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ABSTRACT: Advancements in deep learning have considerably enhanced techniques for Rapid Entire Body Assess-
ment (REBA) pose estimation by leveraging progress in three-dimensional human modeling. This survey provides an
extensive overview of recent advancements, particularly emphasizing monocular image-based methodologies and their
incorporation into ergonomic risk assessment frameworks. By reviewing literature from 2016 to 2024, this study offers
a current and comprehensive analysis of techniques, existing challenges, and emerging trends in three-dimensional
human pose estimation. In contrast to traditional reviews organized by learning paradigms, this survey examines how
three-dimensional pose estimation is effectively utilized within musculoskeletal disorder (MSD) assessments, focusing
on essential advancements, comparative analyses, and ergonomic implications. We extend existing image-based clas-
sification schemes by examining state-of-the-art two-dimensional models that enhance monocular three-dimensional
prediction accuracy and analyze skeleton representations by evaluating joint connectivity and spatial configuration,
offering insights into how structural variability influences model robustness. A core contribution of this work is
the identification of a critical research gap: the limited exploration of estimating REBA scores directly from single
RGB images using monocular three-dimensional pose estimation. Most existing studies depend on depth sensors or
sequential inputs, limiting applicability in real-time and resource-constrained environments. Our review emphasizes
this gap and proposes future research directions to develop accurate, lightweight, and generalizable models suitable
for practical deployment. This survey is a valuable resource for researchers and practitioners in computer vision,
ergonomics, and related disciplines, offering a structured understanding of current methodologies and guidance for
future innovation in three-dimensional human pose estimation for REBA-based ergonomic risk assessment.

KEYWORDS: Human posture estimation; deep neural networks; three-dimensional analysis; benchmark datasets;
rapid entire body assessment (REBA)

1 Introduction
Accurate estimation of three-dimensional human pose has significantly advanced ergonomic assess-

ments, particularly within Rapid Entire Body Assessment (REBA) frameworks, by enabling automated,
real-time evaluation of workplace health and safety. Conventional ergonomic assessments typically depend
on manual observations or wearable sensors to identify musculoskeletal risks, which can be time-consuming
and intrusive. By leveraging computer vision, three-dimensional pose estimation provides a non-invasive
approach to monitor posture, assess joint positions, and identify risk factors for musculoskeletal disorders.
These advancements have the potential to transform workplace safety practices by offering continuous,
objective assessments that improve productivity and reduce injuries. REBA assessments specifically require
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accurate evaluation of posture angles and limb positions, explicitly considering the three-dimensional spatial
orientation (x, y, z) of joints. Traditional two-dimensional pose estimation often fails to capture depth
information accurately, resulting in unreliable ergonomic scores. In contrast, three-dimensional human
pose estimation directly provides precise depth perception, enabling accurate joint localization in three-
dimensional space, thus significantly improving the reliability and objectivity of ergonomic assessments.
Despite these benefits, integrating three-dimensional pose estimation into ergonomic assessments poses
challenges, such as ensuring high accuracy in diverse environments, addressing depth ambiguities, and
adapting models to various skeleton representations.

Beyond ergonomics, estimating three-dimensional human poses from monocular images, particularly
for single-person scenarios, remains a central challenge in computer vision. This task involves mapping two-
dimensional image coordinates (x, y) to three-dimensional space (x, y, z) and presents unique difficulties due
to complex body articulations and the need for models to generalize across diverse conditions. Techniques
like deep learning methods, including Convolutional Neural Networks (CNNs), Graph Convolutional
Networks (GCNs), and Transformer architectures have shown remarkable potential by learning spatial
relationships between joints and addressing non-linear mappings. However, these methods often require
specialized training strategies, such as heatmap regression, attention mechanisms, and kinematic constraints,
to refine depth estimation and enhance joint localization.

This article offers a detailed review of recent advancements in monocular-based three-dimensional
human pose estimation, focusing on applications in REBA, ergonomic assessments, and the challenges
of skeleton format variability. By consolidating state-of-the-art deep learning techniques, approaches for
dataset fusion, and strategies to address key challenges, this work aims to guide researchers in advancing
three-dimensional pose estimation for ergonomics and beyond. The insights offered in this survey have
the potential to accelerate the adoption of three-dimensional pose estimation in real-world ergonomic
applications and inspire innovations that make these techniques more robust, scalable, and impactful across
diverse fields.

2 Previous Surveys
The purpose of this survey is to build upon and address the gaps identified in previous studies addressing

three-dimensional human pose estimation and its practical applications in ergonomic assessment method-
ologies, such as the Rapid Entire Body Assessment (REBA) approach. Several prior surveys have extensively
reviewed methods for transforming two-dimensional pose data into three-dimensional representations,
focusing on deep learning models, graph-based approaches, and self-supervised techniques [1–3]. For
instance, surveys on three-dimensional human pose estimation have provided comprehensive insights into
monocular methods and highlighted challenges like depth ambiguity, occlusions, and dataset variability [4].
However, these works often miss the critical connection between pose estimation and practical applications
like ergonomics. Likewise, previous reviews on two-dimensional pose estimation primarily emphasized
improvements in accuracy and robustness but lack an in-depth exploration of how two-dimensional
techniques contribute to downstream ergonomic analysis [5].

Numerous studies have focused on ergonomic risk prediction using established observational methods
such as RULA, REBA, OWAS, PERA, and OCRA in traditional settings or automated systems enhanced
by deep learning and vision-based tools. For example, Abobakr et al. [6] proposed a semi-automated
RULA system using depth images and a residual CNN to estimate joint angles from human poses. Their
proposed system demonstrated an overall prediction accuracy of 89% in real-world scenarios, though it
lacked comprehensive ablation studies and comparative model evaluations. Hossain et al. [7] introduced
a deep learning framework for predicting REBA scores based on three-dimensional keypoints derived
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from the Human3.6M dataset, proving the feasibility of integrating three-dimensional pose estimation
with REBA. However, the system was limited to static poses and did not address occlusions or real-time
deployment challenges.

Agostinelli et al. [8] presented a comparative analysis of REBA and RULA in industrial environments,
showing that REBA was more reliable for lower-body assessment, while RULA excelled in upper-body
scoring, though both were affected by partial visibility issues. Beheshti et al. [9] applied the OWAS method
in agricultural and industrial settings and found it reliable but less flexible for complex and dynamic tasks,
particularly in its neglect of repetitive motion intensity and load variation.

Chander and Cavatorta [10] proposed the PERA method, validated against EAWS in cyclic industrial
tasks, but its simplification of force and duration metrics limited its application in high-load scenarios.
Erginel and Toptanci [11] used the OCRA index to assess repetitive motion injuries in food industry workers
and identified high wrist and back risks, reinforcing the need for automated posture monitoring systems.
Wu et al. [12] developed a REBA-based mobile application using Mask R-CNN for real-time ergonomic risk
assessment, performing well under controlled conditions but showing limited robustness in noisy or poorly
lit environments.

A significant contribution was made by Ghasemi and Mahdavi [13], who proposed a new scoring system
for REBA called FBnREBA that incorporates fuzzy sets and Bayesian networks. This approach improved the
sensitivity of REBA by allowing for more nuanced scoring of posture risk and better differentiation between
similar postures. The system was validated through a case study and demonstrated stronger performance
compared to the traditional REBA method.

Stefana et al. [14] systematically reviewed wearable ergonomic monitoring devices such as IMUs, smart
insoles, and vibrotactile systems. While accurate, these systems were noted for intrusiveness and setup
complexity, emphasizing the need for scalable, non-contact alternatives such as computer vision.

These findings highlight that while traditional methods remain foundational, the integration of deep
learning and vision-based pose estimation marks a pivotal shift in ergonomic assessment. However, chal-
lenges in validation, scalability, and generalizability remain. This review aims to address these gaps through
a focused analysis of monocular three-dimensional HPE systems for REBA evaluation. Specifically, this
paper explores the largely unexamined possibility of directly estimating REBA ergonomic risk scores from
single RGB images through deep learning-driven monocular three-dimensional human pose estimation
techniques. Unlike prior studies that predominantly rely on video sequences, temporal information, or depth
sensors, this review targets real-time ergonomic risk analysis in scenarios constrained by limited hardware
or computational resources. Our work aims to overcome current limitations by proposing a solution that
can generalize across variable skeleton structures, handle partial occlusions, and deliver REBA assessments
efficiently from a single static image input.

3 Survey Methodology
The primary goal of this section is to systematically review recent research concentrating on single-stage

and two-stage human poses estimation methods, diverse skeletal data formats, and ergonomic assessments
utilizing the REBA method with monocular imaging.

Research question:
RQ1: What are the main methodologies and classification schemes employed in three-dimensional

human pose estimation from monocular images?
RQ2: What are the key challenges associated with various three-dimensional human pose estimation

methodologies?
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RQ3: Which datasets are most frequently utilized for performance evaluation in three-dimensional
human poses estimation research?

RQ4: What are the current limitations of REBA-based assessments, and what potential improvements
could enhance this approach?

4 Taxonomy of the Survey
The primary aim of this review is to provide an extensive and current review of advancements in

three-dimensional human pose estimation from monocular images, addressing variations in dataset skeleton
formats and applications in REBA ergonomic assessment. In compliance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, research papers published from
2014 through May 2024 were systematically analyzed, ensuring a rigorous selection process and transparent
reporting. The search involved in-depth manual exploration of essential publications in human pose esti-
mation, sourcing from well-regarded databases including databases like arXiv, Google Scholar, IEEE Xplore,
ScienceDirect, Springer Link, and ACM Digital Library. Relevant studies were identified and compiled in
December 2024.

To provide historical context and acknowledge foundational contributions, we also included significant
works published up to 2024, specifically selecting those studies that introduced influential methodologies or
perspectives to three-dimensional pose estimation. Additionally, manual cross-referencing was performed
to identify additional critical studies that may not have appeared in the initial search. Recognizing the
integral role of two-dimensional pose estimation as a precursor to three-dimensional tasks, we incorporated a
dedicated section on two-dimensional pose estimation, highlighting the most frequently cited and impactful
models in the field.

5 Dataset
The availability of extensive datasets with diverse examples is a crucial aspect of advancing computer

vision tasks. In the context of three-dimensional human pose estimation, a key challenge is the scarcity of
extensive outdoor datasets. While datasets for two-dimensional human pose estimation often include bench-
marks collected in diverse indoor and outdoor environments, datasets for three-dimensional human pose
estimation are predominantly gathered under controlled laboratory conditions employing motion capture
(MoCap) systems. This method of data collection often restricts diversity in backgrounds, camera viewpoints,
and illumination conditions. In this section, this section reviews several prominent datasets commonly
utilized in evaluating two-dimensional and three-dimensional human pose estimation approaches.

5.1 LSP (2010)
The Leeds Sports Pose (LSP) dataset serves as a benchmark dataset focused on single-person pose

estimation. It contains 1000 images annotated with 14 keypoints representing major body joints. The dataset
primarily consists of images of individuals engaged in sports activities, which makes it especially useful for
assessing the performance of pose estimation techniques under dynamic and varied poses. The evaluation
metric used for this dataset is the Percentage of Correct Parts (PCP), an evaluation metric that quantifies the
accuracy of predicted limb locations relative to the ground truth [15].

5.2 LSP-Extended (2011)
The LSP-Extended Dataset builds on the original LSP dataset, providing 10,000 additional single-person

images annotated with the same 14 keypoints. It is designed to enhance the training of pose estimation models
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by offering an expanded and more varied collection of images. Like its predecessor, it uses the PCP metric
for evaluation, ensuring consistency in performance comparisons [16].

5.3 FLIC-Plus (2014)
The FLIC-Plus dataset extends and enhances the original FLIC dataset, featuring 17,000 training images

annotated for the same 10 upper-body keypoints. This dataset focuses on improving annotation quality and
consistency while retaining the primary purpose of upper-body pose estimation. Evaluation continues to
rely on PCP and PCK, providing benchmarks for accuracy in predicting upper-body joint positions.

5.4 MPII (2014)
The MPII Human Pose dataset is an extensive benchmark created to support single-person and multi-

person human pose estimation research. It contains 29,000 training images, 3800 validation images, and 1700
test images annotated with 16 body keypoints. It includes diverse human activities captured across various
indoor and outdoor scenarios, providing versatility for both training and benchmarking. Evaluation metrics
employed are PCPm and PCKh (Percentage of Correct Keypoints normalized by head size), ensuring robust
and equitable model performance comparisons [17].

5.5 COCO Dataset
The COCO 2016 dataset serves as a prominent benchmark commonly employed in multi-person two-

dimensional pose estimation research. It features 45,000 training images, 22,000 validation images, and
80,000 test images, with annotations for 17 body keypoints. The dataset provides a diverse range of human
poses across various activities and environments, enabling models to learn from unconstrained scenarios.
The evaluation metric used is Average Precision (AP), which measures the overlap between predicted and
ground truth poses. The COCO 2017 is an updated version of the COCO 2016 dataset, expanding the training
set to 64,000 images while providing 2700 validation images and 40,000 test images. Like its predecessor, it
focuses on multi-person pose estimation with the same number of keypoints in COCO 2016. The dataset’s
increased size and refined annotations make it a critical resource for improving model generalization.
Evaluation is based on AP, consistent with the 2016 version [18].

5.6 HumanEva (2010)
The HumanEva Dataset uses a marker-based motion capture (MoCap) system to collect three-

dimensional human pose data in controlled indoor environments. It includes 6 subjects performing 7 actions,
totaling 40,000 frames. This dataset supports single-person pose estimation and provides both single-view
and multi-view recordings, making it a foundational resource for early three-dimensional pose estimation
research [19].

5.7 Human3.6M (2014)
Human3.6M is a widely recognized, comprehensive marker-based motion capture (MoCap) dataset

for three-dimensional pose estimation tasks. The dataset includes over 3.6 million frames depicting 11
subjects performing 17 distinct actions captured within indoor environments. Supporting single-person pose
estimation, this dataset provides both single-view and multi-view data, serving as a standard benchmark for
evaluating three-dimensional human pose estimation methods [20].
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5.8 CMU Panoptic (2016)
The CMU Panoptic Dataset employs a marker-less MoCap system in an indoor environment. It includes

data from 8 subjects with a total of 1.5 million frames. Supporting single-person pose estimation, the
dataset is notable for its extensive multi-view capture setup, enabling high-fidelity three-dimensional pose
reconstruction [21].

5.9 MPI-INF-3DHP (2017)
The MPI-INF-3DHP dataset is a markerless motion capture (MoCap) dataset acquired under indoor

and outdoor conditions. It contains approximately 1.3 million frames, involving eight subjects performing
eight distinct actions. Intended for single-person pose estimation, the dataset includes single-view and multi-
view recordings, providing diverse scenarios suitable for training robust pose estimation models [22].

5.10 TotalCapture (2017)
The TotalCapture dataset integrates a marker-based motion capture (MoCap) system with inertial

measurement units (IMUs), capturing data exclusively in indoor environments. It includes five subjects
performing five distinct actions, totaling 1.9 million frames. Designed specifically for single-person pose
estimation, this dataset provides single-view and multi-view recordings to facilitate the evaluation of pose
estimation accuracy [23].

5.11 DPW (2018)
The three-dimensional Pose in the Wild (3DPW) Dataset is captured using handheld cameras with

IMUs in indoor and outdoor environments. It consists of 7 subjects performing various actions, with 51,000
frames. Supporting single-person pose estimation, it is unique for its focus on real-world, unconstrained
scenarios and includes both single-view and multi-view data [24].

5.12 MuPoTS-3D (2018)
The MuPoTS-3D Dataset uses a markerless MoCap system to collect data in indoor and outdoor settings.

It includes 8 subjects and 8000 frames, supporting both single-person and multi-person pose estimation. The
dataset offers single-view data, making it particularly suitable for evaluating methods designed for outdoor
and multi-person scenarios [25].

5.13 SURREAL Dataset (2017)
The SURREAL dataset offers synthetic data for three-dimensional human pose estimation generated

using computer graphics techniques. It includes 24 key points based on the SMPL skeleton format, providing
detailed annotations of synthetic human poses in various activities and environments. The use of synthetic
data allows for the generation of large amounts of annotated data at a lower cost compared to real-world
data collection. Models 50 trained on SURREAL can benefit from the diversity and precision of the synthetic
annotations. However, the gap between synthetic and real-world data can pose challenges for generalization,
as models may need fine-tuning on real-world datasets to perform effectively in practical applications [26].

5.14 PeopleSansPeople Dataset (2022)
The PeopleSansPeople Dataset is a synthetic data generator developed in 2022 using the Unity engine

and the Unity Perception package, aimed at advancing human-centric computer vision tasks, including
two-dimensional and three-dimensional human pose estimation. This generator provides high-quality,
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simulation-ready three-dimensional human assets with diverse ages, ethnicities, clothing, and actions,
featuring 28 human models and 39 animations ranging from basic movements to complex interactions.
Leveraging domain randomization techniques, it generates datasets with randomized lighting, camera
settings, and occluding objects to create diverse and realistic scenarios. PeopleSansPeople produces COCO-
compatible annotations [27].

6 Metric Evaluation for 3D and 2D
In three-dimensional and two-dimensional Human Pose Estimation (HPE), accurate evaluation of

model performance is essential to assess the quality of predicted poses relative to ground truth. Several
standard metrics are commonly used to measure the precision, alignment, and reliability of pose estimation.
These include:

6.1 3 DHPE Evaluation Metric
6.1.1 Mean per Joint Position Error (MPJPE)

This metric is frequently employed as an evaluation measure in three-dimensional human pose esti-
mation, quantifying the mean Euclidean distance (in millimeters) between the estimated and ground-truth
joint coordinates. It assesses the model’s accuracy by averaging errors across all joints and frames.

MPJPE = 1
T

1
N

T
∑
t=1

N
∑
i=1
∣p(t)

i − g(t)
i ∣2 (1)

where the T is total number of frames in the dataset, N are number of joints per pose, Pi
(t) are predicted

three-dimensional coordinates of the i-th joint in frame t, and the gi
(t) are Ground truth three-dimensional

coordinates of the i-th joint in frame t.
On the Human3.6M dataset, MPJPE evaluation follows standardized protocols. Protocol 1 computes the

error directly without any alignment, utilizing subjects 1, 5, 6, 7, and 8 for training and subjects 9 and 11 for
testing. Protocol 2, termed Procrustes-aligned MPJPE (P-MPJPE), aligns the estimated poses with ground
truth by compensating for translation, rotation, and scaling to emphasize structural differences. Protocol
3 (Normalized MPJPE or N-MPJPE) employs only scale alignment and specifically examines sequences
recorded from the frontal camera without subsampling.

6.1.2 Procrustes Aligned MPJPE (PA-MPJPE)
MPJPE assesses the MPJPE calculated after aligning estimated poses to the corresponding ground

truth via Procrustes analysis, thereby removing differences in scale, rotation, and translation. This metric
specifically quantifies structural pose errors independent of camera alignment or scale factors.

6.1.3 Normalized MPJPE (NMPJPE)
NMPJPE is a variant of MPJPE where predictions are normalized by scale before computing the

error. This metric helps in evaluating the structural similarity of poses without the influence of absolute
scaling differences.
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6.1.4 3D Percentage of Correct Keypoints (3DPCK)
3DPCK measures the percentage of joints where the predicted position is within a certain threshold

distance (e.g., 150 mm) from the ground truth. Formally:

3DPCK = 1
N

N
∑
i=1

I (∣Ji − J∗i ∣2 ≤ τ) (2)

where τ is the distance threshold, and I is the indicator function.

6.1.5 Area Under Curve for Relative Error (AUCrel)
AUCrel evaluates the relationship between the error threshold and the proportion of correctly predicted

keypoints, plotting a curve of relative error vs. precision. The area under this curve provides a summary
measure of model accuracy across varying thresholds.

6.2 2 DHPE Evaluation Metric
6.2.1 Percentage of Correct Keypoints (PCK)

PCK quantifies keypoint estimation accuracy by determining the proportion of predicted joints that fall
within a specified threshold distance from their ground-truth positions. This threshold typically corresponds
to a proportion of a reference dimension, such as head size (PCKh) or torso length. For instance, PCK@0.5
denotes the percentage of keypoints detected within 50% of the reference measurement. This evaluation
metric is commonly employed to assess the general accuracy of pose estimation models, especially in datasets
such as MPII and COCO.

PCK = 1
N

N
∑
i=1

I (∣Ji − J∗i ∣2 ≤ αL) (3)

where L is the reference length, α is the threshold factor, and I is the indicator function.

6.2.2 Object Keypoint Similarity (OKS)
OKS is a COCO-specific metric that evaluates keypoint accuracy based on normalized distances

between predicted and ground truth keypoints, weighted by visibility and keypoint type. It incorporates
a Gaussian function to account for variability in keypoint size and visibility. OKS serves as the basis for
calculating Average Precision (AP) scores in COCO benchmarks, providing a holistic measure of detection
and localization performance.

OKS =
∑i exp (− ∣J i−J∗i ∣

2
2

2s2 κ2
i
) δ (vi > 0)

∑i δ (vi > 0) (4)

where Ji and Ji
∗ are the predicted and ground truth keypoints, s is the object scale, κi is a per-keypoint

constant, and vi is the visibility flag.

6.2.3 Average Precision (AP)
AP is derived from the OKS metric and measures precision over a range of recall values. It is calculated

at multiple OKS thresholds, such as 0.5 0.75, and an average across thresholds from 0.5 to 0.95 (commonly
referred to as AP@50, AP@75, and AP@ [0.5:0.95], respectively). This metric evaluates the consistency of
keypoint localization across different levels of accuracy, making it a standard for COCO evaluation.
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6.2.4 Root Mean Squared Error (RMSE)
RMSE measures the average squared difference between predicted and ground truth keypoint coordi-

nates. It provides a straightforward evaluation of positional accuracy in pixel space. While less commonly
used in public benchmarks, RMSE is particularly useful for analyzing model performance in custom datasets
or controlled settings.

6.2.5 Normalized Mean Error (NME)
NME is similar to RMSE but normalizes the error by a reference distance, such as the interocular dis-

tance for facial keypoints or the torso size for full-body poses. This normalization allows for fair comparisons
across datasets with varying scales and resolutions, making it a popular choice for cross-dataset evaluations.

7 3D Human Pose Estimation
Three-dimensional human pose estimation extends the concept of two-dimensional pose estimation,

which determines joint positions using coordinates on the x and y axes within a two-dimensional space. In
contrast, three-dimensional pose estimation introduces a depth component (z-axis), significantly enhancing
the complexity of the estimation task. This third dimension enables crucial applications across various fields,
including ergonomic assessments of work-related musculoskeletal disorders (WMSDs), computer vision,
and interactive gaming, where accurate spatial depth perception is vital.

Advancements in deep learning have dramatically reshaped this field by effectively modelling nonlinear
joint relationships and capturing intricate spatial configurations. Methods for three-dimensional human
pose estimation are typically classified into two main groups: single-person and multi-person methods.
Single-person approaches, which form the primary focus of this review, concentrate on accurately estimat-
ing the pose of one individual at a time. Conversely, multi-person methods address scenarios involving
multiple interacting individuals, introducing additional complexity related to joint detection, identification,
and assignment.

Furthermore, methods can also be differentiated according to their coordinate systems. In
person-centric (root-relative) frameworks, joint positions are expressed relative to a central reference
joint—commonly the pelvis—yielding representations that are invariant to the camera location. Alterna-
tively, the camera-centric system positions joints directly within the camera’s coordinate reference, accurately
representing absolute spatial placement relative to the camera viewpoint.

7.1 Single-Person Approach
In [28–32], Single-person three-dimensional human pose estimation aims to reconstruct the spatial

configuration of body joints from a single image or video frame, where the individual is the primary
subject. In this setup, the model often operates under the assumption that the person’s position, scale,
and bounding box are given, which aids in isolating the pose estimation process. However, estimating
three-dimensional poses from monocular images presents unique challenges due to the inherent ambiguity
of depth information and the difficulty in generalizing to varied environments. This process is typically
divided into two main approaches: one-stage and two-stage methods. One-stage approaches directly regress
three-dimensional poses from images, offering a streamlined path from image to three-dimensional output,
while two-stage methods estimate two-dimensional poses as an intermediate step before mapping them to
three-dimensional space, often enhancing reliability by leveraging intermediate joint detection. Additionally,
the ill-posed nature of monocular three-dimensional pose estimation, where similar two-dimensional
projections can correspond to multiple three-dimensional poses, requires sophisticated learning techniques
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to ensure robustness. Deep learning models, trained on large datasets like Human3.6M and HumanEva-I,
have proven effective in directly regressing three-dimensional joint positions. Nevertheless, the reliance
on controlled dataset environments sometimes limits the generalizability of these models to more diverse,
real-world settings. The challenge of single-person three-dimensional pose estimation continues to drive
research toward refining algorithms that can overcome depth ambiguities, improve model generalization,
and accurately infer three-dimensional human poses from single-camera inputs.

In this section, we aim to provide an overview of the basic concept and recent advances in this field,
focusing on diction base and regression base from monocular image to be the core suggestion model for the
REBA assessment method.

7.1.1 Single-Stage Pipeline
In this section, we discuss estimating the three-dimensional key points directly without using interme-

diate two-dimensional key points, which are end-to-end networks; we address this approach in two pipelines,
the Regression-based (Fig. 1) and the Detection-based approach (Fig. 2).

Figure 1: Regression-based Approach for three-dimensional Human Pose Estimation. The figure illustrates a
regression-based methodology where a deep neural network is utilized to directly estimate three-dimensional human
poses from a single input RGB image

Figure 2: Detection-based Framework for three-dimensional Human Pose Estimation. Input RGB images are pro-
cessed through a Convolutional Neural Network (CNN) for independent detection of multiple body-part heatmaps.
These detected body parts are subsequently integrated using a Body Part Association step to construct an accurate
three-dimensional pose representation, enabling detailed ergonomic analysis and reliable joint localization
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Detection-Based
In 2014, Tompson et al. [33] presented a novel hybrid architecture that integrates a CNN with a Markov

Random Field (MRF) to identify human body joints in complex environments. The heatmap illustrates the
probability distribution of each joint’s position, with higher intensity values indicating greater confidence in
the joint location. In this method, the network learns to identify the likely locations of each key point by
generating a series of heatmaps for each joint. CNNs are frequently employed to forecast these heatmaps
by analysing image features and generating spatially structured predictions. This capability enables joint
localization with remarkable precision. Ref. [34] propose a novel approach for human pose estimation from a
single image using a deep learning-based voting scheme, whereas the traditional approach used the graphical
model to enforce global pose consistency by relying on relative location statistics of keypoints. Wei et al. [35]
present a novel approach to human pose estimation using a sequence of CNNs. This approach, called
“Convolutional Pose Machines CPM”, focuses on progressive refining pose predictions through multiple
stages, where the CPMs employ a multi-stage framework where each stage predicts probability maps for
the location of each body part, To address the challenge in pose estimation is capturing dependencies
between distant body parts through employing large receptive fields within each stage of the CNNs,
which allows for the integration of contextual cues from distant parts. Balut in [36] presents a cascaded
CNN architecture for human pose estimation that uses part heatmaps followed by regression. This design
enhances pose estimation, particularly in scenarios involving severe occlusion, using the part detection
subnetwork, which produces heatmaps for each part using the sigmoid loss function after the regression
network then takes these heatmaps as input and predicts confidence maps for the final joint locations then
uses an L2 loss function for confidence map regression. For estimating human pose in images, Newell
et al. [37] introduce a novel convolutional network architecture for estimating human pose in images. Their
approach, known as the Stacked Hourglass Network, effectively captures and consolidates multi-scale spatial
relationships associated with human body joints through repeated bottom-up and top-down processing.
The core innovation of this work is the hourglass network design. This structure alternates between pooling
layers down-sampling and up-sampling, allowing the network to process features across multiple scales and
aggregate detailed and contextual information for precise localization of body joints, the outputs of network
heatmaps, where each heatmap corresponds to the likelihood of a specific joint’s location within the image.
The use of heatmaps allows the network to retain spatial precision for each key-point, even in complex poses
with occlusions. Pavlakos et al. [38] address the challenge of estimating three-dimensional human poses
from a single RGB image by introducing an end-to-end approach that estimates three-dimensional poses
directly through Volumetric Representation and Coarse-to-Fine, where they framed three-dimensional
pose estimation as a key-point localization problem in a discretized three-dimensional space. Instead of
directly predicting joint coordinates, they use a CNN to assign likelihoods to each voxel (three-dimensional
pixel), creating a “volumetric heatmap” for each joint. This volumetric approach, which predicts the
probability of each joint’s location in three-dimensional space, allows for more accurate and stable joint
predictions by considering spatial relationships within the volume. To handle the large dimensionality of
the three-dimensional space, they employ a coarse-to-fine approach to a low-resolution prediction and
progressively increase the resolution of the three-dimensional volume, focusing on refining the depth
dimension. Sun et al. [39] address the challenges associated with heatmap-based human pose estimation
in deep learning for two-dimensional and three-dimensional human pose prediction where the traditional
heatmap methods generate likelihood maps for each joint and locate joints based on the maximum likelihood
in these maps. While effective, this approach has limitations, such as being non-differentiable (hindering
end-to-end training) and causing quantization errors due to lower-resolution heatmaps. The model unifies
heatmap representation and regression. Instead of taking the maximum value from the heatmap, they
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compute a weighted integral across all possible joint locations. This “soft-argmax” approach calculates the
expected value, or weighted average, across the heatmap, providing continuous joint coordinates while
retaining the heatmap’s advantages. Integral regression makes the process differentiable, enabling end-to-
end learning and avoiding quantization errors. To maintaining high-resolution representations throughout
the network rather than relying on conventional low-to-high-resolution processes, Sun et al. [40] introduce
the HRNet to maintain high-resolution representations throughout the network that retain high spatial
resolution at each stage of processing, which improves key-point localization accuracy. Groos et al. [41]
found that traditional models like OpenPose, while popular, require substantial computational resources and
can struggle with precision in applications needing high accuracies, such as medical assessments and sports
analysis; therefore, they leverage EfficientNet backbones to create a scalable family of models optimized for
single-person pose estimation tasks. Tables 1 and 2 summarize detection-based methods for 3D human pose
estimation, highlighting their performance across common datasets and the variation in results depending
on the dataset and evaluation metrics used.

Table 1: Estimating three-dimensional human position from a Detection-based approach

Article Methodology Result
[33] A hybrid model integrating CNN and MRF,

concurrently trained for part detection and
spatial consistency reinforcement.

Attained exceptional precision on the
FLIC and LSP datasets, demonstrating
resilience in the presence of occlusions

and intricate poses.
[34] Deep consensus voting scheme where pixels

vote for body keypoints, aggregating data for
keypoint prediction.

Competitive outcomes on the MPII and
LSP datasets; robust performance in

occlusion situations.
[35] Multi-stage Convolutional Pose Machines

(CPMs) refining pose predictions with
intermediate supervision.

High accuracy on MPII and LSP datasets,
surpassing previous methods and

establishing a new benchmark.
[37] Stacked Hourglass Networks for iterative

refinement through downsampling and
upsampling processes.

Cutting-edge precision on MPII and FLIC
datasets, especially in challenging joint

detection.
[36] Cascaded CNN architecture using part

heatmaps followed by regression for
refinement.

Robust to occlusions; competitive
Outcomes on the MPII and LSP datasets.

[38] Coarse-to-fine volumetric approach
generating three-dimensional voxel-based

heatmaps refined iteratively.

Enhanced competitive performance on
Human3.6M and HumanEva; increased

precision of three-dimensional joint
positioning.

[39] Integral Pose Regression approach unifying
heatmap representation and regression with

a weighted integral for joint localization.

Cutting-edge outcomes on Human3.6M,
MPII, and COCO with enhanced

two-dimensional and three-dimensional
pose precision.

[40] HRNet preserves high-resolution
representations through parallel high-to-low

networks and multi-scale fusion.

Outperformed traditional models on
COCO and MPII; effective in video

tracking.

(Continued)
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Table 1 (continued)

Article Methodology Result
[41] Scalable architecture based on EfficientNet

with MBConv layers and PAFs for efficient
keypoint localization.

Higher efficiency and accuracy compared
to OpenPose; strong performance on

MPII.

Table 2: Performance method estimating 3D/2D human pose on detection-based

Article Method Name Dataset Metric Result
[33] Joint CNN + Graphical

model
FLIC, Leeds Sports

Pose
PCK@0.2 FLIC: 95.0% (elbow),

90.8% (wrist); Leeds:
80.3% (PCK@0.2)

[34] Deep consensus voting MPII PCKh@0.5 88.5% (PCKh@0.5)
[35] Convolutional Pose

Machines (CPM)
MPII, LSP PCKh@0.5 MPII: 87.95%

(PCKh@0.5); LSP:
84.32%

(PCK@0.2)
[36] Convolutional part heatmap

regression
MPII PCKh@0.5 89.7% (PCKh@0.5)

[37] Stacked hourglass networks MPII, FLIC, LSP PCKh@0.5,
PCK@0.2

MPII: 90.9%
(PCKh@0.5); FLIC:

98.2% (elbow), 96.3%
(wrist); LSP: 90.9%

(PCK@0.2)
[38] Coarse-to-fine volumetric

prediction
Human3.6M MPJPE (3D) 51.9 mm (direct 3D

prediction)
[39] Integral human pose

regression
Human3.6M MPJPE (3D) 40.5 mm (with ground

truth two-dimensional
poses)

[40] Deep high-resolution
representation

COCO, MPII,
Human3.6M

AP (COCO),
PCKh@0.5
(MPII), MPJPE
(Human3.6M)

COCO: 76.3%
(AP); MPII:
92.3%
(PCKh@0.5);
Human3.6M:
34.5 mm
(MPJPE)

[41] EfficientPose Human3.6M MPJPE (3D) –

In summary, Heatmap-based human pose estimation methods offer substantial advantages in terms
of spatial accuracy and robustness in joint detection. Their capability to represent joint likelihoods as
spatial distributions has driven significant progress in both two-dimensional and three-dimensional posture
estimation concerns. However, challenges such as computational demands, depth ambiguity, and handling
occluded joints continue to prompt the development of innovative approaches. Techniques like integral
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regression and multi-stage refinement architectures represent steps forward in addressing these issues,
emphasizing the ongoing need for balance between accuracy, computational efficiency, and adaptability to
real-world complexities.
Regression-Based Approach

Single-stage three-dimensional pose estimation models using a regression-based approach directly
map two-dimensional image inputs to three-dimensional coordinates, bypassing complex, multi-step pro-
cesses. This section traces the evolution of these methods, from early foundational models to recent
innovations, highlighting their unique methodologies and improvements in robustness, efficiency, and
real-world applicability.

Discriminative and Shape-Based Models: The foundational models for single-stage three-dimensional
pose estimation often relied on shape-based methods and discriminative techniques. Mori and Malik [42]
introduced shape contexts to recover body configurations by matching shapes derived from edge maps in
two-dimensional images. While effective in controlled settings, this approach struggled with occlusions and
background complexity. Expanding on this idea, Agarwal and Triggs proposed [43] where silhouettes serve
as features for pose estimation via relevance vector regression. However, both methods are limited by their
reliance on clean edge or silhouette extraction, making them less robust in naturalistic settings. Histogram
of Oriented Gradients (HOG) provided another discriminative approach, with Kovashka et al. employing
HOG-based classifiers to recognize body parts [30]. Later, Fang et al. applied HOG features in [44] using
gradients to infer joint positions. Although computationally efficient, HOG-based methods are sensitive to
lighting and edge clarity, limiting their utility in dynamic environments.

Integrating Context and Probabilistic Models: Probabilistic models have been introduced to address
the ambiguity in monocular three-dimensional pose estimation. In [45], Jung et al. developed a probabilistic
diffusion model that generates multiple hypotheses for joint locations, reducing errors from ambiguous
poses. Similarly, Li et al. in [46] leveraged semantic relationships between joints via graph convolutional
networks (GCNs), improving the structural accuracy of pose estimations. However, these models are
computationally intensive, presenting challenges for real-time applications. In addition, C. Ionescu et al.
introduced figure-ground segmentation in [47] to isolate subjects from backgrounds, enhancing pose
accuracy. While segmentation improves focus on the subject, it is susceptible to background noise, especially
in crowded scenes.

Physics-Based and Kinematic Models: To ensure realistic and anatomically feasible poses, physically-
aware and kinematic models introduced physics-based constraints. Ma et al. [48] employed an intuitive
physics framework to enforce balance and spatial accuracy. By embedding physical constraints into pose
prediction, this model effectively reduces depth errors. Another advancement is seen in Rhodin et al. [49],
where joint angles and bone lengths are constrained to maintain plausible body positions. However, such
models face limitations in dynamic environments where assumptions about physical constraints may not
always apply. Kinematic constraints further ensure realistic limb and joint angles. For instance, Ionescu
et al. in [47] applied these constraints to maintain anatomical consistency across various poses. While
kinematic constraints enhance pose realism, their rigidity can reduce adaptability to non-standard poses
and movements.

Regression-Based CNN and Baseline Models: Convolutional Neural Network (CNN) models marked
a turning point for single-stage, regression-based pose estimation by enabling efficient mapping from two-
dimensional images to three-dimensional coordinates. Zhou et al. [50] developed one of the first deep CNNs
that lifts two-dimensional pose features into three-dimensional space. Zhao et al. later introduced [29]
simplified three-dimensional estimation using orthographic projections. These models, while efficient, are



Comput Mater Contin. 2025;84(1) 107

often sensitive to occlusions and variations in body orientation. Xiao and Wei [51] introduced an effective
baseline model that uses deconvolutional layers to refine pose predictions directly from two-dimensional
features, improving accuracy without complex architectures. Although highly efficient, this baseline does not
explicitly handle occlusions or dynamic, real-world settings.

Advanced Integrated Feature-Sharing Models: On the other hand, advanced integrated feature-
sharing models are another phase in single-stage models that involve integrated feature-sharing between
two-dimensional and three-dimensional tasks. Sun et al. [39] introduced a differentiable integral operation
to calculate joint coordinates directly from heatmaps, integrating two-dimensional and three-dimensional
learning for more accurate pose estimation. This model, trained on Human3.6M, MPII, and COCO,
achieves high precision but can struggle with occlusions. Similarly, Mehta et al. in [22] introduced a transfer
learning approach where two-dimensional features from large in-the-wild datasets are shared with the
three-dimensional model, enhancing generalization across diverse scenes. Trumble et al.’s introduced weakly
supervised model in [28] employs geometric constraints to align two-dimensional and three-dimensional
learning for challenging environments, though it remains less effective in low-quality images.

Bone-Based and Context Modeling: Bone-based representations have been introduced to improve
anatomical consistency. Wang et al. in [32] developed a model that represents pose based on bone vectors
rather than joint coordinates, leading to structurally accurate predictions. Although effective in ensuring
anatomical accuracy, this representation can limit adaptability to extreme poses. In recent advancements,
Ma et al. proposed a context modeling framework [52] by combining Pictorial Structure Models (PSM)
and Graph Neural Networks (GNN). This model leverages contextual information from neighboring
joints, improving pose accuracy across complex scenes like Human3.6M and MPI-INF-3DHP. However, its
reliance on extensive training data can limit adaptability to new datasets or unlabeled scenarios. Tables 3
and 4 provide a comparative overview of regression-based approaches used in monocular 3D human pose
estimation, presenting benchmark results across multiple datasets.

Table 3: Estimating 3D human position from a Regression-based approach

Article Explanation Dataset Metric
[28] Weakly-supervised model for assessing

three-dimensional human posture in
outdoor environments

Human3.6M,
MPI-INF-3DHP

Mean Per Joint Position
Error (MPJPE)

[53] Structured learning approach with
max-margin objectives for

three-dimensional pose

Human3.6M, CMU
Panoptic

MPJPE, Percentage of
Correct Keypoints

(PCK)
[29] Uses orthographic projection to simplify

single-image three-dimensional pose
estimation

Human3.6M, MPII MPJPE

[54] CNN model trained to predict
three-dimensional pose based on learned

camera viewpoint

Human3.6M MPJPE, PCK

[54] Deep CNNs design for three-dimensional
pose estimation with two-dimensional

picture features

MPII, Human3.6M MPJPE

[38] Volumetric representation method for
pose prediction from a singular image

Human3.6M MPJPE, PCK

(Continued)
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Table 3 (continued)

Article Explanation Dataset Metric
[55] A novel approach using human pose as a

calibration pattern for camera setup
Custom, MoCap Root Mean Square Error

(RMSE)
[56] A probabilistic model for multi-view

three-dimensional pose estimation
without camera calibration

Human3.6M, CMU
Panoptic

MPJPE

[57] Multi-view framework for
three-dimensional pose estimation of

multiple people simultaneously

Shelf, Campus, CMU
Panoptic

MPJPE

[58] Self-supervised model that adapts based
on prediction uncertainty for

three-dimensional pose

Human3.6M,
MPI-INF-3DHP

MPJPE

[59] Pyramid network designed for efficient,
real-time three-dimensional pose

regression

Human3.6M,
MPI-INF-3DHP

MPJPE

[49] A physically aware neural model for
robust three-dimensional motion capture

from monocular input

Human3.6M,
MPI-INF-3DHP

MPJPE, Physio metrics

[48] Uses physics-based constraints to ensure
plausible three-dimensional poses

Human3.6M, Custom
MoYo Dataset

MPJPE, Base of Support
(BoS) Error

[30] HOG-based classifier for detecting and
recognizing body parts

Leeds Sports Pose
(LSP)

Classification accuracy

[44] HOG-based model for single-image
three-dimensional posture estimation

Custom Dataset Root Mean Square
(RMS) error

[43] RVM-based model for three-dimensional
pose from monocular silhouettes

Synthetic Dataset Angular error

[46] GCN model leveraging semantic
relationships for structured pose

regression

Human3.6M MPJPE

[55] Uses anatomical and camera knowledge
to improve three-dimensional pose

estimation

Human3.6M MPJPE, joint length
consistency

[45] Probabilistic diffusion model with
joint-level aggregation for
three-dimensional pose

Human3.6M,
MPI-INF-3DHP

MPJPE

[42] Shape context matching for recovering
body configurations from a single image

Speed Skating,
Custom Dataset

Keypoint accuracy

[60] Shape context-based model for estimating
three-dimensional body pose

configurations

Custom Dataset Joint localization error

(Continued)
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Table 3 (continued)

Article Explanation Dataset Metric
[47] Latent model for three-dimensional pose

estimation using figure-ground
segmentation

HumanEva-I MPJPE, Mean Per Joint
Angle Error (MPJAE)

[20] Comprehensive dataset for
three-dimensional human sensing with

annotated pose data

Human3.6M MPJPE, Mean Per Joint
Localization Error

(MPJLE)
[32] Bone-based pose representation for

structural consistency in pose estimation
Human3.6M, MPII MPJPE, PCK

[51] Simple, effective baseline model using a
deconvolutional network for precise pose

tracking

COCO, PoseTrack Mean Average Precision
(mAP), Multi-Object

Tracking Accuracy
(MOTA)

[39] Unified regression approach integrating
two-dimensional and three-dimensional

pose estimation using an integral
operation over heatmaps

Human3.6M, MPII,
COCO

MPJPE, PCK, mAP

[22] Improved generalization for in-the-wild
three-dimensional pose estimation using

transfer learning

Human3.6M,
MPI-INF-3DHP, LSP

MPJPE, 3DPCK, AUC

[61] A weakly supervised model with
geometric constraints and re-projection

for 3D pose lifting from two-dimensional

Human3.6M, MPII,
MPI-INF-3DHP

MPJPE, PCK, AUC

Table 4: Performance method estimating three-dimensional/two-dimensional human pose on regression-based
approach

Article Method Name Dataset Metric Result
[47] Latent

structured
models

HumanEva MPJPE HumanEva: 60.9 mm
(MPJPE)

[62] Maximum-
margin

structured
learning

HumanEva MPJPE HumanEva: 52.8 mm
(MPJPE)

[54] Camera
viewpoint CNN

Human3.6M MPJPE Human3.6M: 54.3 mm
(MPJPE)

[50] Lifting from the
deep

Human3.6M,
MPI-INF-

3DHP

MPJPE,
PA-MPJPE

Human3.6M: 62.0 mm
(MPJPE), 47.7 mm

(PA-MPJPE);
MPI-INF-3DHP:

88.4 mm (MPJPE)

(Continued)
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Table 4 (continued)

Article Method Name Dataset Metric Result
[46] Semantic graph

convolutional
networks

Human3.6M,
MPI-INF-

3DHP

MPJPE,
PA-MPJPE

Human3.6M: 50.1 mm
(MPJPE), 37.9 mm

(PA-MPJPE);
MPI-INF-3DHP:

74.2 mm (MPJPE)
[51] Simple baselines COCO, MPII AP (COCO),

PCKh@0.5
(MPII)

COCO: 73.7% (AP);
MPII: 90.5% (PCKh@0.5)

[63] Weakly
supervised

three-
dimensional

pose estimation

Human3.6M MPJPE Human3.6M: 58.4 mm
(MPJPE)

[52] Context
modeling in

three-
dimensional

pose estimation

Human3.6M,
MPI-INF-

3DHP

MPJPE,
PA-MPJPE

Human3.6M: 45.2 mm
(MPJPE), 33.1 mm

(PA-MPJPE);
MPI-INF-3DHP:

65.4 mm (MPJPE)
[58] Uncertainty-

aware
adaptation

Human3.6M,
MPI-INF-

3DHP

MPJPE,
PA-MPJPE

Human3.6M: 43.5 mm
(MPJPE), 31.8 mm

(PA-MPJPE);
MPI-INF-3DHP:

63.2 mm (MPJPE)
[45] Diffusion-based

three-
dimensional

pose estimation

Human3.6M,
MPI-INF-

3DHP

MPJPE,
PA-MPJPE

Human3.6M: 46.2 mm
(MPJPE), 34.1 mm

(PA-MPJPE);
MPI-INF-3DHP:
67.3 mm (MPJPE)

[48] Intuitive
physics-based

three-
dimensional

pose estimation

Human3.6M,
MPI-INF-

3DHP

MPJPE,
PA-MPJPE

Human3.6M: 48.7 mm
(MPJPE), 35.6 mm

(PA-MPJPE);
MPI-INF-3DHP:

69.8 mm (MPJPE)
[56] Probabilistic

triangulation
Human3.6M,

MPI-INF-
3DHP

MPJPE,
PA-MPJPE

Human3.6M: 44.8 mm
(MPJPE), 32.9 mm

(PA-MPJPE);
MPI-INF-3DHP:

64.7 mm (MPJPE)

(Continued)
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Table 4 (continued)

Article Method Name Dataset Metric Result
[59] SSP-Net Human3.6M,

MPI-INF-
3DHP

MPJPE,
PA-MPJPE

Human3.6M: 42.7 mm
(MPJPE), 31.2 mm

(PA-MPJPE);
MPI-INF-3DHP:

62.5 mm (MPJPE)

7.1.2 Two-Stage Pipeline
Two-stage pipelines have become a predominant methodology for monocular three-dimensional

human pose estimation. This paradigm divides the process into two main stages: (1) the estimation of
two-dimensional human poses and (2) lifting these two-dimensional poses to three-dimensional space.
Stage one, we explored previously using the regression approach and heatmap approach where the second
stage benefits from leveraging the accuracy of state-of-the-art two-dimensional pose detectors, enabling a
more refined three-dimensional reconstruction process. Fig. 3 presents a structured two-stage deep learning
approach for estimating three-dimensional human poses from single-view two-dimensional images. In
the first stage (two-dimensional Keypoint Extraction), an input image undergoes feature extraction using
Convolutional Neural Networks (CNNs) to identify and represent the human joints as two-dimensional
keypoints. Subsequently, these extracted two-dimensional keypoints serve as input for the second stage
(three-dimensional Keypoint Estimation), which employs an Autoencoder neural network composed of
an encoder-decoder structure. The encoder transforms the two-dimensional keypoints into a compressed
latent space representation, capturing essential spatial relationships, while the decoder reconstructs this
representation into estimated three-dimensional keypoints. The final output provides a precise three-
dimensional human pose estimation, facilitating accurate, ergonomic assessments and detailed pose analysis
in diverse practical scenarios.

Figure 3: The first stage extracts two-dimensional human keypoints from a single RGB image using a convolutional
neural network (CNN). These 2D keypoints are then input into a neural network-based encoder-decoder architecture
in the second stage to regress the corresponding three-dimensional joint positions

Classification problem/discriminative: In contrast to modern techniques employing deep neural
networks to discern the relationship between two-dimensional and three-dimensional poses, previous
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studies concentrated on translating two-dimensional poses into three-dimensional by determining the best
suitable three-dimensional configuration that aligns with the two-dimensional observations. These methods
often utilized a comprehensive dictionary of three-dimensional poses derived from large three-dimensional
pose datasets through techniques such as Principal Component Analysis (PCA) or dictionary learning
methods. For instance, early approaches like those presented in [64] leveraged sparse representations of
three-dimensional poses with an over-complete dictionary. Used projected matching pursuit algorithms
to recover three-dimensional poses from only two-dimensional projections and designed loss functions to
optimize dictionary coefficients and joint speed [57]. Later works, such as those referenced in [56] introduced
probabilistic triangulation techniques for robust multi-view three-dimensional pose estimation focusing on
handling errors due to camera calibration inconsistencies by employing convex optimization techniques and
expectation maximization algorithms to jointly estimate sparse representation coefficients. Some methods,
such as [65] combined two independent training datasets to improve three-dimensional pose generalization.
Used a dual-source matching algorithm to minimize projection errors under constraints from estimated
two-dimensional poses this founded strategies like matching the depth of two-dimensional poses to their
three-dimensional counterparts using k-nearest neighbor algorithms.

In contrast, the approach detailed in [66] introduced a consensus-based optimization algorithm for
uncalibrated multi-view data. Used a single monocular training process to fuse multi-view predictions for
robust three-dimensional pose estimation which coordinates minimized projection errors under constraints
that ensured proximity to retrieved poses, further refining pose reconstruction accuracy. In classification task
where images were assigned to predefined pose classes. For example, Ref. [67] used classification over pose
classes for three-dimensional reconstruction, ensuring valid predictions. However, these approaches were
limited by the granularity of pose classes, as increasing the number of classes improved precision but also
complicated discrimination tasks. These models laid foundational techniques for three-dimensional pose
estimation but were gradually complemented and, in some cases, replaced by neural network-based methods
that directly optimize correlations between two-dimensional and three-dimensional key points for improved
accuracy and flexibility.

2D-to-3D lifting techniques: The evolution of two-dimensional-to-three-dimensional lifting tech-
niques has progressed significantly, transitioning from traditional dictionary-based methods to sophisticated
deep learning approaches. Each innovation in this field addresses specific challenges such as depth ambi-
guity, occlusions, computational efficiency, and the accuracy of intermediate representations. Below, we
delve into the advancements, focusing on deep learning models, the kinematic model, self-supervised
and weakly supervised methods, Graph Convolutional Networks (GCNs), and transformer networks for
three-dimensional reconstruction.

Moreno-Noguer [68] introduced a framework for three-dimensional human pose estimation from
a single image, utilizing Euclidean Distance Matrices (EDMs) to encode structural relationships between
joints. The approach first detects two-dimensional joint positions using CNN-based detectors and then
regresses three-dimensional poses through EDMs. Martinez et al. in [69] introduced fully connected residual
networks, which regress three-dimensional joint locations from two-dimensional key points through a
stacked hourglass network. This method highlighted the potential of neural networks in lifting two-
dimensional to three-dimensional poses by leveraging robust intermediate two-dimensional pose detectors.
To enhance this approach, Tekin et al. in their model include the confidence map stream, image stream,
and a fusion stream, utilizing two-dimensional heatmaps instead of raw two-dimensional key-points.
Heatmaps encode spatial distributions and improve robustness by capturing additional spatial context.
Despite achieving state-of-the-art results at the time, it suffered from reconstruction ambiguities, especially
when input two-dimensional poses were noisy or occluded. To enhance this approach, their model includes
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the confidence map stream, image stream, and a fusion stream, utilizing two-dimensional heatmaps instead
of raw two-dimensional key-points. Heatmaps encode spatial distributions and improve robustness by
capturing additional spatial context. Wang et al. in [70] addressed depth ambiguity and proposed a ranking-
based network that incorporates depth matrices into the lifting process. This model was more effective than
standard regression techniques. Zhou et al. [71] introduce a new method that leverages Part-Centric Heatmap
Triplets (HEMlets), which encode both two-dimensional joint positions and relative depth relationships of
skeletal joints to enhance pose accuracy in complex scenes with a 20% improvement over existing methods.
Wu et al. [72] introduced a Locally Connected Mixture Density Network (LCMDN) to improve feature
extraction by leveraging structural relationships between joints.

Graph Convolutional Networks (GCNs): Have been pivotal in refining two-dimensional-to-three-
dimensional lifting by representing the human skeleton as a graph, with joints as nodes and bones as edges.
This framework allows models to exploit the structural relationships within the human body, improving
pose estimation robustness under diverse conditions. Choi et al. [73] introduced the Pose2Mesh model
to directly recover three-dimensional human pose and mesh from two-dimensional poses using PoseNet
and MeshNet. Zhao et al. in [46] introduced on Semantic-GCN (SemGCN) regression base; the model
processes the input as a structured graph where nodes represent joints and edges capture their spatial
relationships. Training employs a combination of joint and bone constraints, ensuring physical plausibility.
Zhao et al. in [74] integrates graph convolutions with transformers. This hybrid approach captures both
explicit joint relationships and hidden dependencies, enhancing pose estimation for occluded or ambiguous
configurations. Another model by Zhou et al. proposed a Modulated GCN in [75] identifies two critical
limitations in existing GCNs for three-dimensional Human Pose Estimation with weight sharing and
Suboptimal Graph Structures for that introduced weight modulation and affinity modulation to dynamically
adapt the graph structure, enabling more accurate feature transformations across diverse pose configurations.
Choi et al. [76] introduced the DiffuPose model to leverage a Denoising Diffusion Probabilistic Model
(DDPM) for generating multiple plausible three-dimensional human pose hypotheses from a single two-
dimensional pose input by Multi-Hypothesis and Combining a reconstruction Loss Function for denoising
and an auxiliary two-dimensional supervision loss to ensure consistency with two-dimensional input.

The kinematic model: Leverages skeletal joint connectivity, fixed bone-length ratios, and joint rotation
properties to ensure plausible pose estimation. For that, Zhou et al. [77] used their model from single-
stage embedded kinematic constraints as layers in their network to enforce anatomical consistency and
better geometric accuracy. Xu et al. in [78] systematically integrate kinematics-based constraints into a
deep learning framework, addressing noise in two-dimensional detections and improving the reliability
and accuracy of monocular three-dimensional pose estimation through enforcing perspective projection
constraints and introducing temporal CNN to improve the temporal consistency of two-dimensional inputs.

To tackle the scarcity of labeled three-dimensional data, self-supervised and weakly supervised
approaches have emerged; Zhou et al. in [28] their weakly supervised transfer learning framework, utilized
two-dimensional annotations from in-the-wild images as weak labels to infer three-dimensional poses.
This method included a three-dimensional pose estimation module connected to the two-dimensional
pose estimation network, enabling joint optimization. Their weakly supervised transfer learning framework
utilized two-dimensional annotations from in-the-wild images as weak labels to infer three-dimensional
poses. This method included a three-dimensional pose estimation module connected to the two-dimensional
pose estimation network, enabling joint optimization. Habibie et al. [79] tailored a projection loss to
refine three-dimensional human poses without requiring explicit three-dimensional annotations, relying
on two-dimensional-three-dimensional reprojection consistency. Chen et al. [80] introduced a geometric
self-consistency loss, leveraging lift-reproject-lift properties to ensure that re-lifted poses remain consistent
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with the original three-dimensional structure. Luvizon et al. [66] focus on the challenges of absolute three-
dimensional human pose estimation in camera coordinates. The proposed method introduces two key
contributions: View Frustum Space Pose Estimation, which predicts three-dimensional poses by separating
absolute and relative depth estimation in the view frustum and converts predictions into camera coordinates
using inverse projection, and Consensus-Based Multi-View Optimization, which aligns three-dimensional
pose predictions from uncalibrated views by optimizing camera parameters. By combining multi-view
predictions, the method improves accuracy and resolves occlusions, leveraging both two-dimensional and
three-dimensional annotations for effective training. Wandt et al. in [81] proposed single-stage model that
the proposed approach introduces key innovations for unsupervised three-dimensional pose estimation.
It predicts the camera elevation angle for each two-dimensional pose, learning the distribution of camera
orientations rather than relying on predefined priors, ensuring upright and realistic three-dimensional pose
alignment. Normalizing flows are used to model the distribution of plausible two-dimensional poses and
estimate the likelihood of reconstructed three-dimensional poses, offering a probabilistic measure of pose
validity and improving accuracy. To stabilize training, two-dimensional poses are projected to a lower-
dimensional subspace using Principal Component Analysis (PCA), reducing noise and redundancy and
ensuring the effective training of the lifting network. The end-to-end pipeline integrates depth prediction for
three-dimensional pose reconstruction, with loss functions combining pose likelihood, bone length consis-
tency, and reprojection errors for optimization. CameraPose model introduces a novel weakly-supervised
framework for monocular three-dimensional human pose estimation [63], addressing key challenges such
as reliance on expensive three-dimensional annotations, poor generalization to in-the-wild poses, and the
propagation of errors from noisy two-dimensional keypoints. By incorporating a camera parameter branch,
the method effectively aligns two-dimensional keypoints with the three-dimensional camera space, enabling
the use of unpaired two-dimensional datasets for training. A refinement network improves the accuracy of
detected two-dimensional keypoints using confidence-guided loss, while a GAN-based pose generator and
discriminator enhance pose diversity through realistic augmentation.

7.2 Limitations and Comparisons
The evolution of three-dimensional human pose estimation methods showcases diverse approaches,

each with unique advantages and trade-offs. Two-stage pipelines, which separate two-dimensional keypoint
detection and three-dimensional lifting, benefit from modularity and the accuracy of state-of-the-art two-
dimensional pose detectors but suffer from error propagation between stages. Dictionary-based methods,
though interpretable and computationally efficient for small-scale problems, struggle with generalizing
to complex, in-the-wild poses due to their reliance on pre-learned three-dimensional dictionaries. Deep
learning-based lifting techniques, such as those leveraging Euclidean Distance Matrices (EDMs) and
heatmap triplets, provide scalability and robustness to noisy inputs but demand large labelled datasets and
high computational resources. Graph Convolutional Networks (GCNs) capitalize on the skeletal structure’s
inherent graph properties to model joint dependencies, making them robust to occlusions, though they
can be computationally intensive and rely heavily on optimal graph designs. Kinematic models ensure
anatomical consistency and realistic poses through constraints like fixed bone-length ratios, but they
introduce complexity and require prior anatomical knowledge.

Meanwhile, self-supervised and weakly supervised methods, such as ElePose and CameraPose, address
the scarcity of three-dimensional annotations and generalize well to in-the-wild scenarios by leveraging two-
dimensional datasets and reprojection losses. Yet, they often underperform compared to fully supervised
techniques in controlled environments. Lastly, probabilistic and multi-hypothesis models like DiffuPose
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effectively handle depth ambiguities and occlusions by generating plausible pose distributions but are com-
putationally expensive and require advanced optimization strategies. These methods collectively highlight
the trade-offs between accuracy, efficiency, generalization, and computational cost, enabling tailored choices
for different application requirements.

8 REBA (Rapid Entire Body Assessment)
The field of ergonomic risk assessment has evolved from manual methods to automated, AI-driven

systems leveraging computer vision and deep learning. Early work by Abdollahzade and Mohammadi [82]
relied on statistical analysis and manual observations to predict hospital REBA scores, establishing a baseline
for risk quantification. Chen and Qiu [83] introduced tensor decomposition and SVM classifiers to identify
awkward postures in construction, though without validation on a standardized dataset.

Subsequent advances addressed methodological gaps: Erginel and Toptanci [11] applied fuzzy logic to
handle uncertainty in posture assessments, while Anghel et al. [84] combined biomechanical load analysis
with RULA to optimize automotive assembly lines. Seo and Lee [85] achieved 89% accuracy in supervised
vision-based posture classification, demonstrating the potential of automated systems.

By 2020, machine learning dominated the field. Ryu et al. [86] used unsupervised clustering to categorize
ergonomic risks, and Ghasemi and Mahdavi [13] enhanced REBA’s sensitivity by integrating fuzzy sets and
Bayesian networks (FBnREBA). Vision-based tools emerged as practical solutions: Wu et al. [12] developed
a Mask R-CNN app (~90% accuracy on COCO images), and Jeong and Kook [87] created CREBAS, a
MediaPipe-based REBA system matching manual evaluations. Yan et al. [88] achieved 89% accuracy in
two-dimensional posture recognition using OWAS.

Post-2020, deep learning refined automation. Tellaeche et al. [89] automated REBA with variational deep
networks (UW-IOM/TUM datasets), while Lin et al. [90] integrated OpenPose with REBA/RULA/OWAS
for real-time analysis. Massiris Fernández et al. [91] automated RULA scoring (Cohen’s kappa > 0.6), and
Kim et al. [6] showed OpenPose outperformed Kinect in joint angle computation.

Recent studies focused on scalability and precision. Namwongsa et al. [92] linked smartphone use
to musculoskeletal risks via RULA. Li et al. [93] proposed a deep learning RULA model (Human3.6M
dataset, 96.7% accuracy), and Kumar Nayak and Kim [94] achieved high consistency (ICC > 0.75) in
automated RULA. Abobakr et al. [95] used RGB-D data (89% accuracy, 3.19○ MAE), and Hossain et al. [7]
predicted REBA scores from three-dimensional keypoints (89.07% accuracy). Finally, Ionescu et al. [47]
advanced monocular pose estimation with latent structured models, paving the way for future ergonomic
tools. Table 5 presents a summary of ergonomic risk assessment studies that utilize computer vision
techniques, highlighting their methodologies, environments, and evaluation settings.

Table 5: Summary of ergonomic risk assessment studies using computer vision

Article CV Tool Environment Methodology Dataset 2D/3D
[82] – Hospital Manual statistical analysis of

REBA scores
Hospital worker

observations
–

[83] – Construction
site

Tensor decomposition + SVM
for posture classification

Unspecified
construction site

data

3D

(Continued)
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Table 5 (continued)

Article CV Tool Environment Methodology Dataset 2D/3D
[11] – Laboratory Fuzzy logic for posture

uncertainty handling
Synthetic/manual

posture
assessments

2D

[84] CATIA Automotive
assembly

Biomechanical load analysis +
RULA

CAD simulations
(CATIA)

3D

[85] Supervised
vision

Construction
site

Vision-based posture
classification (89% accuracy)

Construction site
videos

3D

[86] – Laboratory Machine learning clustering for
risk categorization

Unspecified lab
data

3D

[13] – Industrial FBnREBA: Fuzzy sets +
Bayesian networks for REBA

sensitivity

Case study (gas
cooker assembly

line)

2D

[12] Mask
R-CNN

Laboratory REBA scoring via Mask R-CNN
(~90% accuracy)

MS COCO 2017
dataset

2D

[87] MediaPipe Laboratory CREBAS: Automated REBA
using MediaPipe

MediaPipe pose
estimates

2D

[88] Two-
dimensional

vision

Laboratory OWAS-based posture
recognition (89% accuracy)

Unspecified
two-dimensional

pose data

3D

[89] Variational
DNN

Laboratory Deep networks for automated
REBA (UW-IOM/TUM

datasets)

UW-IOM, TUM
Kitchen datasets

3D

[90] OpenPose Laboratory OpenPose +
REBA/RULA/OWAS for

real-time analysis

OpenPose outputs 3D

[91] Computer
vision

Laboratory Automated RULA scoring
(Cohen’s kappa > 0.6)

Unspecified lab
recordings

2D

[6] OpenPose Laboratory OpenPose-based joint angle
computation (outperformed

Kinect)

OpenPose outputs 3D

[92] – Laboratory RULA for smartphone
ergonomics

User smartphone
usage data

–

[93] Deep
learning

Laboratory Deep learning RULA
(Human3.6M, 96.7% accuracy,

MAE 3.33%)

Human3.6M
dataset

3D

[94] Vision-
based

Laboratory Fully automated RULA (ICC >
0.75)

MS COCO 2017
dataset

2D

[95] RGB-D +
CNN

Laboratory RGB-D ergonomic assessment
(89% accuracy, 3.19○ MAE)

RGB-D sensor data 3D

(Continued)
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Table 5 (continued)

Article CV Tool Environment Methodology Dataset 2D/3D
[7] three-

dimensional
keypoints

Laboratory REBA prediction from
three-dimensional keypoints

(89.07% accuracy)

Human3.6M
dataset

3D

Limitations and Comparisons
A critical examination of recent advancements in automated ergonomic risk assessment reveals signif-

icant gaps concerning the integration of 3D Human Pose Estimation (3D HPE) within REBA frameworks,
particularly regarding dataset diversity and methodological robustness. Although numerous studies—
such as those by Anghel et al. [84], Wu et al. [12], and Hossain et al. [7], have achieved high accuracy
using standardized or synthetic datasets like Human3.6M, COCO, or CATIA simulations, their findings
remain constrained by limited real-world applicability. The absence of cross-dataset validation and the
narrow representation of occupational postures hinder the generalizability of these models across dynamic
workplace environments.

The application of 3D HPE to REBA introduces unique challenges that further complicate its practical
deployment. Occlusions and partial visibility, frequently caused by tools, machinery, or body self-occlusion,
often lead to incomplete or inaccurate joint detection, directly impacting the calculation of REBA-relevant
angles such as trunk flexion or leg positioning. Similarly, complex postures involving twisting in syn-
thetic datasets, leading to posture ambiguity and misclassification of risk scores (see Fig. 4). Moreover,
the widespread reliance on monocular camera views in laboratory studies restricts the ability of 3D
reconstruction methods to capture full-body kinematics necessary for accurate ergonomic assessments in
real-world settings.

Figure 4: Challenges in 3D HPE for REBA. In subfigure (a), labelled “Correct joints”, the subject is fully visible with no
obstructions. In subfigure (b), labelled “Wrong joints”, a large object partially occludes the subject’s right arm [96]
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Limitations in current 3D HPE methodologies are also evident in their scalability and lack of multi-
perspective training. While methods like variational deep networks [89] and OpenPose-based pipelines [90]
report high accuracy, their validation has been limited to single datasets under controlled conditions. This
hinders their adaptability to diverse and complex workplace tasks that require robust, multi-angle, and
occlusion-resilient pose estimation.

Moving forward, improving REBA automation will require the integration of multi-source datasets
combining real-world occupational motion data with lab-captured ground truth annotations. Developing 3D
HPE models that are specifically tailored to handle occlusion, asymmetry, and variable viewing conditions
will be critical for accurate ergonomic risk classification. These efforts will bridge current gaps and enable
robust deployment of 3D pose-based ergonomic assessment systems in practical occupational settings.

9 Conclusion
This review has examined recent developments in monocular 3D human pose estimation and their inte-

gration into REBA-based ergonomic risk assessment. While advancements in deep learning—particularly
CNNs, GCNs, and transformer-based models—have significantly improved the accuracy and applicability
of 3D pose estimation from monocular images, substantial challenges remain. These include limitations
in generalizability across diverse workplace scenarios, the scarcity of annotated real-world datasets, and
difficulties in handling occlusion and skeleton variability.

We highlighted that most existing approaches rely on controlled datasets and often overlook the
complexity of real-world ergonomic applications. The review also emphasized a major research gap: the
limited capability of current models to estimate REBA scores directly from single RGB images without depth
sensors or sequential inputs.

Future research should prioritize the development of lightweight, generalizable models capable of
functioning effectively in unconstrained environments. Incorporating synthetic datasets, domain adapta-
tion techniques, and multi-view learning could further enhance model robustness. By addressing these
challenges, researchers can advance the deployment of automated ergonomic risk assessment tools that are
scalable, accurate, and practical for use in occupational health and safety.
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