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ABSTRACT: To address the limitations of existing abnormal traffic detection methods, such as insufficient temporal
and spatial feature extraction, high false positive rate (FPR), poor generalization, and class imbalance, this study
proposed an intelligent detection method that combines a Stacked Convolutional Network (SCN), Bidirectional Long
Short-Term Memory (BiLSTM) network, and Equalization Loss v2 (EQL v2). This method was divided into two
components: a feature extraction model and a classification and detection model. First, SCN was constructed by
combining a Convolutional Neural Network (CNN) with a Depthwise Separable Convolution (DSC) network to capture
the abstract spatial features of traffic data. These features were then input into the BiLSTM to capture temporal
dependencies. An attention mechanism was incorporated after SCN and BiLSTM to enhance the extraction of key
spatiotemporal features. To address class imbalance, the classification detection model applied EQL v2 to adjust the
weights of the minority classes, ensuring that they received equal focus during training. The experimental results
indicated that the proposed method outperformed the existing methods in terms of accuracy, FPR, and F1-score and
significantly improved the identification rate of minority classes.

KEYWORDS: Convolutional neural network; depthwise separable convolution; bidirectional long and short-term
memory network; class imbalance; abnormal traffic detection

1 Introduction
In the digital era, network security has become a global concern with the continuous evolution of

cyberattacks, highlighting the need to secure the network environment. These attacks not only threaten
personal privacy but can also have a severe impact on business operations and national security. Although
traditional security measures offer protection, they are often insufficient for increasingly sophisticated
attacks. Network anomaly traffic detection methods are commonly used to identify abnormal traffic and
enable timely responses, thereby ensuring stable operation and security of the network. Consequently,
abnormal traffic detection has become a key research focus in this field [1].

Abnormal network traffic detection involves a thorough analysis of network traffic by utilizing traffic
classification or statistical methods to identify and address anomalies promptly. Traditional detection
methods have widely employed machine learning-based approaches to detect abnormal traffic. For instance,
researchers have applied various machine learning techniques, such as random forest [2], K-nearest neigh-
bor [3], support vector machine [4,5], Naive Bayes [6], and decision tree [7], to investigate abnormal network
traffic detection, and have achieved promising results. However, these methods require manual design and
selection of traffic features.
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To address the challenges of traditional machine learning feature set design, researchers have turned to
deep learning for abnormal traffic detection, which enables automatic feature extraction from network traffic
and identification of unusual behaviors. Deep learning-based techniques have shown superior detection
capabilities compared with conventional machine learning models [8]. For example, researchers have
utilized Convolutional Neural Network (CNN), Deep Neural Network (DNN), and Recurrent Neural
Network (RNN) to overcome the limitations of shallow classifiers and improve the accuracy of intrusion
detection [9,10]. Despite advancements in deep learning methodologies, challenges remain in improving
classification accuracy and addressing the imbalance in dataset categories. Although CNN is effective at
processing large datasets and extracting robust features, the pooling stage may lead to loss of critical details
in anomalous data. In addition, both RNN and CNN may struggle to capture long-range dependencies,
which affects the generalizability and performance of the models. Moreover, numerous current models both
failing to consider the spatiotemporal complexity of traffic data and overlook the efficiency of the model
itself. Particularly deep learning models, complex neural network architectures require significant memory
and processing power, rendering them unsuitable for edge-computing devices with limited resources [11].
Moreover, the imbalance in many datasets can increase the false positive rate, thereby reducing the overall
accuracy of deep learning-based approaches.

To address the challenges outlined above, this study proposed a novel method for detecting abnormal
network traffic using a combination of Stacked Convolutional Network (SCN) and Bidirectional Long Short-
Term Memory (BiLSTM). The SCN constructed by integrating a CNN and Depthwise Separable Convolution
(DSC) extracted the spatial features of abnormal traffic, whereas BiLSTM captured the temporal features. An
attention mechanism was incorporated to prioritize the critical spatial and temporal features. To address the
common issue of class imbalance in the dataset, Equalization Loss v2 (EQL v2) [12] was applied to enhance
the learning of minority classes, thereby improving model accuracy. The key contributions of this study are
as follows.

(1) The regular convolutional layer of CNN was combined with DSC to construct the SCN, which
extracted the spatial features from traffic data while reducing the number of parameters and computational
workload, thereby simplifying the complexity of the model. BiLSTM bidirectional processing was employed
to capture the temporal dependencies between traffic features and extract contextual information. Addi-
tionally, an attention mechanism was introduced to enhance the model to capture the critical spatial and
temporal features, ultimately improving classification accuracy.

(2) To address the class imbalance issue in multi-class classification tasks, the EQL v2 loss function was
designed to improve the detection precision for minority class data. By combining the SCN-BiLSTM feature
extraction model, which included the attention mechanism, with a class imbalance-oriented classification
detection model, this approach aimed to enhance the detection performance on imbalanced datasets by
addressing both insufficient spatial and temporal feature extraction and the class imbalance problem.

(3) The efficacy of the anomaly detection approach was validated using the NSL-KDD dataset. The
empirical results demonstrated that the proposed method outperformed the other approaches, demonstrat-
ing significant improvements in multiclassification accuracy, recall, and F1-score.

The paper is organized as follows: Section 2 reviews related research work. Section 3 details the proposed
methodology. Section 4 describes the experimental results and analyses. Section 5 concludes our work and
looks forward to future research directions.
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2 Related Work
As artificial intelligence research has deepened, particularly with the rapid development of machine

learning and deep learning [13,14], the application of these methods in abnormal traffic detection has become
increasingly popular.

Compared with machine learning, deep learning can leverage neural networks to automatically extract
features from different types of network traffic, addressing the challenge of heavy reliance of machine
learning techniques on expert experience [15]. As deep learning has evolved, an increasing number of
deep learning-based models have shown exceptional performance [16]. Li et al. [17] applied an image
transformation technique to convert network traffic data into an image form, enabling the automatic learning
of graphical features through a CNN model for traffic detection. Khan et al. [18] proposed a CNN-based
traffic detection method that employed three convolutional layers with convolutional and pooling operations
to effectively capture feature relationships, using the softmax function to classify the extracted features with
an accuracy of 99.23%. Temporal features, such as timestamps and durations, in traffic data have led some
researchers to consider using RNNs for analysis. However, RNNs are limited by their short-term memory
and inability to analyze longer sequences. To address this, Long Short-Term Memory (LSTM) network serves
as a specialized form of RNN that can learn long-term dependencies. Donkol and Hussein [19] proposed
an intrusion detection model combining feature selection with an enhanced LSTM and RNN architecture.
While this model achieved a high detection rate, its computational cost remained significantly high. Imrana
et al. [20] suggested that traditional models have a high FPR for specific attack types such as U2R and
R2L. To improve this, they proposed a BiLSTM-based network model, and experimental data demonstrated
that this method outperformed the traditional LSTM and other advanced models in terms of classification
performance. Similarly, Zhang et al. [21] proposed a network intrusion detection model based on BiLSTM
with a multi-head attention mechanism. The model assigns attention weights to features and employs
BiLSTM to capture long-distance dependencies, achieving superior accuracy on several benchmark datasets.

These methods demonstrated that CNN and BiLSTM are effective in improving the classification
performance of abnormal traffic detection. However, a thorough review of current research on traffic
detection using deep learning models reveals that most existing models focus on either spatial or temporal
features without adequately balancing them. For example, CNN in the above study excels in capturing spatial
feature correlations, whereas BiLSTM is more suited for analyzing temporal features. In addition, these
networks often suffer from high computational complexity, long training times, and other limitations. To
address these issues, this study proposed a feature extraction model that combined CNN, DSC, and BiLSTM.

Meanwhile, it is found that these methods do not effectively address the issue of dataset class imbalance.
When deep learning models handle imbalanced data, they struggle to accurately identify certain attacks
owing to the overwhelming number of normal samples compared with abnormal samples and the significant
variation in the proportion of each attack type within the abnormal samples. For instance, Dong et al. [22]
proposed an abnormal traffic detection framework based on deep reinforcement learning, which achieved
good results. However, it still falls short in detecting low-quantity abnormal traffic such as R2L and
U2R. Therefore, addressing class imbalance is crucial for improving detection performance. Techniques
for addressing this issue primarily involve data- and algorithmic-level approaches. Data-level methods
aim to achieve more balanced class representation by manipulating a dataset through oversampling and
undersampling. For example, the SMOTE method was employed by Wei et al. [23] to generate representative
samples for minority classes, alleviating the imbalance problem of network traffic. However, these methods
carry the risks of data loss, overfitting of the training set, and increased computational demands. In contrast,
algorithmic-level methods address class imbalance by incorporating specialized algorithms during the
training phase, without modifying the original dataset composition. For instance, cost-sensitive learning
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maintains an imbalanced distribution of dataset by assigning different weights to different samples while
improving the recognition of classes with lower frequencies. Dina et al. [24] proposed the application of
the focal loss (FL) function to address category imbalance, thereby enhancing the model classification
performance by increasing the influence of difficult-to-classify samples. Tan et al. [25] introduced the
Equalization Loss (EQL) weighted loss function to adjust the weights of positive and negative samples.
However, the improvement in detection accuracy from the above studies is limited. Therefore, this study
employed EQL v2 to address class imbalance, providing independent and balanced weight adjustments
during the training process for each class, thereby enhancing classification accuracy for minor classes.

In summary, practical traffic detection scenarios require attention not only to the issue of unbalanced
data categories but also to the extraction of spatial and temporal features within traffic data to improve
detection accuracy. Therefore, designing a more efficient deep learning model that balances detection
performance across various categories while effectively capturing spatial and temporal features to enhance
accuracy has become a key challenge in this field.

3 Proposed Methodology

3.1 Overview of Feature Extraction Model
Currently, most abnormal traffic detection methods focus on a single-network perspective and fail

to fully explore the temporal and spatial dimensions inherent in traffic datasets. This study proposed a
lightweight feature extraction model, SCN-BiLSTM, with a fusion attention mechanism that effectively
addressed the limitations of traditional detection models by leveraging both the temporal and spatial
information in traffic data, resulting in more comprehensive and accurate abnormal traffic detection.

3.1.1 Spatial Feature Extraction Module with SCN
In deep learning, CNN has become a key technology for efficient feature extraction in tasks such as

target recognition, text classification, and anomaly detection. Conventional CNN consists of three main
components: a convolutional layer, a pooling layer, and a fully connected layer [26]. The convolutional
layer performs convolutional operations by moving the kernel over the input data to efficiently extract local
features, making it the most crucial layer in the CNN structure. The pooling layer reduces the dimensionality
of the feature maps, thereby decreasing the computational load and the parameter volume. After the
convolutional and pooling layers extract the relevant features, the fully connected layer synthesizes these
features for final classification or regression analysis. Although the convolutional layer excels in local feature
extraction, its ability to capture global feature correlations is limited, which may result in the loss of important
semantic details when processing complex data, thereby affecting the final results.

DSC extracts spatial features within a single channel by decomposing the regular convolutional layer
into depthwise convolution to capture spatial features within each channel and pointwise convolution to
combine cross-channel features. This two-step process first applies depth-wise convolution to independently
convolve each input channel, significantly reducing the computational cost and focusing on feature extrac-
tion within each channel. The pointwise convolution then performs inter-channel feature fusion, refining,
and compressing the features. This approach ensures that the model remains lightweight while maintaining
a performance comparable to that of regular convolution, significantly reducing computation and model
parameters. Although DSC offers advantages in terms of computational efficiency and model size, it is less
effective than regular convolution in capturing certain complex feature patterns, which may reduce the
model’s expressive capacity.
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To address these issues, this study introduced an SCN for spatial feature extraction. The SCN consisted
of four main layers: a regular convolutional layer, a depthwise convolutional layer, a pointwise convolutional
layer, and a max pooling layer. As the first layer, the regular convolutional layer captured the local patterns and
underlying features of the sequence from the original input by setting hyperparameters such as the number
of filters and the size of the convolutional kernel, providing a rich feature base for subsequent processing. To
retain more detail and spatial information, a pooling layer was not adopted after this layer. The depth-wise
convolutional layer applied the convolution kernel to each channel separately, reducing the parameter count
while preserving channel information. The pointwise convolutional layer combined the outputs of depthwise
convolution, mixing information across channels to enhance the nonlinear processing capacity of the model.
Finally, the max pooling layer reduced the spatial dimensions and decreased the input size for subsequent
layers, which helped the model learn more representative features and mitigate overfitting. The principle of
SCN is illustrated in Fig. 1.
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Figure 1: Principles of stacked convolutional network

The formulas for the DSC computation and parameter count are given in Eqs. (1)–(5). The input feature
dimension was assumed to be denoted as F ∗ F ∗M, the convolution kernel size as K ∗ K, the output feature
dimension as F ∗ F ∗ N, and M and N represent the numbers of input and output channels, respectively.

A1 = K ∗ K ∗M ∗ N ∗ F ∗ F (1)
A2 = K ∗ K ∗M ∗ N (2)
B1 = K ∗ K ∗M ∗ F ∗ F +M ∗ N ∗ F ∗ F (3)
B2 = K ∗ K ∗M + 1 ∗ 1 ∗M ∗ N (4)
C1 = (1/N) + (1/K2) (5)

The calculation amount of the regular convolution is A1, and its parameter number is A2. For DSC,
the calculation amount is B1, and the parameter number is B2. The ratio of the calculation amount and
parameter number between DSC and regular convolution is C1. Therefore, the calculation amount and
parameter number of DSC are (1/N) + (1/K2) of those in regular convolution, significantly reducing both
the parameters.
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The regular convolutional layer excels in extracting local features and capturing more complex feature
combinations. The depth-wise and point-wise convolutional layers focus on efficiently integrating the cross-
channel information. The max pooling layer reduces the input dimensions for subsequent layers while
preserving the key feature information. An SCN composed of these network layers can enhance the network’s
feature-learning ability while maintaining a low parameter count.

3.1.2 Temporal Feature Extraction Module with BiLSTM
LSTM is commonly used in network traffic detection models because of its strong long-term memory

capability [27]. By incorporating gate control mechanisms and cell states, such as the forgetting gate, input
gate, and output gate, the LSTM network can regulate which information is retained or forgotten, thereby
enabling it to preserve the long-term memory. The structure of the LSTM model is shown in Fig. 2.
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Figure 2: LSTM structure

The forget gate ft is generated from the current input xt and the hidden state ht−1 from the previous
time step. It is responsible for eliminating redundant or irrelevant information and controlling information
retained in the cell state Ct−1. The formula for calculating the forget gate is given by Eq. (6):

ft = σ (Wf ⋅ [ht−1 , xt] + b f ) (6)

The input gate it is generated from the current input xt and the hidden state ht−1 from the previous
time step. It selectively adds temporary information C̃t to the cell state Ct−1. The calculation formulas for the
input gate are shown in Eqs. (7) and (8).

it = σ (Wi ⋅ [ht−1 , xt] + bi) (7)
C̃t = tanh (Wc ⋅ [ht−1 , xt] + bc) (8)

The cell state Ct at the current moment is generated by combining the information ft × Ct−1 to be
retained from the previous moment with the information it × C̃t to be added at the current moment. The
calculation formula for the cell state is shown in Eq. (9).

Ct = ft × Ct−1 + it × C̃t (9)
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The output gate ot filters the information Ct processed by the forget and input gates, outputs the hidden
state ht at the current time step and passes it to the next LSTM unit. The calculation formulas for the output
gate are shown in Eqs. (10) and (11).

ot = σ (Wo ⋅ [ht−1 , xt] + bo) (10)
ht = ot × tanh (Ct) (11)

where σ is the sigmoid function; Wf , Wi , Wo , and Wc respectively represent the weight matrices for the forget
gate, input gate, output gate, and cell state; and b f , bi , bo , and bc denote the bias terms for the forget gate,
input gate, output gate, and cell state, respectively.

Although LSTM is effective at capturing long-term dependencies, it can only handle one-way depen-
dencies in time-series data and may not fully capture contextual information. To address this, this study
introduced BiLSTM, which processed both forward and backward temporal dependencies in traffic data. This
bidirectional mechanism allowed the BiLSTM to capture the temporal features across different timeframes
and directions, thereby enhancing the detection capabilities of the model. The BiLSTM model is illustrated
in Fig. 3.

LSTMLSTM LSTMLSTM LSTMLSTM

LSTMLSTM LSTMLSTM LSTMLSTM

Output layer

Backward 
LSTM

Forward 
LSTM

Input layer

Figure 3: BiLSTM structure

By integrating forward and reverse LSTM units, BiLSTM considers both past and future contexts
at each time step, generating richer hidden states and enhancing the understanding of the time-series
data. The forward LSTM unit processes the data in the original time-series order, whereas the reverse
LSTM unit analyzes the same series in reverse. Both units share the same input (x1 , x2, . . . , xt , ...) but
operate independently, cooperatively generating hidden states at each moment. The hidden states from both
directions are combined to form a comprehensive hidden state sequence (h1 , h2, . . . , ht , . . .), which is then
passed to the next layer of the model.

3.1.3 Attentional Mechanisms
The attention mechanism is a key technique in deep learning and has been widely applied in various

fields in recent years. It enhances the detection rates and classification accuracy in complex tasks by assigning
higher weights to key features, allowing for better capture of important information while disregarding
irrelevant data.
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The attention mechanism determines the importance of each value by calculating the dot product
between the query (Q) and key set (K), applying the softmax function to transform the dot product into
a probability distribution, and then obtaining the output through weighted summation. The query (Q)
and key-value pair (K − V) were derived by multiplying the input feature (X) by the respective weight
matrices (WQ, WK, and WV), which were learned automatically during the training phase of the model. The
calculation formulas are shown in Eqs. (12)–(14).

Q = XW Q (12)
K = XW K (13)
V = XW V (14)

The formula for calculating the attention value is shown in Eq. (15).

Attention (Q , K , V) = so f tmax (QKT
√

dk
) ⋅ V (15)

where KT denotes the transpose of K, and dk represents the dimensionality of the key vector. In addition,
the scaling factor 1√

dk
is introduced. The purpose of scaling is to prevent the dot product operation in high-

dimensional space from yielding excessively large values, which could cause the gradient of the softmax
function to approach zero, thereby affecting numerical stability during the training process.

This study integrated the attention mechanism with SCN and BiLSTM to construct an SCN-BiLSTM
feature extraction model, enhancing the ability of SCN to focus on the most important channels and spatial
locations while improving the capacity of BiLSTM to understand the sequence context. The effectiveness of
this approach was validated by subsequent experiments.

3.2 Overview of Traffic Classification Model
This section provides a detailed introduction to EQL v2 in the class imbalance-oriented classification

detection model and intelligent detection framework for abnormal traffic based on SCN-BiLSTM.

3.2.1 Class Imbalance Processing
This study used the EQL v2 loss function to address the class imbalance issue. EQL v2 applies a

gradient reweighting mechanism to balance the gradients of the positive and negative samples for each
category. Adjusting the importance of different categories, particularly increasing the weight of samples
from underrepresented classes, effectively mitigated the negative impact of class imbalance on the model’s
classification results.

The underlying concept of EQL v2 gradient reweighting is as follows. Each classifier’s positive and
negative gradients are independently weighted based on the cumulative gradient ratio between the positive
and negative classes within the classifier.

The expressions for the positive and negative gradients concerning the output Zj of each class in relation
to the loss L are shown in Eqs. (16) and (17).

∇pos
z j (L) =

1
∣I∣ ∑i∈I

yi
j (pi

j − 1) (16)

∇ne g
z j (L) =

1
∣I∣ ∑i∈I

(1 − yi
j) pi

j (17)



Comput Mater Contin. 2025;84(1) 1909

where pi
j is the estimated probability of the i-th data sample in class j; Zj is the output that is not activated by

the sigmoid function; I is all data samples; and yi is the one-hot ground truth label for the i-th data sample.
To actualize the concept of gradient-guided balanced reweighting, the ratio of the cumulative positive

to negative gradients for class j up to iteration t was initially defined as g j
(t). During this iteration, the weight

q j
(t) for the positive gradient and the weight r j

(t) for the negative gradient were calculated using Eqs. (18)
and (19).

q(t)
j = 1 + α (1 − f (g(t)

j )) (18)

r(t)
j = f (g(t)

j ) (19)

where f (⋅) is the mapping function with f (x) = 1
1+e−γ(x−μ) .

After determining the weights q j
(t) and r j

(t) for the positive and negative gradients, they were applied
to the positive and negative gradients of the current batch. The results of the reweighted gradients are shown
in Eqs. (20) and (21).

∇pos
z j
′(L(t)) = q(t)

j ∇
pos
z j (L(t)) (20)

∇ne g
z j
′(L(t)) = r(t)

j ∇
ne g
z j (L(t)) (21)

The cumulative ratio of the positive to negative gradients was then updated for the subsequent iteration,
t + 1, as shown in Eq. (22).

g(t+1)
j =

∑T
t=0 ∣∇

pos
z j
′(L(t))∣

∑T
t=0 ∣∇

ne g
z j
′(L(t))∣

(22)

By employing this method, EQL v2 dynamically adjusts the ratio of positive to negative gradients during
the training phase, allowing the model to learn more equitably from different categories of samples and
enhance its ability to recognize minority classes.

3.2.2 Intelligent Detection Framework for Abnormal Traffic
Fig. 4 illustrates the intelligent detection framework for abnormal traffic based on SCN-BiLSTM

architecture. The framework consists of three main components: a data processing module, a feature
extraction module, and a classification detection module.

The data processing module involves data cleaning, one-hot encoding, and data normalization to ensure
that the input data meet the requirements for model training. Data cleaning removes invalid entries from the
dataset, one-hot encoding converts the non-numeric features into a format suitable for processing, and data
normalization applies the min-max normalization method to scale all values and standardize the dataset.

The feature extraction module addresses the challenge of fully exploring the temporal and spatial
features of traffic data by using the SCN-BiLSTM model integrated with an attention mechanism. This
model efficiently extracts complex temporal and spatial features through deep learning of traffic data. First,
an SCN combining regular convolutional and DSC layers can be applied to capture the spatial features
of the input data. A pooling layer reduces the spatial dimensions of the features, thereby minimizing the
network parameters and computation while mitigating the risk of overfitting. The attention mechanism is
then employed to focus on key features and enhance model expressiveness without significantly increasing
complexity. The results from the attention layer are fed into the BiLSTM layer, which consists of 64 neurons,
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to capture contextual information and temporal dependencies from the input sequence. This bidirectional
processing improves the ability of the model to detect complex patterns in data. Finally, the attention
mechanism was reapplied after the BiLSTM layer to emphasize the most influential parts of the sequence,
enhancing the model to understand the sequence context.
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Figure 4: Intelligent detection framework for abnormal traffic based on SCN-BiLSTM

The classification detection module was designed to address the class imbalance issue in the dataset by
implementing a class imbalance-oriented classification model. The output layer uses the Softmax function
to convert the raw output into a probability distribution, whereas the EQL v2 loss function refines the
predictions by calculating the loss value, performing backpropagation, and updating parameters.

4 Experiment and Results
In this paper, the experimental environment are running on a server with RTX 4090 GPU and 32 GB

RAM using Python3.9 + TensorFlow 2.10.0 + Keras 2.10.0.

4.1 Experimental Data and Evaluation Metrics
The performance of network traffic anomaly detection is significantly influenced by the selection of

the dataset. NSL-KDD, created by the Canadian Institute for Cybersecurity (CIC) in 2009, is widely used in
research as a benchmark dataset for evaluating the effectiveness of intrusion detection technologies. Derived
from KDD Cup 99 [28], it addresses the redundancy issues of the original data and covers four major attack
types (DoS, Probe, R2L, U2R) as well as normal traffic. The class imbalance problem, such as U2R attacks
accounting for only 0.04% of the data, rigorously evaluates the model’s ability to detect minority classes.
Additionally, the dataset includes detailed documentation and annotations, describing the data attributes,
attack types, and ground truth labels. This information enhances the interpretability of results and enables
researchers to better understand the strengths and limitations of their methods.

To train and validate the data and assess the effectiveness of the proposed approach, a Stratified 10-Fold
Cross Validation methodology was employed with a training-to-test set ratio of 9:1. The distributions and
ratios are listed in Table 1.
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Table 1: Sample distribution and proportion of NSL-KDD dataset

Category Training dataset Teating dataset Percentage (%)
Normal 121,217 13469 53.46

DoS 82,669 9185 36.46
Probe 20,980 2332 9.25
R2L 1791 199 0.79
U2R 94 10 0.04
Total 226,751 25195 100.00

To thoroughly evaluate the performance of the proposed method on an imbalanced dataset, various
metrics were adopted, including Accuracy, Recall, FPR, and F1-score. These metrics were derived from the
confusion matrix, as shown in Table 2.

Table 2: Confusion matrix

Predicted positive Predicted negative
Actual positive True Positive (TP) False Negative (FN)
Actual negative False Positive (FP) True Negative (TN)

TP refer to instances that are correctly predicted as positive, whereas FN are actual positives incorrectly
predicted as negative. FP are instances incorrectly identified as positive when they are actually negative, and
TN are correctly identified as negative.

The calculation formulas for each evaluation metric are provided in Eqs. (23)–(27):
Accuracy represents the proportion of correctly classified samples to the total number of samples, with

a higher accuracy indicating better model performance.

Accurac y = TP + TN
TP + FN + FP + TN

(23)

Precision was defined as the ratio of correctly predicted positive samples to total number of predicted
positive samples.

Precision = TP
TP + FP

(24)

FPR refers to the proportion of actual negative samples incorrectly predicted as positive. A lower FPR
indicates better accuracy in predicting negative instances.

FPR = FP
FP + TN

(25)

Recall refers to the true-positive rate, representing the ratio of correctly identified positive samples to
the total number of positive samples. A higher recall rate indicates better performance in capturing positive
cases.

Recal l = TP
TP + FN

(26)
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The F1-score is a metric that balances precision and recall, offering a comprehensive evaluation of
the trade-off between these two measures in the classification models. A higher F1-score indicates a more
balanced and robust model.

F1 − score = 2 × Precision × Recal l
Precision + Recal l

(27)

4.2 Analysis of Experimental Results
To minimize experimental biases and errors, the dataset was preprocessed. And 10-Fold Cross Vali-

dation was employed during training, which reduces errors caused by random data partitioning through
averaging multiple evaluations. Furthermore, the EQL v2 loss was utilized to automatically adjust the weights
of hard-to-classify samples, thereby reduce the missed detection of minority classes.

To validate the effectiveness of the proposed approach, the experimental results were analyzed from
three perspectives: (A) The impact of varying network architectures on the results. (B) The influence of the
attention mechanism on the outcomes, and (C) A comparative analysis of the classification performance of
the proposed method and several commonly used methods.

(A) The impact of varying network architectures on the results.
First, five distinct models (a), (b), (c), (d), and (e) were designed for multi-classification experiments

(Fig. 5).
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Figure 5: Five different model structures: (a) CNN and CNN in tandem; (b) CNN, CNN, and BiLSTM in tandem;
(c) CNN, CNN, and BiLSTM with fused attention mechanism; (d) DSC, DSC, and BiLSTM with fused attention
mechanism; (e) SCN and BiLSTM with fused attention mechanism

The detailed experimental results are presented in Table 3. An analysis of these results revealed that
model (e) achieved an accuracy rate of 99.81%, recall rate of 99.70%, and F1-score of 99.81%, outperforming
models (a), (b), (c), and (d). Model (e) replaced the second layer of the CNN with a DSC layer in the CNN-
CNN-BiLSTM model by integrating the attention mechanism, as shown in model (c). A comparison of the
parameters and training time for both models is provided in Table 4, demonstrating that the SCN combined
with CNN and DSC in the model (e) significantly reduced the number of parameters and improved training
efficiency. Consequently, this study adopted the SCN-BiLSTM feature extraction model (e), which integrates
the attention mechanism, for temporal and spatial feature extraction.
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Table 3: Experimental results for models (a), (b), (c), (d), and (e) and the models in this paper (%)

Model Acc Recall F1-score FPR
CNN-CNN (a) 97.83 96.30 97.54 0.46

CNN-CNN-BiLSTM (b) 99.80 99.65 99.80 0.05
CNN-CNN-BiLSTM integrated attention mechanism (c) 99.80 99.66 99.79 0.07
DSC-DSC-BiLSTM integrating attention mechanism (d) 99.77 99.70 99.77 0.15

SCN-BiLSTM integrating attention mechanism (e) 99.81 99.70 99.81 0.08
Ours 99.94 99.95 99.94 0.07

Table 4: Comparison of the number of model parameters and training time

Model Parameters Training time (min)
CNN-CNN-BiLSTM integrated attention mechanism (c) 333,573 564

SCN-BiLSTM integrating attention mechanism (e) 79,685 475

To evaluate the contribution of the EQL v2 loss function in addressing class imbalance on the NSL-
KDD dataset, three different loss functions, including FL, Cross-Entropy (CE), and EQL v2, were tested on
the same model (e). The experimental results presented in Table 5 and Fig. 6 indicated that the classification
detection model using the EQL v2 loss function achieved precision rates of 99.92%, 99.97%, 99.95%, 97.98%,
and 90.90% for the five classes (Normal, DoS, Probe, R2L, and U2R), respectively, outperforming the models
using other loss functions. Notably, the precision improvements for minority classes R2L and U2R were
particularly significant. These results demonstrated that the EQL v2 loss function effectively enhanced
precision in detecting rare abnormal traffic types. Therefore, EQL v2 was adopted as the loss function for the
classification detection model in this study to address the unbalanced categories.

Table 5: Comparison of detection results of different loss functions for five data types (%)

Model Normal DoS Probe R2L U2R Acc Recall F1-score FPR
SCN-BiLSTM integrating
attention mechanism+FL

99.91 99.95 99.31 93.46 70.00 99.81 99.70 99.81 0.08

SCN-BiLSTM integrating
attention mechanism+CE

99.92 99.85 99.69 92.96 80.00 99.82 99.70 99.82 0.06

Ours 99.92 99.97 99.95 97.98 90.90 99.94 99.95 99.94 0.07
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Figure 6: Precision of different loss functions for five data types

The intelligent detection method for abnormal traffic based on SCN-BiLSTM proposed in this study
integrated the SCN-BiLSTM feature extraction model with an attention mechanism and an unbalanced
category-oriented classification detection model. This method achieved an accuracy rate of 99.94%, recall
rate of 99.95%, F1-score of 99.94%, and FPR of 0.07%. Compared with model (b), this approach exhibited a
maximum increase in accuracy of 2.11%, recall of 3.65%, and F1-score of 2.4%. Although the FPR was slightly
higher by 0.02% than that of the model (b), these results demonstrated the strong detection capability of the
proposed method on the NSL-KDD dataset.

(B) The influence of the attention mechanism on the outcomes.
To evaluate the significance of the attention mechanism, this study compared the results of multiclass

classification with and without the attention mechanism. The experimental results presented in Table 6
demonstrated that the inclusion of the attention mechanism improved the accuracy, recall, and F1-score by
1.6%, 3.41%, and 2%, respectively, while FPR decreased by 0.01%. These findings indicated that the attention
mechanism significantly enhanced the overall detection performance of the proposed method.

Table 6: Effect of attentional mechanisms on experimental results (%)

Availability of attention mechanism Acc Recall F1-score FPR
Y 99.94 99.95 99.94 0.07
N 98.34 96.54 97.94 0.08
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(C) A comparative analysis of the classification performance of the proposed method and several
commonly used methods.

The efficacy of the proposed method was evaluated and compared with eight commonly used tech-
niques, including KNN, RF, SVM, ICVAE-DNN [29], CD-2 [30], I-SiamIDS [31], 1DCNN-BiLSTM [32], and
CANET [33], using the NSL-KDD dataset. The results of comparing the multiclass classification performance
of the proposed method with other methods on the NSL-KDD dataset are presented in Table 7 and Figs. 7–9.

Table 7: Comparison of detection results of different models for five data types (%)

Model Normal DoS Probe R2L U2R Acc Recall F1-score FPR
KNN 92.78 82.25 59.40 3.56 3.50 76.51 64.19 75.68 7.22

RF 97.37 80.24 58.53 7.55 0.50 76.49 60.69 74.62 2.63
SVM 92.82 74.85 61.71 0.00 0.00 72.28 56.73 69.97 7.18

ICVAE-DNN 87.04 77.87 79.89 23.17 11.50 75.43 72.86 82.92 12.96
CD-2 85.00 88.00 69.00 78.00 55.00 83.00 65.00 68.00 –

I-SiamIDS 81.52 82.09 74.50 65.62 37.78 80.00 67.44 66.54 6.16
1DCNN-BiLSTM 95.47 98.21 74.55 80.08 79.05 – 89.17 87.09 2.18

CANET 99.90 99.94 99.52 92.46 70.00 99.81 99.71 99.79 0.09
Ours 99.92 99.97 99.95 97.98 90.90 99.94 99.95 99.94 0.07

Figure 7: Precision of different methods for five data types
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Figure 8: Comparison of ACC, Recall, and F1-score results on NSL-KDD by different methods

Figure 9: Comparison of FPR results of different methods on NSL-KDD

The intelligent detection method for abnormal traffic based on SCN-BiLSTM proposed in this study
achieved optimal accuracy, recall, F1-score, and FPR on the NSL-KDD dataset. Compared with other alter-
native approaches, the proposed method improved the accuracy by 0.13%–27.66%, recall by 0.24%–43.22%,
and F1-score by 0.15%–33.40%, while reducing the FPR by 0.02%–12.89%. These results demonstrated that
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the proposed method not only enhanced the detection accuracy but also maintained a low FPR, further
validating its efficacy in abnormal traffic detection.

The experimental results demonstrated that this approach effectively captured the features of network
traffic data, enabled more accurate detection of network intrusion behavior, and enhanced the performance
of abnormal traffic detection.

4.3 Threats to Validity
In this section, we have identified some threats to the validity of our research. (1) Although NSL-KDD

is widely used in traffic anomaly detection, it is derived from data collected under specific conditions and
has inherent limitations. For instance, its attack types and network environments are relatively fixed, which
may not encompass emerging attack types in modern networks. Additionally, the traffic features in the
dataset may differ from those in real-world networks, potentially affecting the model’s detection performance
in practical applications. (2) During model training, hyperparameters were adjusted to achieve optimal
learning performance. However, hyperparameter tuning risks overfitting, where the model performs well
on the training set but fails to generalize to new datasets or real-world scenarios. Moreover, hyperparameter
selection impacts the model’s generalization ability, as different settings may lead to varying performance
across datasets. (3) Our research is based on a specific network environment and attack types, which may
differ from real-world conditions. Factors such as network topologies, protocols, and user behaviors can
influence the performance of traffic anomaly detection models. Furthermore, as network technologies and
attack methods evolve, new attack types may emerge, requiring updates and adjustments to our model to
maintain its effectiveness.

5 Conclusion
The application of deep learning models to abnormal network traffic detection has become a growing

trend. This study leveraged the advantages of the SCN-BiLSTM feature extraction model integrated with
an attention mechanism and class-oriented unbalanced classification detection model using EQL v2. A
combination of these methods was applied to an intelligent detection framework for abnormal traffic to
effectively extract both the spatial and temporal features of traffic data. This approach enhanced detection
accuracy, reduced the computational complexity, and improved the model training efficiency. In addition,
it significantly boosted the detection accuracy of minority class samples, thereby addressing the class
imbalance problem in the dataset. However, this method has only been tested on the NSL-KDD dataset,
and network anomaly traffic detection usually needs to be conducted in a real-time environment, which
requires anomaly traffic detection methods based on deep learning to respond within milliseconds to
prevent the spread of potential attacks. To address these limitations, future work will prioritize the following
directions: (1) Developing models using traffic datasets with realistic samples and diverse scenarios to
improve generalizability. (2) Exploring optimization techniques such as model compression, parameter
pruning, knowledge distillation, and edge computing to enhance real-time detection capabilities, ensuring
adaptability to high-throughput and low-latency network environments.
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