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ABSTRACT: The Internet of Things (IoT) is a smart infrastructure where devices share captured data with the
respective server or edge modules. However, secure and reliable communication is among the challenging tasks in
these networks, as shared channels are used to transmit packets. In this paper, a decision tree is integrated with other
metrics to form a secure distributed communication strategy for IoT. Initially, every device works collaboratively to
form a distributed network. In this model, if a device is deployed outside the coverage area of the nearest server,
it communicates indirectly through the neighboring devices. For this purpose, every device collects data from the
respective neighboring devices, such as hop count, average packet transmission delay, criticality factor, link reliability,
and RSSI value, etc. These parameters are used to find an optimal route from the source to the destination. Secondly, the
proposed approach has enabled devices to learn from the environment and adjust the optimal route-finding formula
accordingly. Moreover, these devices and server modules must ensure that every packet is transmitted securely, which
is possible only if it is encrypted with an encryption algorithm. For this purpose, a decision tree-enabled device-
to-server authentication algorithm is presented where every device and server must take part in the offline phase.
Simulation results have verified that the proposed distributed communication approach has the potential to ensure
the integrity and confidentiality of data during transmission. Moreover, the proposed approach has outperformed the
existing approaches in terms of communication cost, processing overhead, end-to-end delay, packet loss ratio, and
throughput. Finally, the proposed approach is adoptable in different networking infrastructures.
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1 Introduction
The Internet of Things (IoT) refers to the smart infrastructures where devices with embedded sensors

collaborate to form a network. IoT facilitates reliable communication and data sharing among distributed
modules, i.e., devices and servers. For this purpose, a secure communication methodology is used to ensure
the timely transmission of packets over a shared and insecure communication medium [1]. For this purpose,
two general methodologies, i.e., direct or hop-based transmissions, were reported in the literature. The
selection criteria of these approaches have a direct proportionality ratio to the application requirements
of IoTs. The direct communication of member devices with the intended server module is possible only if
deployed within the server module’s coverage area [2]. This scenario is possible only if the traffic strategy
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is engineered and the registration process of vehicles is applicable [3]. However, engineering deployment is
not always realistic [4,5]. Therefore, multi-hop-based communication methodologies are adopted to ensure
reliable packet transmission from the source to the respective server module via a relay device.

In multi-hop communication, every device, i.e., the source module, finds an optimal path before
initiating the actual transmission process. For this purpose, different methodologies have been reported
in the literature. Initially, the shortest path-based communication methodologies were reported, and every
device had to transmit packets via that path in general and IoT in particular. The idea is to mimic the
behaviors of human beings adopted in traffic [6]. However, a common issue with the shortest-path-enabled
approach is the rapid consumption of the available power by the device deployed on it, as it has the highest
probability that multiple devices will use this path for communication, just as the shortest path has more
traffic than longer paths. To address this issue, optimal path-enabled methodologies have been reported
where sensors or devices forward captured data via reliable paths. However, these techniques have the same
problems as multiple devices or sensors, where devices will likely share the same optimal path [7]. Therefore,
multi-path-based communication approaches were developed to address the common path issue. In these
methodologies, every device or sensor holds valuable information about neighboring modules, such as
residual energy, hop count, criticality factor, and number of dependent modules in IoT. These methodologies
have resolved the core issue, which is linked with both shortest and optimal-path-based approaches. In these
approaches, the traffic generated by the source modules is uniformly distributed across multiple available
paths in IoT. An optimized multiple-path oriented routing and node deployment methodology has been
introduced to enhance the availability of the underlined network [8]. However, this model is limited to
smart city application areas. A decision-tree-enabled distributed traffic management system is presented to
ensure the challenging problem of route flopping [9]. However, packet pin-pong is a common issue with this
scheme as the hop-count value of the devices is not utilized in the classification. Likewise, a random forest
and particle swarm optimization-based classification scheme was presented by Lavate et al. [10]. Likewise, a
hybrid classification approach is based on Cuckoo Search and PSO along with three classifiers: Multi-Layer
Perceptron, AdaBoost, and Random Forest [11]. However, this model doesn’t fit the resource-constrained
IoT devices due to its highest complexity. A convolution neural networks-based intrusion detection model
was presented to resolve various issues associated with existing federated learning-enabled approaches, i.e.,
transmission of model parameters and leakage of private data. However, hard-labeled strategies and voting
mechanisms are questionable for secure IoT [12]. Additionally, existing communication methodologies have
limitations such as the longest transmission delay and packet loss ratio, but are also vulnerable to numerous
intruder attacks in an active IoT networking infrastructure.

In this paper, a reliable multi-hop-enabled communication mechanism is developed to resolve the
aforementioned issues with the existing algorithms or methodologies, especially those designed for IoT.
The proposed methodology is based on the realistic assumption that every device should be well-informed
about neighboring devices, especially those operating in its coverage area. To do so, devices gather valuable
information about neighboring devices’ distance, criticality factors, link reliability, neighboring devices, delay
factors, etc. Every source module uses these metrics to find an optimal path toward the respective server or
relay device. The main contributions of the paper are given below:

1. A machine learning-enabled device-to-device and device-to-server authentication algorithm.
2. A reliable communication methodology in which the source and destination devices or servers shouldn’t

be operated in the direct coverage domain of the respective transceiver’s module.
3. Packets are transmitted in encrypted form to ensure data confidentiality and privacy in the active IoT.
4. A trustworthy communication infrastructure that is particularly designed for the IoT.
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The remaining paper is arranged as follows.
In the subsequent section, i.e., the literature review, a summary of the existing communication method-

ologies, specifically those developed for the IoT, is presented. In the next section, a detailed description
of the proposed methodology is presented, such as how devices are enabled to be informed about their
surroundings and find an optimal path. Verification of various claims is carried out through extensive
simulations, which are presented in the performance evaluation section of the paper. Finally, the concluding
remarks are given.

2 Literature Review
In the literature, various approaches have been developed to ensure reliable communication among

active devices in IoT. A detailed summary of the most relevant approaches is presented here.
Collaborative communication approaches were designed and implemented to ensure reliable trans-

mission of data among the integrated and sensing-enabled devices. In this approach, a relay device serves
as a mediator between another device and the server module if and only if the late device doesn’t have
direct communication capacity with the nearest server. These devices not only transmit their data but also
forward packets to the neighboring devices. A hybrid communication module that is based on the trust
model and multiple path packet forwarding was presented to develop trusted communication sessions
between interested devices [13]. Likewise, a task offloading methodology, preferably in a distributed manner,
was presented for computationally expensive tasks to ensure a balanced trade-off between processing
and consumed energy overheads [14]. Moreover, deep learning-based methodologies were developed to
ensure a balance between processing and energy cost [15]. For this purpose, authors have assumed that
the IoT infrastructure had a random flow of traffic and a dynamic networking environment. However, the
compatibility of deep learning-based algorithms is questionable. In addition, a sophisticated communication
and task-offloading methodology was presented in [16] to make sure that optimization of processing
resources, channel allocation for reliable communication, and task scheduling was carried out with the
minimum possible value of delay metrics. Kalman filter-oriented algorithm was presented in [17] to find the
approximate position of the device. This approach had the flexibility to be adopted in different applications
with minimum possible tracking beam overhead, a common issue linked with the earlier approaches.
This approach is safe against various intruder attacks as it has to rely on the existing security models.
Traffic or route awareness plays a significant role in the IoT. Therefore, communication approaches with
embedded authentication and privacy were reported [18,19]. This scheme has enabled a service-aware
communication infrastructure for the devices along with additional flexibility, that is, an on-demand task
scheduling policy. Similarly, the genetic algorithm-based algorithm was presented to resolve premature and
convergence issues [20]. Likewise, collaborative fusion-enabled methodologies were presented to reduce the
overall communication overhead and congestion across different available paths in the IoT, but security and
device trustworthiness are among the challenges linked with it. An ISCC-enabled fusion methodology was
presented in [21], where every device must send data in a refined form, i.e., aggregated with the minimum
possible duplicate and missing values. A secure and lightweight packet transmission methodology was
introduced by Ibraheem et al. [22], where a symmatric key and elliptic curve were combined to form a hybrid
authentication model for IoT. However, complexity is among the core challenges with this approach.

A federated learning and Green computing-enabled optimal route selection scheme was introduced
by Khatua et al. [23], where a genetic algorithm was integrated with the route selection process to find
the optimal one. Optimal routes are computed by the concerned server and local server module and are
shared with the device, preferably within the defined time bond. However, the implementation of a two-
tier approach for servers and the sharing of information are the challenges associated with it. Likewise, a



960 Comput Mater Contin. 2025;84(1)

server and reinforcement-learning-aware route prediction mechanism was developed to ensure that every
device should have sufficient knowledge about the operating area [24]. Likewise, a block-chain and AODV
based security schemes have been presented [25,26]. Similarly, references [27,28] have introduced secure
approaches for 6G and internet of Vehicles. These models have a high susceptibility ratio to attacks launched
by the potential intruder modules. However, a common issue with the existing approaches is that optimal
routes are computed either by server or server module, which is not realistic in the dynamic IoT environment.
Thus, a reliable optimal route optimization scheme should be developed where route computation is carried
out by the concerned device.

3 Proposed Secured Communication Approach for the Internet of Things
The proposed secured communication model is designed for the Internet of Things, where devices

and servers are trained through a sophisticated AI-enabled process. The proposed scheme ensures reliable
communication between interested parties, i.e., devices and server modules, and is safe against intruder
attacks in the IoT. The proposed communication approach is adaptable to both networking infrastructures,
that is, (i) homogeneous, where multiple-hop communication strategies are used, and (ii) heterogeneous,
where both direct and multi-hop communications are applicable. Apart from reliable communication, the
proposed scheme has been secured through a lightweight authentication approach, i.e., device to server. A
detailed description of these techniques is given below.

3.1 Proposed Communication Approach for IoT
Generally, in resource-constrained networking infrastructures such as the Internet of Things and

Artificial Intelligence-enabled Internet of Things, embedded devices operate on roads to capture real-time
information about the underlined phenomenon, process and share it with the centralized module, i.e., server
module, either directly or through the neighboring devices. However, in scenarios where these devices are
allowed to join randomly, ensuring that every device is running within the coverage area of the particular
server module is tough. Therefore, a multi-hop communication methodology is used where packets are
forwarded through the optimal neighboring devices, which are based on various parameters, i.e., residual
energy Er , Receive Signal Strength Indicators (RSSI), Success ratio, average transmission time, and load.
Moreover, neighboring devices are bound to share these statistics after a defined interval of time.

Initially, the respective server module generates a simplified message with an embedded data field of
hop and broadcasts it. It is received by those devices operating in the coverage area of the server module’s
transceiver using the Eqs. (1) and (2), respectively.

devicel i st = Function(DeviceID) (1)

Function is used to capture IDs of all neighboring devices, especially those deployed in the coverage
area of the transceiver.

Bcast = Send(RID , (devicel i st , msg)) (2)

RID represents the identity of the source module, which is the server in this case. As soon as a
neighboring device receives this message, it updates the message contents, that is hop count value is set to one
(1), and prepares to rebroadcast it. However, multiple neighboring devices may broadcast updated versions



Comput Mater Contin. 2025;84(1) 961

of the message, which leads to the packet collision, for which CSMA/CA is used as shown in the Eq. (3).

E f f icienc y(η) = Tt

e ∗ 2 ∗ Tp + Tt + Tp
(3)

Tt & Tp represent transmission and propagation time, respectively. This process is repeated by every
device (i.e., from the device with a hop count of one to devices with values of two, three, four, and so on)
until the very last device has computed its hop count value. Hop count values play a crucial role in defining
the neighborhood or load of a device. This is a time-consuming process, but it is acceptable as it requires to
be carried out only once, preferably after the deployment.

If the neighborhood discovery process is successful, then devices are bound to share valuable infor-
mation about other crucial parameters such as success ratio, transmission time Tp, and residual energy.
Additionally, RSSI values of the neighboring devices are computed by the respective device itself as presented
in the Eq. (4).

RSSI = Pt − PathLoss(d) (4)

Pt and d represent the devices’ average propagation time and overall distance. Secondly, PathLoss is the
path loss, as shown in the Eq. (5).

PathLoss(d) = PathLoss(d0) + 10nlog ( d
d0
) + Xσ (5)

d0 represents the reference distance and Xσ the dB. dB is the unit used to measure the signal strength
loss ratio.

Once every device Vi has information about neighboring devices, then it is ready to be trained on the
respective machine learning model, i.e., decision tree. The decision tree is a supervised machine learning
technique where data is required to be labeled, that is, in this case, such as known parameters and output, i.e.,
optimized or not. Moreover, a decision tree is an ideal solution for scenarios where decisions are based on
various parameters in sequential order. Secondly, optimal devices should be identified from the neighboring
devices, and a threshold value of δ is needed. Thus, if the computed value of the expression is less than or
equal to the threshold value, then the neighboring device is considered optimal or non-optimal. For this
purpose, weights are assigned to every parameter, and the optimal ratio of the neighborhood is checked
through a sophisticated process. In the proposed setup, RSSI value and neighborhood or load are assigned
the weights of ω1 and ω1, respectively.

Initially, neighboring devices were classified into two classes, i.e., (i) potential relaying devices, which
could be used as an intermediate device for the transmission of packets, and (ii) neighbor only, a device
that has a higher hop count value than the source device. In the decision tree, entropy is the information
necessary to define the similarity of the data values in a data set, as described in the Eq. (6) given below.

Entropy = −
n
∑
i=1

pi ∗ log(p) (6)

The data set used in the proposed set has a relatively higher entropy value, i.e., those values are
approximately equally divided. In addition to entropy, the Gini Index is used to describe the homogeneity of
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data values, and a parameter with a slightly higher value could be used as the root node or basic classifier in
the decision tree. The Gini index of parameters is computed using the Eq. (7).

Giniindex = 1 −
n
∑
i=1

p(i)2 (7)

where n represents classes, i.e., optimized or not, and p(i) is the approximate optimal neighbors ratio to the
total neighbors.

In the proposed setup, RSSI has a slightly higher value of the Gini Index along with allocated weightage,
i.e., 30%, and is used as a root node in the decision tree where neighboring devices are classified as potential
routers, i.e., can forward packets of neighboring devices in addition to its own, or not. For this purpose, a
threshold value of the RSSI value is defined, and only those devices with maximum values are among the
potential candidates for packet forwarding, subject to other parameters in the IoT. Secondly, RSSI serves
as the root node of the decision tree. Secondly, hop count has a higher value in the Gini Index than other
parameters except RSSI and is used in the decision tree where neighboring devices are classified as potential
routers, i.e., can forward packets of neighboring devices or not. For this purpose, hop count values of the
neighboring devices are fed to the internal node, i.e., level-1, in the decision tree. A device with a hop count
value less than or equal to the hop count value of the source is then added to the class where potential routing
devices are stored. Otherwise, it is classified as an ordinary neighboring device and avoids being used as a
relay device.

The third parameter, which has a greater value than the remaining parameters, is the residual energy,
i.e., Er , of a neighboring device, which is defined as available power for the smooth processing of the device.
Thus, the class of potential relaying devices is further refined by the residual energy parameter, and neighbors
with maximum residual power are allowed. For this purpose, a threshold value has been defined, i.e., 50%, in
this case. However, in scenarios where all devices in the list have residual power less than 50%, then another
threshold value, i.e., 90%, is utilized. Finally, the next level node in the decision tree is based on two remaining
parameters, i.e., average transmission time and load. However, as these parameters have a slightly different
range of values, data should be normalized before actual processing. For effective normalization of data, the
following Eq. (8) has been utilized.

Normal ized(data) = X −min
max

(8)

where current, minimum, and maximum values are represented by X, min, and max, respectively. After this,
normalized values are fed into the Eq. (9) given below:

optimal(Vngb) = ω1 ∗ Tp + ω2 ∗ Load (9)

where Vngb represents neighboring devices of the source. ω1 & ω2 represent weights assigned to these
parameters based on the importance of routing methodology. A neighboring device is optimal if it has the
minimum possible value obtained through the Eq. (9) among all neighbors.

An algorithm for the proposed machine learning-enabled communication infrastructure has been
presented below. The complexity of the proposed algorithm is O(2n+m), where n and m represent the
complete set of devices and servers, respectively.
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Algorithm 1: Finding an optimal neighboring device in artificial Intelligence-enabled internet of things
Require: Optimal Neighboring device.
Ensure: Trusted and Optimized
1: Ci complete set of devices in IoT
2: Sj complete set of server in IoT
3: Er residual power of devices
4: Hc hop count value of devices
5: Tp(Co pt) = 1200 u sec Propagation time of devices
6: LoadN = 100 Dependent Neighboring devices
7: RSSIi Approximate value of the RSSI
8: ClassPN Potential Neighbors
9: RSSIi Approximate value of the RSSI
10: for (i = 0; i >= n; i++)
11: if RSSI(Ci) >=Threshold then
12: Add Cl assPN ← Ci
13: else then
14: Skip Ci
15: endif
16: endfor
17: while (Ci ∈ Cl assPN)

18: if Hc(Ci) <= CMP & Er >= δ then
19: move to Next Neighbor
20: else then
21: Remove Ci from ClassPN
22: endif
23: if (Tp(Ci) <= Tp(Co pt)) & Load(Ci) <= LoadN then
24: Tp(Co pt) ← (Tp(Ci)
25: LoadN ← Load(Ci)
26: O ptimalNbr ← Ci
27: else then
28: Remove Ci from ClassPN
29: endif
30: endwhile
31: if (Multiple(Ci ∈) OptimalNbr) then
32: O ptimal(Ci) = Random(O ptimal(C1,2,. . ,n))
33: endif
34: return Optimal Neighboring device Ci

Initially, devices are passed through the training phase, where data values related to both scenarios,
optimal and non-optimal, are present, i.e., the IoT traffic data set [29], which has 10,000 records for various
smart devices. For this purpose, the data set was divided into training and testing data values. (i) The training
data set consists of 5000 records with the aforementioned parameter values. (ii) The testing data set consists
of 5000 records. Moreover, a 5-fold cross-validation mechanism makes the result consistent and realistic. A
random search-enabled hyperparameter-tuning methodology was used where required. It is important to
note that missing values were also present in the data set, which were refined before the proposed solution’s
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training phase. To realize this, a simplified refinement scheme, preferably a well-known state-of-the-art
existing approach with a high accuracy and precision ratio, has been utilized. As soon as the data set is
refined, the training process of the devices with the proposed decision-tree-enabled algorithm, given above
Algorithm 1, is carried out. Every device is trained to ensure that it can handle both scenarios, i.e., the one
where an optimal neighbor is identified and situations where two or more optimal neighbors are identified.
Two or more neighboring devices may have similar optimal values, i.e., for example, 0.5, then the question
is which of these is selected as a relaying device. A randomized selection procedure is used to handle this
situation, as shown in the Eq. (10).

O ptimal(Ci) = Random(O ptimal(C1,2,. . . ,n)) (10)

where O ptimal(C1,2,. . . ,n) represents neighboring devices with similar optimal values, those computed
through the proposed decision-tree-enabled communication approach.

After the successful completion of the training phase, the proposed model was thoroughly tested
through a tested data set, i.e., both from benchmark and real-time that were generated during the simulation
setup of the proposed scheme. During the testing phase, we investigated various scenarios, such as (i) if a
device falls within the coverage area, then it shouldn’t execute the proposed algorithm as it doesn’t need to
find an optimal neighbor, (ii) devices with multiple optimal neighbors, (iii) devices with two or more devices
with the same RSSI values, etc. The proposed decision tree-enabled communication approach has performed
exceptionally well in almost every possible scenario that was carried out during the test phase.

3.2 Proposed Light-Weight Authentication Scheme for the Decision Tree-Enabled Internet of Things
Generally, communication activity, i.e., device-to-device or device-to-server, is carried out through a

shared and non-secure transmission medium. Therefore, every packet is transmitted in the encrypted form
where both source and destination modules have a unique secret key, i.e., λi if any. Secondly, the intruder
has intercepted the encrypted message in the IoT. Usually, intruders have two different objectives, i.e.,

1. Read information, but it doesn’t affect the original message contents.
2. Make use of the information and update the original message, i.e., affects the system.

Therefore, authentication schemes should be pruned against both attacks in the realistic environment
of IoT. A strong encryption mechanism should be adopted to convert plain text into equivalent cipher text.
However, the authenticity of the source module should be checked before initiating actual communication
sessions. Therefore, the authenticity of both parties, i.e., source and destination module, is carried out before
transmission of the actual data, which is captured by legitimate devices. Thus, if a device, i.e., source or
destination, has the expected security level, i.e., the device on the other side is trusted, then it can trigger the
communication process; otherwise, abort it. For this purpose, a simplified authentication scheme is presented
in this section to ensure that only trusted devices can communicate.

In addition to other parameters, every device must share its MAC address with the neighboring
devices. Every device stores the MAC address of the neighbors, which is used to ensure the authenticity
of the requesting module. In addition to the MAC address, time stamp information is collected. That
is the approximate time required for a packet to be received from the dependent neighboring device,
any device that isn’t within the coverage area of the respective server module. These two parameters are
used to ensure the legitimacy of the requesting dependent device. Moreover, the learning model, which
generates weights from the respective MAC addresses, is shared in the hop count discovery phase. Therefore,
instead of appending the actual MAC address to the packet header, its corresponding weight, which is
computed through a sophisticated machine-learning-based model, is appended. This mechanism is not only
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involved in improving the security of the model, but it is equally important in separating legitimate and
adversary modules.

Thus, if a packet is received from the dependent device, the relay device should check its legitimacy by
looking at the weights appended to the packet. Every device has MAC addresses and weights of the respective
dependent or neighboring devices. Therefore, this weight is compared with stored weights and MAC address.
If a match is encountered, the requesting device is assumed to have cleared the initial security or authenticity
check, as depicted in the Eq. (11).

L1 =Weight(Vi) ∈ Stored(Weights &MACAddresses) (11)

L1 represents the first level of authenticity of the source device. Where MAC Cl ass holds the addresses
of the authentic dependent modules shared in the hop-count discovery phase. If the MAC address of the
concerned device belongs to the stored addresses class, then it is partially assumed to be authentic as it has
passed the first security barrier in the proposed setup. Secondly, the timestamp information of the requesting
device received in the packet is matched with the approximate timestamp information stored in the memory
of the destination module, as depicted in the Eq. (12).

L2 = timestamp ∈ approximate timestamp cl ass (12)

L2 represents the second level of authenticity of the source device. Although this mechanism is simple,
it is safe against well-known intruder attacks on networking infrastructure. Secondly, this scheme should be
embedded with a well-known encryption scheme, thus making it hard for the intruder module to deceive the
destination module, i.e., devices and servers. The algorithm for the proposed authentication methodology
is depicted in Algorithm 2, where Vi & R j represent devices and servers. Cl ass(MACAl i as) stores valuable
information about numerous aliases, especially those generated through the proposed decision-tree-enabled
authentication algorithm. This algorithm, i.e., Algorithm 2, bounds every device and server to verify the
trustworthiness of the respective module before triggering the communication activity in the working
domain. The proposed algorithm verifies the authenticity of the requesting device through two different
parameters, i.e., the MAC alias generated through machine-learning-based methodology where the second
parameter is the approximate propagation time. The complexity of the proposed authentication algorithm is
O(n), where n represents a complete set of devices and servers in the underlined IoT.

Algorithm 2: Authentication process of the communicating devices in the internet of things
Require: Separation of Legitimate devices from the Intruders.
Ensure: Trusted device
1: Ci complete set of device in IoT
2: Sj complete set of servers in IoT
3: Class MACal i as ← Alias and MAC of Cnbr
4: Tp Approximate Propagation Time of Ci
5: Ak Intruder Modules
6: for (i = 0; i >= n; i++)
7: if (MACal i as(Ci)) ∈ MACal i as &Δ(T) ∈ Cl assT then
8: Requesting device is Trusted
9: Send a Response Message
10: Allowed to Start Communication

(Continued)
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Algorithm 2 (continued)
11: else then
12: device is an Intruder
13: Block its ID and MAC
14: Shares its Info with Neighbors
15: endif
16: endfor
17: return Trusted Module Ci

4 Results and Evaluations of the Proposed Decision Tree-Enabled Methodology
Generally, a newly developed methodology should be supported by a detailed and thorough evalua-

tion, particularly through well-known performance metrics and comparisons with existing state-of-the-art
approaches. To do this, experimental or simulation results, whichever is applicable and feasible, should
be presented in the working domain of IoT. Therefore, the proposed decision-tree-enabled authentication
and communication methodology is implemented in NS-3, an open-source software for resource-limited
networks. Initially, an IoT network was developed where device and server modules were deployed per
the general deployment strategies available in the literature. The transmission range, Tp, of every device
transmitter is approximately 450 m in the presence of obstacles. A detailed description of other parameters
is given in the following Table 1.

Table 1: Secure internet of things parameters setup

Parameter name Approximate or exact value
Approximate Area of IoT 500 × 500

Simulation software NS-3
Devices 40–350
Servers 5%

Device’s Transmission interval 20 u Sec
Link bandwidth 10 Mbps

Transmission cost (Packet) 75.6 mW
Receiving cost (Packet) 75.6 mW
Idle state consumption 1.2 mW

Sleep mode consumption 0.7 μW
Residual energy Available power

Coverage area of XBEE module 450 M
Packet Size 128 Kbps

Type of the network traffic UDP and CBR
Transmission interval 30 s
Forwarding interval Immediate

Topology Random deployment
Deployment Random and engineered
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4.1 Average Power Consumption of Devices in the Proposed Secured Communication Approach
In networking infrastructures where resources are limited, i.e., the Internet of Things and Wireless

Sensor Networks, etc., effective usage of the available power source is crucial to ensure that devices are active
for the maximum duration. Secondly, efficient utilization of the available power source is required to keep
the networking infrastructure active for the maximum possible duration. The device’s power consumption
is computed using the Eq. (13).

vgP(Vi) = PCost + CommCost (13)

PCost represents the overall processing cost, i.e., from capturing data values to forwarding them
to the XBee module, and CommCost refers to its transmission by the appropriate module. A detailed
comparison of the proposed and existing state-of-the-art approaches, particularly concerning the average
power consumption, is shown in Fig. 1. The graphical results verify the supremacy of the proposed secured
communication approach by completing similar activities using the minimum possible energy. Additionally,
error bars and statistical significance are shown in Fig. 2.

Figure 1: Average power consumption ratio of devices in the proposed secured communication infrastructure [4,5,7,9]

4.2 End-to-End Delay of the Proposed Secured Communication Approach
End-to-end delay is another important metric to measure the superiority of the newly proposed scheme,

especially from the communication perspective, over existing approaches for the underlined networking
infrastructure. This parameter directly correlates with the overall processing and packet transmission
overheads; thus, a communication approach with minimal overhead is preferred. Therefore, a comparative
analysis of the proposed and existing approaches is shown in Fig. 3, which indicates the exceptional
performance of the former scheme over the latter one. This minimal cost overhead is possible due to the
selection process, which is based on a proper assessment and requirement-oriented parameters incorporated
into the hybrid formula. Secondly, the proposed scheme has ensured the minimum possible end-to-end delay
is achieved while maintaining maximum security against well-known intruder attacks.
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Figure 2: Statistical significance in terms of average power consumption
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Figure 3: Average end-to-end delay ratio of devices in the proposed secured communication infrastructure for IoT

4.3 Average Packet Loss Ratio of the Proposed Secured Communication Approach
In addition to end-to-end delay metrics, the proposed and existing approaches are thoroughly investi-

gated using other performance evaluation metrics, that is, the average ratio of successfully delivered packets.
Generally, the packet loss ratio is increased due to the maximum likelihood of packet collision, channel
interference, and deployment of devices in an area that is not accessible directly. The proposed approach has
a higher APDR ratio than existing approaches, as shown in Fig. 4 by reducing the collision ratio through
a time slice-oriented approach where every device should communicate only in the allocated time stamp.
Secondly, devices are deployed where every device should communicate directly with the nearest server or
through a neighboring relay device.
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Figure 4: Average packet loss ratio of devices in the proposed secured communication infrastructure for IoT

4.4 Approximate Processing Cost of Devices in the Proposed Secured Communication Approach
Processing cost overhead is not only associated with the communication approaches but is also affected

by a device-level authentication implementation or security scheme. This overhead is directly correlated to
the number of operations required to be completed to verify the authenticity of the requesting module. Fig. 5
presents a detailed graphical comparison of the proposed and existing approaches, which shows the
exceptional performance of the former approach over the latter ones in the realistic environment of IoT. The
processing overhead of the proposed scheme is minimal as it relies on the minimal set of parameters required
to verify the authenticity of the requesting module.

Figure 5: Average processing time overhead of devices in the proposed secured communication infrastructure for
IoT [19,20,25–27]
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4.5 Approximate Communication Cost of Devices in the Proposed Secured Communication Approach
Communication cost overhead is the number of bits transmitted to ensure mutual authentication of both

devices and server modules. A detailed comparison of the proposed authentication and existing approaches
is depicted in Fig. 6, which shows that the former scheme has outperformed the latter approaches, especially
in communication overhead. Moreover, the proposed approach has achieved this without compromising the
overall security of devices.

Figure 6: Average communication cost overhead ratio of devices in the proposed secured communication infrastruc-
ture for IoT [19,20,25–27]

4.6 Security Analysis
The proposed authentication scheme has tight security measures, which make it safe against various

intruder attacks, device and server impersonation, reply, denial of services, etc.

1. The proposed algorithm guarantees the safety of the devices from an intruder module trying to deceive
a legitimate module, i.e., device and server, by pretending to be a legitimate and trustworthy module.
Every message passes through a rigorous and complicated encryption process, which makes it hard for
the adversary to extract valuable information.

2. The proposed algorithm is safe against eavesdropping attacks as every packet is encrypted with a
secret key.

3. Likewise, it is safe against perfect forward & backward secrecy attacks as intruder modules cannot
convert the cipher text into plain text in a defined time interval.

4. Denial of Services (DoS) attacks are among the core challenges linked with the authentication schemes,
especially those designed for the IoT. The proposed approach has the necessary measures against the
DoS attack. The encryption algorithm is strong and beyond the operational capabilities of the resource
constraint devices to decipher an intercepted message. Secondly, if an intruder module tries to bombard
the server through a dummy packet, these are easily identified as every encrypted message has a
unique pattern.
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5 Conclusion
Technological advances in sensors and actuators led to a collaborative networking infrastructure of

devices and servers where devices share collected data with the intended server module. In this network,
devices coordinate with each other to establish a smart and collision-free traffic environment. For this
purpose, every module, i.e., device or server, communicates via a reliable transmission channel and shares
valuable information about the traffic conditions on the various available routes. However, direct com-
munication with the nearest server module is not always possible. Therefore, an alternate communication
strategy is adopted where certain devices, particularly those running in the servers’ coverage area, mediate
between the source device and the intended server. For this purpose, a neighborhood knowledge-based
communication approach was presented in this paper that enables devices operating in the out-of-range
area to share their information with the intended server module. In this approach, devices must share data
such as distance, RSSI value, link reliability, dependent devices, etc. Moreover, a secure key-based security
algorithm was integrated to ensure a reliable transmission of packets. Simulation results concluded that the
proposed multi-path-based communication approach could be an ideal methodology for IoT where distance
among servers is kept at a maximum level. The proposed scheme has achieved maximum throughput with
the minimum possible average transmission delay in the IoT.
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