing patches rather than whole images is more computationally
efficient. After the computation of patch convolution filters, the output is passed through the GELU activation
function, which is used throughout the architecture. We chose GELU since it was used in the original
ConvMixer model. Activations are then passed through UncenteredBatchNorm2D modules, which are
modified batch normalization layers described in the B-cos network paper [44]. These modules capture batch
statistics without the bias term, which accommodates faithfulness in capturing weight contributions.

3.4.2 Model Layers
The Multimodal ConvMixer (MCM) layer consists of a residual connection, which skips depth-wise

convolution and applies filters for each channel separately. Each convolution module is followed by GELU
activation and uncentered batch normalization. The last convolution module in the MCM layer is point-
wise, which uses a kernel size of 1 and creates channel-wise dependencies. The MCM layer and depthwise
convolution produce efficient convolutions called depthwise-separable [45]. There are n number of layers in
the model. MCM-256 uses 12 such layers, MCM-512 uses 16 layers, MCM-768, MCM-1024, and MCM-1536
uses 20 layers.

3.4.3 Features Preparation
Using n number of MCM layers, the output is passed through a global pooling layer and a dropout

regularization layer. Global average pooling is a critical downsampling technique that reduces the spatial
dimensions of feature maps while retaining essential information. Dropout regularization improves gener-
alization by randomly setting some neuron activations to zero during training. This forces the network to
learn more robust and distributed feature representations rather than relying on specific activations, thus
improving computational efficiency and mitigating overfitting.

Finally, the extracted feature maps are flattened and fed into a multi-head self-attention module, a
transformative mechanism originally popularized in Natural Language Processing (NLP) but now playing
an equally crucial role in computer vision. Multi-head self-attention enables the model to dynamically
attend to different regions of an image, learning relationships between various objects or object parts. Unlike
traditional convolutional layers, which rely on localized receptive fields, self-attention mechanisms capture
global dependencies, allowing the network to understand how different parts of an image interact, even at
long distances.

This mechanism is frequently used in Vision Transformers (ViTs) [46–48], where it replaces con-
volutions to provide a more flexible and context-sensitive approach to feature extraction. Each attention
head in the multi-head framework learns different aspects of the input data, such as texture, shape, or
positional relationships, enabling richer feature representations. This makes multi-head self-attention useful
for complex vision tasks such as object detection, image segmentation, and fine-grained classification, where
understanding local and global structures is crucial.
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3.4.4 Classifier
The output of the multi-head self-attention module is then concatenated with numeric features (cogni-

tive tests, demographics, etc.) that are prepared in a vector format. The final feature vector is then fed into a
custom Multi-Layer Perceptron (MLP) classifier, ready for linear (fully connected) layers, followed by GELU
activation functions. We also use dropout regularization in this classifier to further enhance the robustness to
overfitting. The feature vector fed into the classifier head was down-sampled four times and finally reduced
to a binary classification result of Cognitively Normal (CN) or Mild Cognitive Impairment (MCI).

We have replaced the original convolution and batch normalization layers with the B-cos modules
described in [44]. The convolution modules (Conv2D) and batch normalization (UncenteredBatchNorm2D)
of the B-cos networks allow the visualization of the highest contributing features during inference. They
work similarly to Grad-CAM [49] or, in the case of numerical features, SHAP values [50]. We chose B-
cos modules over Grad-CAM because of several reasons: faithfulness, with B-cos networks replacement
of layers in models, is necessary, and these layers capture summaries of all computations during training;
they also capture both positive and negative contributions, which leads to more detailed and focused
explanations, where Grad-CAM is a post-hoc computation and it may not be faithful to the network’s internal
computations; high quality, clearly focused contributions, Grad-CAM captures saliency maps of gradients
backpropagated through the network and only highlights the regions in the images, that contribute most to
the prediction, but usually are coarse and noisy, where B-cos provides focused and clear contribution maps,
that are easier to interpret. An example of Grad-CAM vs. B-cos feature contribution maps is shown in Fig. 2.

Figure 2: Visual comparison between Grad-CAM (top row) and B-cos (bottom row) feature contribution maps. B-cos
explanations are more focused, where Grad-CAM provides a high-level overview of the region that contributes the
most in classification

Other changes include the addition of regularization with the dropout module; multi-head self-
attention, which allows the model to learn features from different subspaces [51]; a custom Multi-Layer
Perceptron (MLP) classifier head, which effectively classifies concatenated multi-modal features into Cog-
nitively Normal (CN) and Mild Cognitive Impairment (MCI). The complete model architecture is depicted
in Fig. 3.
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Figure 3: Multimodal convolution mixer architecture

3.5 Evaluation of Results
To assess the classification performance of the proposed model, we employ commonly used metrics:

accuracy, sensitivity, specificity, and Matthews Correlation Coefficient (MCC). These metrics provide a
comprehensive evaluation by measuring overall correctness, the ability to detect positive cases, and the ability
to exclude negative cases. Definitions and mathematical formulations are provided in the list below:

• Accuracy is the proportion of correctly classified instances among all predictions. It reflects the overall
performance of the model.

Accurac y = 1
N

N
∑

i
1(yi = ŷi) (1)

• Sensitivity is the proportion of actual positive cases correctly identified by the model. It represents the
true positive rate, crucial in applications where missing a positive instance has serious consequences.

Sensitiv ity = TP
TP + FN

(2)

• Specificity is the proportion of actual negative cases correctly identified by the model. It represents the
true negative rate and ensures that negative cases are not misclassified as positives.

Speci f icity = TN
TN + FP

(3)

• Matthews Correlation Coefficient (MCC) is a balanced measure that considers true and false positives
and negatives. It considers all four confusion matrix categories and returns a value between –1 and
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+1. An MCC of +1 indicates perfect prediction, 0 indicates random prediction, and −1 indicates total
disagreement between prediction and observation.

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(4)

4 Results

4.1 Implementation Details
The experiments were performed on a desktop computer with an AMD Ryzen 5900X Central Processing

Unit (CPU), RTX 4090 Graphics Processing Unit (GPU), and 32 GB RAM.
All models were trained with a batch size of 16 since this was the only batch size fitting into GPU memory.

We used a cosine annealing learning rate scheduler with a learning rate range [2−5; 1−7], Adam optimizer
with weight decay of 1−3 and a Binary Cross Entropy (BCE) loss for classification.

4.2 Results of Multimodal Convolution Mixer
To evaluate our proposed method, we have trained a variety of methods: ResNet family net-

works [52], DenseNet 121 and 201 [53], four different Vision Transformers [46] (tiny, small, base and large),
MobileNet4 [54] and baseline Convolutional Mixer (ConvMixer) networks [16]. We explored five different
architecture versions of ConvMixer as described in Table 3. All models used eight heads in the self-attention
module, a kernel size of 9, and a patch size of 7 since these parameters showed the best results across models.

Table 3: Types of Multimodal Convolutional Mixer architecture evaluated in this paper

Dimension Depth
1536 20
1024 20
768 20
512 16
256 12

4.3 Classification Results with MCSA Dataset
All models were trained on individual scan planes (sagittal, coronal, and axial) to see how representative

each plane is regarding MCI detection. First, we evaluated model performance on the biggest dataset
we acquired-Mayo Clinic (MCSA). It was nonsensical to assess the ADNI and OASIS3 separately due to
their size. It would overfit both datasets due to high variance. However, we provide Leave-One-Dataset-
Out (LODO) cross-dataset validation and 5-fold cross-validation results in the ablation studies subsection.
Classification results using the MCSA dataset on the sagittal plane are listed in Table 4.

Table 4: Classification results using only MCSA dataset sagittal plane

Model Accuracy Sensitivity Specificity MCC
MCM-768-20 0.9639 0.9690 0.9587 0.9278
MCM-512-16 0.8918 0.8865 0.8969 0.7835
MCM-256-12 0.8505 0.7938 0.9072 0.7055

(Continued)
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Table 4 (continued)

Model Accuracy Sensitivity Specificity MCC
MCM-1024-20 0.7990 0.8865 0.7113 0.6073
MobileNetV4 0.7423 0.7628 0.7216 0.4849

ResNet-152 0.7320 0.7525 0.7113 0.4643
DenseNet-121 0.7320 0.7216 0.7422 0.4640

ResNet-34 0.7216 0.6288 0.8144 0.4511
MCM-1536-20 0.7165 0.8865 0.5463 0.4404

ResNet-18 0.7165 0.7113 0.7216 0.4330
Tiny ViT 0.7010 0.7150 0.7512 0.4020
Base ViT 0.6959 0.7113 0.6804 0.3919

DenseNet-201 0.6959 0.7628 0.6288 0.3953
ConvMixer-256-12 0.6907 0.7422 0.6391 0.3834

ResNet-50 0.6907 0.7525 0.6288 0.3843
ConvMixer-768-20 0.6856 0.6907 0.6804 0.3711

ResNet-101 0.6804 0.7319 0.6288 0.3627
ConvMixer-512-16 0.6753 0.7525 0.5979 0.3547

Small ViT 0.6753 0.7422 0.6084 0.3537
Large ViT 0.6753 0.6185 0.7319 0.3527

ConvMixer-1024-20 0.6649 0.6907 0.6391 0.3303
ConvMixer-1536-20 0.6546 0.7422 0.5670 0.3141

4.3.1 Classification Results with MCSA Dataset in Sagittal Plane
With the MCSA dataset in the sagittal plane, the highest achieved accuracy is 96.3%, sensitivity 96.9%,

specificity 95.87%, and MCC 0.9278 by our proposed MCM model, which uses 768 dimension convolution
filters. In the sagittal plane on the MCSA dataset, only the MCM-1536 model shows moderate performance,
similar to other baseline models; however, all other MCM models outperform the baseline by around
5%–20%. During training, it was obvious that most of the baseline models were suffering from overfitting
since the training BCE loss diverged from the validation loss. Utilizing dropout modules for regularization,
both in the backbone of the MCM model and in a classifier, allowed our proposed method to cope with high
variance in the dataset.

4.3.2 Classification Results with MCSA Dataset in Coronal Plane
The classification results with the MCSA dataset in the coronal plane are listed in Table 5. Compared to

the sagittal plane, the highest achieved accuracy is lower−91.24% compared to 96.3%. However, most models
show slightly worse performance. Compared to the sagittal plane, the MCM-1024 model shows the best
results, with MCM-768 falling behind 2% in accuracy. The results show that using the MCSA dataset in the
coronal plane, the classification is not as accurate, and the sagittal plane is a better choice for MCI detection.
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Table 5: Classification results using only MCSA dataset coronal plane

Model Accuracy Sensitivity Specificity MCC
MCM-1024-20 0.9124 0.8659 0.9587 0.7980
MCM-768-20 0.8969 0.8247 0.9690 0.7639
MCM-1536-20 0.8247 0.8350 0.8144 0.6601
MCM-256-12 0.7784 0.7835 0.7731 0.5567
MobileNetV4 0.7526 0.6494 0.8556 0.5162
MCM-512-16 0.7320 0.8865 0.5773 0.4878

ResNet-18 0.7010 0.6597 0.7422 0.4034
Large ViT 0.6907 0.7319 0.6494 0.3827

ResNet-152 0.6907 0.7119 0.6694 0.3827
DenseNet-201 0.6907 0.6597 0.7216 0.3821

ConvMixer-256-12 0.6856 0.7628 0.6082 0.3756
ResNet-101 0.6856 0.7216 0.6494 0.3721
Base ViT 0.6856 0.7116 0.6594 0.3721

DenseNet-121 0.6804 0.7422 0.6185 0.3636
ResNet-34 0.6753 0.6391 0.7113 0.3514
ResNet-50 0.6649 0.7525 0.5773 0.3350
Small ViT 0.6649 0.6701 0.6579 0.3299
Tiny ViT 0.6598 0.6391 0.6597 0.3198

ConvMixer-1024-20 0.6546 0.6804 0.6288 0.3096
ConvMixer-512-16 0.6495 0.7113 0.5876 0.3120
ConvMixer-768-20 0.6392 0.6597 0.6185 0.2785
ConvMixer-1536-20 0.6340 0.9175 0.3505 0.3254

4.3.3 Classification Results with MCSA Dataset in Axial Plane
The classification results with the MCSA dataset in the axial plane are listed in Table 6. We can see that all

MCM models outperform the baseline, where the best results are achieved by the MCM-768 and MCM-1024
models, with the highest accuracy being 93.81%, 92.78% sensitivity, 94.84% specificity and MCC 0.9077. The
MCM-768 model achieved 3% lower accuracy than the sagittal plane, compared to the coronal plane, which
achieved 2% higher accuracy. These results show that the sagittal and axial planes are the most descriptive
with respect to the differentiation of patients with MCI vs. CN using the selected image and non-image
modalities in the MCSA dataset.

Table 6: Classification results using only MCSA dataset axial plane

Model Accuracy Sensitivity Specificity MCC
MCM-768-20 0.9381 0.9278 0.9484 0.9077
MCM-1024-20 0.8660 0.8865 0.8453 0.7731
MCM-1536-20 0.7938 0.9690 0.6185 0.6274
MCM-512-16 0.7526 0.7835 0.7216 0.5061
MCM-256-12 0.7268 0.8969 0.5567 0.4823

ConvMixer-1024-20 0.7268 0.7525 0.7010 0.4542

(Continued)
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Table 6 (continued)

Model Accuracy Sensitivity Specificity MCC
ResNet-18 0.7165 0.7010 0.7319 0.4331
ResNet-34 0.7062 0.7628 0.6494 0.4150
ResNet-50 0.7062 0.6804 0.7319 0.4129

MobileNetV4 0.7010 0.7113 0.6907 0.4021
ConvMixer-1536-20 0.7010 0.6907 0.7113 0.4021

ResNet-152 0.6959 0.7525 0.6391 0.3942
Small ViT 0.6959 0.7113 0.6804 0.3919
ResNet-101 0.6959 0.6804 0.7113 0.3919

DenseNet-121 0.6907 0.7938 0.5876 0.3898
ConvMixer-512-16 0.6907 0.6494 0.7319 0.3827
ConvMixer-768-20 0.6856 0.5876 0.7835 0.3784

Large ViT 0.6804 0.7216 0.6391 0.3620
Tiny ViT 0.6804 0.6701 0.6907 0.3609

ConvMixer-256-12 0.6598 0.7422 0.5773 0.3240
DenseNet-201 0.6546 0.6391 0.6701 0.3094

Base ViT 0.6392 0.6494 0.6288 0.2784

4.4 Classification Results with Full Dataset
The second part of the evaluation was to check whether the proposed method can generalize with

various datasets; therefore, we combined all patients from the ADNI, MCSA, and OASIS3 datasets into
one and then performed the same experiments with the MCSA dataset. Table 7 lists the results in the
sagittal plane.

Table 7: Classification results using full dataset in sagittal plane

Model Accuracy Sensitivity Specificity MCC
MCM-1024-20 0.9492 0.8907 0.9836 0.9003
MCM-768-20 0.9407 0.9075 0.9743 0.8818
MCM-512-16 0.7797 0.7647 0.7948 0.5592

MCM-1536-20 0.7585 0.8487 0.6666 0.5145
MCM-256-12 0.7246 0.8991 0.5470 0.4874
DenseNet-121 0.7034 0.7142 0.6923 0.4075
MobileNetV4 0.6992 0.7647 0.6324 0.4043

ResNet-152 0.6949 0.6050 0.7863 0.3936
ResNet-18 0.6822 0.6638 0.7008 0.3643
Tiny ViT 0.6822 0.6554 0.7094 0.3643

ResNet-34 0.6780 0.7731 0.5811 0.3660
ResNet-50 0.6737 0.7226 0.6239 0.3509
Small ViT 0.6737 0.6638 0.6837 0.3474
ResNet-101 0.6695 0.8067 0.5299 0.3576

DenseNet-201 0.6653 0.6890 0.6410 0.3318

(Continued)
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Table 7 (continued)

Model Accuracy Sensitivity Specificity MCC
ConvMixer-768-20 0.6568 0.6050 0.7094 0.3139
ConvMixer-512-16 0.6483 0.7226 0.5726 0.3024

Large ViT 0.6483 0.7315 0.5605 0.3024
ConvMixer-1024-20 0.6441 0.8403 0.4444 0.3206

Base ViT 0.6398 0.5798 0.7008 0.2802
ConvMixer-256-12 0.6271 0.5630 0.6923 0.2548

ConvMixer-1536-20 0.6186 0.4621 0.7777 0.2458

4.4.1 Classification Results with Full Dataset in Sagittal Plane
Our proposed MCM-1024 method can reach 94.92% accuracy, 89.07% sensitivity, 98.36% specificity, and

0.9003 MCC. The MCM-1024 and MCM-768 show good results, although the balance between sensitivity and
specificity could be better. These two metrics should match, meaning that the model is equally likely to predict
MCI or CN. In this case, models tend to predict more likely CN. Interestingly, the baseline ConvMixer models
show relatively low performance, which means that using regularization techniques with self-attention and
custom classifier allows not only to reduce overfitting but also to improve classification performance by
10%–20%.

4.4.2 Classification Results with Full Dataset in Coronal Plane
The classification results with the full dataset in the coronal plane are listed in Table 8. Here, we can see

that the MCM-256 model is only slightly better than the MobileNet4 baseline, and the best model overall is
MCM-768, achieving 92.37% accuracy, 93.27% sensitivity, 91.45% specificity, and 0.8486 MCC. In this case,
there is an excellent balance between sensitivity and specificity, which means the model is not biased toward
choosing the diagnosis of MCI or CN. Again, all MCM models outperform the tested baseline models.

Table 8: Classification results using full dataset in coronal plane

Model Accuracy Sensitivity Specificity MCC
MCM-768-20 0.9237 0.9327 0.9145 0.8486
MCM-1024-20 0.8686 0.8655 0.8717 0.7378
MCM-512-16 0.8602 0.8487 0.8779 0.7203

MCM-1536-20 0.7839 0.8151 0.7521 0.5705
MCM-256-12 0.7288 0.6722 0.7863 0.4588
MobileNetV4 0.7203 0.6470 0.7948 0.4432
DenseNet-201 0.7119 0.8067 0.6153 0.4354
DenseNet-121 0.7076 0.6806 0.7350 0.4152

Base ViT 0.6992 0.7899 0.6068 0.4085
ConvMixer-1536-20 0.6949 0.7142 0.6752 0.3910
ConvMixer-768-20 0.6907 0.7226 0.6581 0.3049

ResNet-50 0.6864 0.6470 0.7264 0.3730
Large ViT 0.6780 0.7058 0.6495 0.3576

ResNet-152 0.6737 0.7478 0.5982 0.3540

(Continued)
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Table 8 (continued)

Model Accuracy Sensitivity Specificity MCC
Tiny ViT 0.6737 0.7142 0.6324 0.3501

ConvMixer-256-12 0.6695 0.6638 0.6752 0.3390
ResNet-34 0.6695 0.6050 0.7350 0.3401
ResNet-101 0.6653 0.7899 0.5384 0.3457
ResNet-18 0.6610 0.7058 0.6153 0.3249
Small ViT 0.6568 0.6974 0.6153 0.3160

ConvMixer-512-16 0.6525 0.6302 0.6752 0.2845
ConvMixer-1024-20 0.6229 0.5630 0.6837 0.2461

4.4.3 Classification Results with Full Dataset in Axial Plane
The classification results with the full dataset in the axial plane are listed in Table 9. MCM-768 achieved

the highest accuracy at 90.4%, 92.43% sensitivity, 85.59% specificity, and 0.8178 MCC. The axial plane using
a full dataset shows the lowest accuracy achieved compared to other planes. Compared to results only using
the MCSA dataset, we can see that the performance on the sagittal plane remains the best. Still, the coronal
plane results are slightly worse using the full dataset. This means that the ADNI and OASIS3 datasets in the
axial plane introduce more variance, and therefore the models do not capture high-quality differentiating
features due to apparent noise. Overall, MCM models using the full dataset in the axial plane still outperform
all baseline models tested.

Table 9: Classification results using full dataset in axial plane

Model Accuracy Sensitivity Specificity MCC
MCM-768-20 0.9040 0.9243 0.8559 0.8178
MCM-1024-20 0.8983 0.9075 0.8888 0.7977
MCM-1536-20 0.7924 0.7983 0.7863 0.5853
MCM-256-12 0.7331 0.7563 0.7094 0.4677
MCM-512-16 0.7119 0.7394 0.6837 0.4256

ConvMixer-1024-20 0.7076 0.6302 0.7863 0.4179
MobileNetV4 0.6992 0.7226 0.6752 0.3998

Small ViT 0.6780 0.6722 0.6837 0.3560
DenseNet-201 0.6695 0.6722 0.6666 0.3393

Tiny ViT 0.6695 0.6638 0.6752 0.3398
ConvMixer-768-20 0.6610 0.8151 0.5042 0.3441
ConvMixer-512-16 0.6610 0.6890 0.6324 0.3236

ResNet-50 0.6610 0.6470 0.6752 0.3219
Base ViT 0.6568 0.6386 0.6752 0.3134
ResNet-18 0.6525 0.7058 0.5982 0.3086

DenseNet-121 0.6525 0.5882 0.7179 0.3060
ResNet-101 0.6483 0.5630 0.7350 0.2988

ConvMixer-1536-20 0.6441 0.7394 0.5470 0.2966
Large ViT 0.6441 0.5882 0.7008 0.2886

(Continued)
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Table 9 (continued)

Model Accuracy Sensitivity Specificity MCC
ConvMixer-256-12 0.6398 0.6974 0.5811 0.2635

ResNet-152 0.6229 0.5882 0.6581 0.2456
ResNet-34 0.6144 0.6218 0.6068 0.2292

In summary, in almost all scenarios tested, all MCM models outperformed the baseline models by 10%
on average (1%–20% at extremums). The proposed method, particularly the MCM-768 variant, shows great
MCI classification results in the MCSA dataset, but it can also generalize well on mixed datasets.

4.4.4 Summary of Model Performances
To provide a comprehensive and representative evaluation of model performance, Table 10 and Fig. 4

summarize key metrics–accuracy, sensitivity, specificity, and MCC–averaged over the sagittal, coronal, and
axial planes using only the full dataset (which includes MCSA).

Table 10: Summary of model performance averaged across all planes-full dataset only

Model Accuracy Sensitivity Specificity MCC
MCM-768-20 0.9228 0.9215 0.9149 0.8494
MCM-1024-20 0.9054 0.8879 0.9147 0.8119
MCM-512-16 0.7839 0.7843 0.7855 0.5684

MCM-1536-20 0.7783 0.8207 0.7350 0.5568
MCM-256-12 0.7288 0.7759 0.6809 0.4713
MobileNetV4 0.7062 0.7114 0.7008 0.4158
DenseNet-121 0.6878 0.6610 0.7151 0.3762
DenseNet-201 0.6872 0.7220 0.6410 0.3688

Tiny ViT 0.6701 0.6778 0.6809 0.3464
ResNet-50 0.6737 0.6722 0.6752 0.3486
ResNet-18 0.6652 0.6905 0.6381 0.3326
Small ViT 0.6695 0.6764 0.6614 0.3398
Base ViT 0.6653 0.6694 0.6609 0.3340

ResNet-152 0.6638 0.6636 0.6810 0.3311
ResNet-101 0.6610 0.7266 0.6011 0.3340
Large ViT 0.6563 0.6665 0.6624 0.3346

ConvMixer-1024-20 0.6582 0.6903 0.6381 0.3282
ConvMixer-768-20 0.6695 0.7142 0.6238 0.3210

ResNet-34 0.6540 0.6643 0.6610 0.3118
ConvMixer-512-16 0.6540 0.6803 0.6267 0.3035

ConvMixer-1536-20 0.6538 0.6974 0.6296 0.3112
ConvMixer-256-12 0.6449 0.6678 0.6429 0.2858

Table 10 presents a list of models sorted by the average accuracy. The highest-performing model, MCM-
768, achieves an average accuracy of 92.28%, coupled with a high sensitivity of 92.15%, specificity of 91.49%,
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and MCC of 0.8494, demonstrating robust discriminative ability. Other MCM variants, such as MCM-
1024 and MCM-512, also perform strongly on all metrics, further strengthening the effectiveness of the
proposed architecture.

Figure 4: Comparison of model performance metrics (accuracy, sensitivity, specificity, and MCC) averaged over all
orthogonal planes (sagittal, coronal, and axial)

Models like MCM-512, MobileNetV4, and several DenseNet, ResNet, and ViT variants demonstrated
moderate performance. Accuracy for these models ranged from around 66% to 78%, and MCC values ranged
from 0.33 to 0.57. Although some showed a balance between sensitivity and specificity, their overall reliability,
as reflected by the MCC, was notably lower than that of the leading MCM models.

The bar chart in Fig. 4 visually complements the table by illustrating the performance of each model
across the three metrics. For example, while MCM-1536 demonstrates high sensitivity 82.35%, it exhibits
lower specificity 73.50%, suggesting a tendency to over-predict positive cases. In contrast, some models,
such as MobileNetV4 and TinyViT, show balanced but moderate performance, indicating their potential for
further optimizations.

The baseline ConvMixer models consistently showed lower performance in all metrics, with MCC
values mostly below 0.33. Interestingly, increasing the size of these models (e.g., from ConvMixer-256 to
ConvMixer-1536) did not lead to meaningful improvements. This indicates that the ConvMixer architecture,
without our proposed changes, is not suitable for the MCI classification task with the complete dataset.

4.5 Visualization of the Most Contributing Features
To gain deeper insights into the decision-making process of our model, we conducted an additional

study by replacing convolutional and batch normalization layers in the MCM architecture with B-cos
modules [44]. These modules facilitate the generation of feature contribution maps, offering enhanced inter-
pretability by visualizing which regions in the input images most strongly influence the model’s predictions.
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The figures in this subsection present selected visualizations of the most contributing features in differ-
ent orthogonal planes–sagittal, coronal, and axial–using fused T1w and PiB-PET images. These visualizations
help uncover spatial patterns that differentiate CN individuals from those with MCI and are aligned with
known clinical markers of early cognitive decline.

4.5.1 Sagittal Plane
Fig. 5 displays the feature contribution maps for the sagittal plane. For MCI subjects, the most notable

features are concentrated around midline structures such as the corpus callosum, the thalamus, and the
lateral ventricles. These areas are consistent with clinical observations that report structural and metabolic
changes in these regions in the early stages of cognitive impairment [55–58]. In subjects with CN, while
attention is still partially focused in the brain’s core, the model also focuses on the curvature and width of
the cerebral cortex, suggesting a role for cortical thickness and brain volume - both recognized as valuable
indicators in neurodegenerative processes.

Figure 5: Feature contribution visualization in the sagittal plane. The model highlights midline brain structures (corpus
callosum, thalamus, ventricles) for MCI subjects, while CN cases emphasize cortical curvature and volume

4.5.2 Coronal Plane
In Fig. 6, we observe that the focus of the model for patients with MCI remains concentrated in the

central region of the brain, particularly the lateral ventricles and surrounding white matter. This aligns with
the findings that ventricular enlargement and white matter changes are early biomarkers of MCI. For CN
cases, the model continues to focus on both central structures and peripheral cortical boundaries, again
indicating that preserved cortical morphology is a distinguishing feature in cognitively normal aging [59].
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Figure 6: Feature contribution visualization in the coronal plane. The model’s attention for MCI subjects centers around
the lateral ventricles and white matter, while for CN cases, it also includes cortical boundaries and overall brain shape

4.5.3 Axial Plane
Fig. 7 presents the axial view. In MCI subjects, consistent with the other planes, the highest contributions

are observed in the central ventricular regions. In contrast, CN subjects show model attention primarily
directed toward the outer edges and sulci of the brain. This again suggests that the structural integrity of
the cortical surface and brain volume play a key role in the distinction of CN from MCI, reinforcing well-
established neuroimaging findings.

Figure 7: Feature contribution visualization in the axial plane. MCI cases show attention in central regions, especially
the lateral ventricles, while CN subjects have contributions from the cortical edges and sulcal patterns
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4.5.4 Interpretation and Clinical Relevance
Across all planes, a consistent pattern emerges: in MCI cases, the model focuses on central brain regions,

especially the lateral ventricles and midline structures, likely reflecting early neurodegenerative changes
such as atrophy and ventricular enlargement. In contrast, CN cases draw attention to both central and
peripheral areas, particularly the cortical boundaries, suggesting that the model is sensitive to preserved
cortical morphology and brain volume, which are protective factors against cognitive decline.

These visual patterns support the model’s ability to align its learned representations with clinical
knowledge, providing interpretability and trust in its predictive mechanisms. Future work could include
quantitative analysis of these attention maps and comparison with expert-labeled regions of interest to
validate the model’s focus areas further.

4.6 Ablation Studies
4.6.1 Influence of Multi-Head Self-Attention Module

We performed ablation studies to check the influence of the multi-head self-attention module on the
network. We performed the same experiments with our proposed model, the only difference being that we
removed the multi-head self-attention module.
MCSA Dataset

The classification performance of MCM models without multi-head self-attention on the MCSA dataset
across sagittal, coronal, and axial planes is summarized in Table 11. Compared to baseline models, the
results show moderate differences, with improvements of approximately 2% in accuracy for the sagittal
plane when using the MCM-1024 model. However, these improvements are lower than those observed when
incorporating multi-head self-attention, indicating its contribution to enhancing performance.

The MCM-1024 model achieves the highest accuracy in the sagittal plane, at 76.29%. However, sensitivity
and specificity remain relatively balanced, at 79.38% and 73.19%, respectively. We see moderate performance
when compared to the MCC metric. Compared to models that incorporate attention mechanisms, the
overall classification performance is marginally improved over baseline models but does not exhibit a
substantial boost.

In the coronal plane, the MCM-1536 model achieves the highest accuracy at 80.44%, with a strong
sensitivity of 92.78% but low specificity at 68.14%. The high sensitivity implies that the model is effective in
detecting MCI cases. However, the low specificity suggests a higher rate of false positives, which means it
struggles to classify healthy patients correctly. Compared to results using multi-head self-attention on the
full dataset, the relative improvement over the baseline is approximately 8%, and with MCSA alone, the
improvement is around 5%. This highlights the impact of the removal of self-attention by multiple heads,
which reduces the ability of the model to maintain specificity, potentially leading to an increased false positive
rate in clinical applications.

For the axial plane, classification performance declines more noticeably without multi-head self-
attention. The MCM-768 model achieves the highest accuracy at 75.77%, but overall, the results indicate
a drop of approximately 4%–18% compared to the attention-enhanced models. This suggests that the axial
plane benefits more from the additional feature extraction capabilities provided by self-attention, potentially
due to the complexity and variability in feature representation in this plane.
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Table 11: Results with the MCM model without attention mechanism on MCSA dataset

Sagittal plane

Model Accuracy Sensitivity Specificity MCC

MCM-1024-20 0.7629 0.7938 0.7319 0.5267
MCM-1536-20 0.7577 0.8556 0.6597 0.5256
MCM-768-20 0.7526 0.7938 0.7113 0.5068
MCM-256-12 0.7371 0.7731 0.7010 0.4754
MCM-512-16 0.7113 0.6494 0.7731 0.4259

Coronal plane
MCM-1536-20 0.8044 0.9278 0.6814 0.6456
MCM-1024-20 0.7887 0.8453 0.7319 0.5810
MCM-768-20 0.7680 0.8762 0.6597 0.5491
MCM-512-16 0.6598 0.8144 0.5051 0.3360
MCM-256-12 0.7010 0.7628 0.6391 0.4051

Axial plane
MCM-768-20 0.7577 0.7319 0.7835 0.5161
MCM-1536-20 0.7526 0.8247 0.6804 0.5104
MCM-512-16 0.7113 0.7113 0.7113 0.4226

MCM-1024-20 0.6907 0.5051 0.8762 0.3527
MCM-256-12 0.6856 0.7216 0.6494 0.3721

Full Dataset
The classification results for MCM models without multi-head self-attention on the full dataset

(MCSA + ADNI +OASIS3) are listed in Table 12. Compared to models trained solely on the MCSA dataset,
these results demonstrate the effect of increased dataset variability on model performance. While some
models achieve comparable accuracy, the sensitivity-specificity balance is affected, particularly in the sagittal
and coronal planes. In addition, all models show moderate classification performance, as indicated by the
MCC metric.

Only the MCM-1536 model maintains a comparable accuracy (76.27%) to its MCSA-trained counterpart
in the sagittal plane. However, its sensitivity (83.19%) is slightly higher at the cost of specificity (69.23%),
indicating a greater tendency toward detecting positive cases at the expense of more false positives. All other
model variations show a general decrease in performance, with the accuracy dropping below 75%. This
suggests that the additional variability introduced by the full dataset makes it more challenging for models
without self-attention to generalize well.

For the coronal plane, the highest accuracy achieved is 77.12% with the MCM-1024 model. Compared
to baseline models, this represents an improvement of up to 6%, although the gain is inconsistent between
models. Compared to MCSA-trained models, performance is around 3% worse, which can be attributed to
the additional variability introduced by the ADNI and OASIS3 datasets. This highlights a key limitation of
removing multi-head self-attention: while the model remains robust to some extent, its ability to maintain
consistent performance across different datasets is diminished.
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Table 12: Results with the MCM model without attention mechanism on full dataset

Sagittal plane

Model Accuracy Sensitivity Specificity MCC

MCM-1536-20 0.7627 0.8319 0.6923 0.5337
MCM-1024-20 0.7500 0.8907 0.6068 0.5277
MCM-768-20 0.7288 0.7647 0.6923 0.4604
MCM-256-12 0.7161 0.7899 0.6410 0.4400
MCM-512-16 0.6949 0.6050 0.7863 0.3936

Coronal plane
MCM-1024-20 0.7712 0.8067 0.7350 0.5455
MCM-1536-20 0.7500 0.7226 0.7777 0.5000
MCM-768-20 0.7458 0.7142 0.7777 0.4916
MCM-256-12 0.7161 0.7983 0.6324 0.4415
MCM-512-16 0.6864 0.8319 0.5384 0.3954

Axial plane
MCM-1536-20 0.7754 0.7478 0.8034 0.5508
MCM-768-20 0.7331 0.6638 0.8034 0.4684
MCM-1024-20 0.7203 0.6806 0.7606 0.4409
MCM-512-16 0.6907 0.6554 0.7264 0.3814
MCM-256-12 0.6653 0.5210 0.8119 0.3410

In the axial plane, the performance is generally similar to that of the MCSA-trained models. The balance
of sensitivity and specificity can also be observed in this plane, further supporting the notion that multi-head
self-attention aids in robust feature extraction.

The observed differences in classification performance highlight the role of multi-head self-attention
in balancing sensitivity and specificity. Models struggle with specificity, particularly in the coronal and
axial planes, with multi-head self-attention removal. This suggests that this key component helps to refine
discriminative features, reduce false positive rates, and improve generalizability by better capturing spatial
relationships between slices.

The trade-offs of omitting/including multi-head self-attention are listed below:

• The attention mechanism improves the model’s ability to focus on relevant features in spatial dimen-
sions. Without it, the model relies more on convolutional layers, which may not capture long-range
dependencies as effectively.

• Without multi-head self-attention, notable imbalances between sensitivity and specificity can be
observed, which highlights the lack of robustness to the variability of datasets when this component
is omitted.

• Adding ADNI and OASIS3 increases dataset diversity, making classification more complex. Without self-
attention, models struggle to maintain performance consistency, which can also be observed through
the results of the MCC metric.

• Omitting multi-head self-attention leads to reduced computational complexity, which can be advan-
tageous in real-world deployment scenarios. However, this comes at the cost of reduced robustness to
dataset variability and lower performance in general.
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4.6.2 Dataset Variability and Potential Biases
To evaluate how each feature category affects the performance of MCM models in three anatomical

planes: sagittal, coronal, and axial, an ablation study was performed using 5-fold cross-validation (CV) on a
complete dataset. The results are depicted in Fig. 8.

Figure 8: Feature category ablation studies across different imaging planes and models. Error bars are generated from
5 fold-cross validation results. Experiments performed on the full combined dataset (ADNI, MCSA, and OASIS3)

Models utilizing all features consistently achieve the highest accuracy across all planes, highlighting the
importance of a dataset that contains more than one data modality. Removing cognitive test features (MMSE,
CDR, and FAQ) results in the highest drop in accuracy (except for omitting motion correction and PVC in
PiB-PET preprocessing), reinforcing their strong correlation with classification performance. This coincides
with the feature correlation analysis depicted in Fig. 9.

The omission of demographic and clinical parameters also leads to reductions in accuracy, although
relatively lower than the characteristics of cognitive tests. Variability in accuracy supports model stability,
although MCM-1024 and MCM-768 produce notably higher performance than the baseline. A higher
resilience to feature omission can be observed in the coronal plane, while the axial plane appears to be more
sensitive to missing data, resulting in a slightly higher accuracy drop.

Removing PiB-PET preprocessing motion correction and PVC steps results in a consistent drop in
accuracy across all models and planes. This highlights the importance of PiB-PET preprocessing for high
classification performance. Higher cross-validation errors suggest increased variability and reduced model
stability. This indicates that the absence of PiB-PET motion correction and PVC introduces more uncertainty
in the classification results. These results highlight the need for cognitive features and PiB-PET preprocessing
to achieve high classification accuracy.
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Figure 9: Correlation heatmap of numeric features. Cognitive tests (MMSE, FAQ, CDR-global and sum) have the
highest correlation with diagnosis, where clinical parameters such as systolic and diastolic blood pressure, as well as
demographic factors-education and gender, do not show a high correlation

To assess the generalizability of our models across different datasets, we performed Leave-One-
Dataset-Out (LODO) cross-dataset validation. We compared its results with those achieved with 5-fold
cross-validation and random split validation, which was reported in the main results section. For illustration
purposes, we averaged the accuracies between planes and datasets. The comparison is represented in Fig. 10.

As shown in Fig. 10, 5-fold cross-validation yielded high overall accuracy, particularly for models
with larger capacities such as MCM-768 and MCM-1024 (except for MCM-1536). These models consis-
tently achieved accuracies above 89%, reflecting their ability to capture complex spatial features across
imaging planes.

When evaluating the same models using the LODO validation strategy, accuracy remained comparable
for MCM-768 and MCM-1024, suggesting strong cross-dataset generalization. In particular, LODO accuracy
was slightly reduced for smaller models (MCM-512 and MCM-256), which may lack the representational
capacity to adapt to shifts in data distributions between sources such as ADNI, MCSA, and OASIS3,
indicating that while lightweight architectures, robustness may be compromised when encountering unseen
data from different datasets.
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Figure 10: MCM models accuracy comparison using different validation methods (CV-5 fold cross-validation, LODO-
Leave-One-Dataset-Out validation, and random train/validation dataset split). CV and random split were performed
on the full dataset. Accuracies are averaged across planes and datasets for easier comparison

Random train/validation split produced accuracy values comparable to or higher than 5-fold CV
and LODO in several cases. This approach may overestimate model performance, as random split may
not account for dataset-specific variability. Consequently, these results may not fully reflect real-world
deployment scenarios, where models are expected to operate on previously unseen distributions. However,
differences in the metric values are minimal (up to 3%), which highlights the robustness of the models
given different subsets of the subjects of the dataset and other variations of the datasets, particularly variants
MCM-1024 and MCM-768.

5 Discussion
In recent years, Multi-Layer Perceptron (MLP) mixers have gained attention due to their ability to

match state-of-the-art performance while being more computationally efficient in parameters and com-
putations [60,61]. ConvMixer adopts a similar approach, but instead of stacking dense layers, it employs
convolutional layers, which can capture more spatially aware features from the data. One of the reasons we
chose ConvMixer is its architectural simplicity. With only one layer type, the model is easy to extend and
modify by adding new modules as needed. This modularity allows future improvements or adaptations in
different domains or datasets.

Another important aspect of our work is the incorporation of Explainable Artificial Intelligence (XAI),
which has become a rapidly growing area of interest in the AI research community. Traditionally, deep
learning models have been considered “black boxes”, making them difficult to understand as to how they
make decisions or what factors influence their predictions. However, advanced XAI methods are emerging
that allow for a more straightforward interpretation of model decision-making. In our model, we used
B-cos network modules to visually represent feature contributions as images are processed through the
network. Unlike Grad-CAM, which produces only heatmaps, B-cos offers a more visually appealing and
informative explanation of the decision-making process. B-cos has also been shown to improve metrics such
as localization [44] compared to Grad-CAM, suggesting that it can provide more accurate insights into the
areas of the input data that are most relevant for classification. Incorporating XAI into classification models
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will be crucial in the future, not just to create clearer visualizations of model decisions but also to improve
the trust of practitioners in these methods, particularly when used in clinical settings.

One of the limitations of the study is the lack of validation in a real-world clinical setting. Although
the study demonstrates promising classification performance with three publicly available datasets (ADNI,
OASIS3, and MCSA), translating these findings into routine clinical practice presents several challenges.
In real-world settings, variations in scanner hardware and imaging protocols can lead to differences in
image quality and signal characteristics for T1w MRI and PiB-PET, potentially affecting the reliability of the
neuroimaging input data. In addition, clinical workflows across institutions often vary, influencing how and
when imaging, clinical, and demographic data are acquired and integrated. To ensure robust performance in
diverse patient populations, it is recommended that the model be validated on a wider spectrum of studies,
imaging environments, setups, and clinical practices.

For future work, an essential avenue for exploration is to conduct additional ablation studies to assess
each data modality’s impact on the model’s performance. Although multimodal methods generally outper-
form single-modal approaches by using complementary information from different sources, it would be
valuable to evaluate the individual contribution of each modality, whether imaging, clinical or demographic
data, to overall model effectiveness. Understanding the relative importance of each modality could help
refine the model and highlight which characteristics are most influential in distinguishing between patients
with MCI and patients with Cognitively Normal (CN). We aim to improve the balance between sensitivity
and specificity. In some instances, the model exhibited a trade-off, where one metric was higher than
the other, leading to either more false positives or false negatives. Ideally, the balance between sensitivity
and specificity should be minimal, meaning the model is confident in its decisions without sacrificing
performance. Achieving this balance will improve the model’s reliability and make it suitable for practical use
in clinical environments. As part of future improvements, we also plan to explore additional data modalities
and techniques, such as incorporating T2w or Computed Tomography (CT), which may further improve the
detection of MCI. Integrating such data could help improve the model’s predictive capabilities and increase its
robustness when applied in a variety of real-world clinical contexts. The ongoing refinement of explainability
methods and the fine-tuning of the model’s sensitivity and specificity could make it a valuable tool for early
and accurate detection of MCI.

6 Conclusions
This study proposed a method for accurately detecting MCI using multimodal data. The combination

of T1-weighted and PiB-PET brain imaging modalities provides valuable information on the structural
and metabolic aspects of the brain, which are beneficial when detecting pathologies associated with MCI.
In addition, the inclusion of cognitive test results, along with demographic and clinical data such as
blood pressure parameters, education, and gender, contributes essential information that can offer a more
comprehensive understanding of an individual’s cognitive status, as well as variations and clinical conditions
that can influence the progression of MCI.

The proposed methodology integrates advanced deep learning techniques, utilizing a fusion of imaging
modalities and a novel Multimodal Convolution Mixer architecture. This approach improves the accuracy,
sensitivity, and specificity of MCI detection compared to traditional baseline models and provides visual-
izations of the most influential features in decision-making, thus improving interpretability. Using a custom
classifier, combined with regularization strategies, further strengthens the robustness of the model against
overfitting, enabling it to generalize across individual and mixed datasets effectively.

The ablation study identified the multi-head self-attention module as a pivotal component for improving
model performance. In specific cases, this module facilitated a performance boost of 10%–20%, underscoring
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its critical role in the success of the model. These results highlight the potential for developing more accurate
and reliable models for the detection of MCI, offering a promising avenue for future research. Using a
multimodal approach and focusing on key neural mechanisms, this study sets the stage for further refinement
of the MCI detection techniques. This could eventually lead to better diagnostic tools and personalized
treatment options.
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