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ABSTRACT: The Virtual Power Plant (VPP), as an innovative power management architecture, achieves flexible
dispatch and resource optimization of power systems by integrating distributed energy resources. However, due to
significant differences in operational costs and flexibility of various types of generation resources, as well as the volatility
and uncertainty of renewable energy sources (such as wind and solar power) and the complex variability of load demand,
the scheduling optimization of virtual power plants has become a critical issue that needs to be addressed. To solve this,
this paper proposes an intelligent scheduling method for virtual power plants based on Deep Reinforcement Learning
(DRL), utilizing Deep Q-Networks (DQN) for real-time optimization scheduling of dynamic peaking unit (DPU) and
stable baseload unit (SBU) in the virtual power plant. By modeling the scheduling problem as a Markov Decision Process
(MDP) and designing an optimization objective function that integrates both performance and cost, the scheduling
efficiency and economic performance of the virtual power plant are significantly improved. Simulation results show
that, compared with traditional scheduling methods and other deep reinforcement learning algorithms, the proposed
method demonstrates significant advantages in key performance indicators: response time is shortened by up to 34%,
task success rate is increased by up to 46%, and costs are reduced by approximately 26%. Experimental results verify
the efficiency and scalability of the method under complex load environments and the volatility of renewable energy,
providing strong technical support for the intelligent scheduling of virtual power plants.

KEYWORDS: Deep reinforcement learning; deep q-network; virtual power plant; lntelligent scheduling; markov
decision process

1 Introduction
With the continuous growth of global energy demand and the emergency need to address climate

change, the power industry is undergoing a profound transformation, and countries around the world are
committed to achieving carbon neutrality goals [1]. Renewable energy sources such as wind and solar power
are widely used around the world due to their cleanliness and sustainability [2]. However, solar photovoltaic
power generation is significantly influenced by regional meteorological and climatic factors, leading to
considerable uncertainty in its output power [3]. Wind power generation, on the other hand, exhibits even
greater volatility and intermittency due to random changes in weather conditions [4]. This characteristic of
energy production, driven by natural conditions, poses significant challenges to the stability of the grid and
the real-time supply-demand balance after renewable energy sources are integrated into the grid. Traditional
power systems mainly rely on centralized generation models, with relatively fixed scheduling methods
that are difficult to adapt to the random fluctuations of renewable energy. Meanwhile, rapid integration of
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distributed energy sources [5] (such as small-scale wind power, solar power, energy storage, and electric
vehicle charging facilities) further exacerbates the complexity of the power system, making grid coordination
and management more challenging. In the face of this challenge, there is an emergency need to introduce
new scheduling technologies to enhance the power system’s ability to accommodate new energy sources and
achieve efficient energy management and resource optimization.

Against this backdrop, the Virtual Power Plant (VPP) [6,7] has emerged as an innovative power man-
agement framework. At its core, the VPP integrates various distributed energy and load resources to enhance
the flexibility and economic efficiency of the power system. Unlike the traditional single-unit dispatch model,
the VPP emphasizes fine-grained management and optimized scheduling of internal generation units based
on the distinct characteristics of renewable energy generation, grid dispatch requirements, and user load
profiles. The efficient operation of a VPP depends on its intelligent scheduling capabilities, which excel in
handling the volatility of renewable energy output and the complexity of diverse and dynamic load demands.
By integrating multiple distributed energy resources and responding to load variations, the VPP achieves
flexible dispatch and optimized resource allocation that traditional grids find challenging. This not only
mitigates the stability challenges posed by the intermittency of renewable energy, but also improves resource
utilization efficiency across the power system, providing strong support for achieving carbon neutrality goals.

In a Virtual Power Plant (VPP), generation resources can be categorized into dynamic peaking unit
(DPU) and stable baseload unit (SBU). DPU are extremely flexible and capable of responding quickly to
renewable energy fluctuations and short-term load changes. They are well-suited for frequent start-ups and
shutdowns, providing frequency and voltage support on both the supply and grid sides. Typically composed
of gas turbines, fast-start natural gas units, and battery storage systems, DPU can rapidly respond to system
load variations. They are particularly effective in offering short-term regulation and dynamic load tracking
during periods of high renewable energy volatility, ensuring system balance and stability [8]. In contrast, SBU
provide stable, low-cost, long-term power output and are primarily composed of coal-fired units, large-scale
natural gas units, and nuclear power units. These units operate at lower frequencies of startup and adjustment,
making them suitable for meeting the system’s baseload demand, reducing the costs and efficiency losses
associated with frequent adjustments.

However, due to the significant differences in cost and flexibility among various units, achieving efficient
coordination between DPU and SBU while maintaining system stability has become a central challenge in the
operation of virtual power plants. Particularly in the case of the volatility and uncertainty of renewable energy
sources (such as wind and solar power) and the complex and diverse user load demands, the virtual power
plant needs to optimize the coordinated scheduling of DPU and SBU, making it much more challenging to
meet the electricity demand and response time requirements of power tasks. This issue not only tests the
real-time performance and economic efficiency of the virtual power plant’s scheduling method in complex
environments, but also requires ensuring system stability and rapid responsiveness. Traditional scheduling
strategies have many limitations when addressing such complex power system scenarios, such as insufficient
flexibility, limited scalability, and difficulty in adapting to the increasingly growing dynamic scheduling
demands. Therefore, developing intelligent and efficient scheduling technologies to reduce operational costs,
improve task completion rates, and enhance the system’s adaptability and scheduling flexibility has become
an important research direction in modern power systems.

Currently, various intelligent optimization methods have been proposed within the academic commu-
nity. For example, research [9] proposed an economic-environmental scheduling model that integrates the
reliability of generation units into the optimization objective. While this method significantly improves the
security of the power system with slightly increased fuel costs and carbon emissions, its capability to handle
complex nonlinear constraints is limited, and its applicability to large-scale power systems remains restricted.
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To address the uncertainty issue in virtual power plant scheduling, research [10] proposed a scheduling
optimization method based on Mixed-Integer Linear Programming (MILP). This method reduces com-
putation time through scenario generation and reduction techniques, and improves the stability of the
solution. However, in high-dimensional complex scenarios, this method requires significant computational
resources and is highly dependent on prior information about the scenarios, limiting its applicability in
dynamic and uncertain power market environments. Furthermore, to improve the coordinated scheduling
efficiency of distributed energy resources in virtual power plants, research [11] developed a scheduling
model based on stochastic optimization, introducing novel energy technologies such as photovoltaic-thermal
(PVT) panels to optimize the joint scheduling of electrical and thermal loads. Although this method
demonstrates strong performance in improving energy utilization and economic efficiency, its adaptability
to high levels of randomness and uncertainty remains relatively limited, thereby restricting its application
in real-time scheduling environments. Similarly, research [12] proposed a multi-agent-based scheduling
strategy aimed at optimizing the coordinated operation of conventional and renewable energy units. This
method enhances scheduling efficiency and solution quality through agent collaboration and distributed
optimization, demonstrating greater adaptability than traditional mathematical programming approaches
in addressing complex scheduling problems. However, as it relies on information exchange and coordination
mechanisms among agents, it may introduce additional computational complexity in large-scale grid
scheduling scenarios, affecting computational efficiency and real-time scheduling performance.

In recent years, Deep Reinforcement Learning (DRL)–an advanced approach that combines deep
learning with reinforcement learning–has been widely applied to intelligent scheduling and dynamic
resource allocation. By leveraging neural networks to approximate optimal policies, DRL can effectively
manage high-dimensional decision spaces and adapt to real-time operational changes, making it a highly
attractive solution for complex scheduling challenges. For example, research [13] proposed a DRL-based fast-
converging scheduling method, DDPG-CPEn, to address the Transient Security-Constrained Optimal Power
Flow (TSC-OPF) problem. This method enables dynamic adjustment of generator outputs, voltage levels,
and power flow distribution, significantly enhancing system scheduling efficiency and stability. However,
due to the high-dimensional state space and the discontinuity of dynamic constraints, it still encounters
the sparse reward problem, which slows down training convergence and hinders the optimization of
dynamic resource allocation strategies. Meanwhile, DRL methods are being increasingly applied in the field
of power system scheduling. Research [14] evaluated the performance and applicability of various DRL
algorithms (including DDPG, TD3, SAC, and PPO) in energy system scheduling. Compared with traditional
mathematical programming approaches, these algorithms can adaptively optimize energy distribution
strategies in response to real-time load variations and the uncertainty of renewable energy output, thereby
effectively reducing operational costs and delivering high-quality real-time scheduling solutions. However,
under extreme peak load conditions, these methods still struggle to produce feasible solutions, which
compromises their reliability in practical applications. In addition to power system scheduling, DRL has also
been widely applied to industrial dynamic scheduling problems. Research [15] and [16] proposed a DQN-
based optimization method to address Dynamic Parallel Machine Scheduling (DPMS) and Dynamic Job
Shop Scheduling Problem (DJSSP), aiming to cope with dynamic factors such as equipment failures and task
demand fluctuations. Compared with other DRL methods and heuristic approaches, DQN exhibits greater
adaptability in handling discrete action spaces and dynamic scheduling environments, enabling it to more
effectively respond to task variations and optimize scheduling decisions. Furthermore, research [17] further
explored the application of DQN in smart grid rescheduling, optimizing the mapping relationship between
grid state features and scheduling actions. Experimental results on the IEEE 39-bus system demonstrate that
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DQN shows significant advantages in handling high-dimensional state spaces and non-convex optimization
problems, further proving its applicability in the scheduling of complex energy systems.

Given the superiority of Deep Q-Networks (DQN) in handling discrete action spaces and dynamic
scheduling environments, and considering the volatility of renewable energy, the uncertainty in generation
resource scheduling, and the dynamic variation of load demands, this paper proposes an intelligent schedul-
ing method for Virtual Power Plants (VPPs) based on Deep Reinforcement Learning (DRL), employing
DQN for dynamic optimization. The proposed method addresses the discrete scheduling problem involving
multiple units in a VPP by incorporating the characteristics of both DPU and SBU, and adaptively learns
to select the optimal unit scheduling strategy. It effectively manages the uncertainty arising from renewable
energy fluctuations, ensuring the stable operation of the VPP.

The main contributions of this study are summarized as follows:

• We propose a Deep Reinforcement Learning (DRL)-based intelligent scheduling algorithm for Virtual
Power Plants (VPPs), aimed at optimizing the resource allocation problem among different generation
units in the VPP. Particularly in the complex environment of renewable energy fluctuations and dynamic
load demand changes, this method can intelligently allocate generation unit resources, reducing costs
while improving task completion rates and ensuring the system has low response times.

• We present a detailed design of a deep reinforcement learning (DRL) model for the intelligent scheduling
problem of a virtual power plant. Specifically, we formulate the scheduling problem as a Markov
decision process (MDP) and consider cost, response time, and task success rate in the design of the core
reward function.

• We use Deep Q-Learning (DQN) to implement the proposed intelligent scheduling method for VPPs,
and compare it with other typical scheduling methods (including other DRL methods) under different
load curves, renewable energy fluctuations, and system scale expansion conditions. Experimental results
show that the proposed method outperforms others in terms of task response time, task success rate,
and cost, while demonstrating stronger robustness and adaptability in complex environments such as
expanded system scale and renewable energy fluctuations, further proving its scalability and application
potential in intelligent scheduling.

The remainder of the paper is organized as follows: Section 2 presents the system framework and
problem formulation; Section 3 provides the detailed design and implementation of the DQN-based intel-
ligent scheduling method; Section 4 presents experimental results and performance evaluation; Section 5
concludes the paper and outlines directions for future research.

2 Scheduling Framework and Problem Statement
This section provides a detailed introduction to the proposed intelligent scheduling framework for

Virtual Power Plant (VPP) generation units based on deep reinforcement learning, and elaborates on the
scheduling optimization problem and its cost minimization objective.

2.1 Virtual Power Plant Generator Scheduling System Framework
The Virtual Power Plant (VPP) can dynamically integrate heterogeneous resources (such as wind energy,

solar energy, energy storage devices, etc.) to achieve optimal resource utilization. This study proposes an
intelligent scheduling method based on Deep Q-Networks (DQN), which seamlessly integrates diversified
task demands with the scheduling characteristics of generation units, demonstrating its potential advantages
in the efficient scheduling of VPPs. Fig. 1 illustrates the intelligent scheduling system framework of the
VPP proposed in this study. The scheduling scenario consists of a power system, a DQN-based scheduling
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controller, and the virtual power plant. The power system [18] primarily comprises substations, transmission
systems, distribution systems, backup systems, and renewable energy sources such as wind and solar
power. As the core component of the framework, the scheduling controller is responsible for real-time
decision-making. The virtual power plant includes M dynamic peaking units and N stable baseload units,
which operate in different modes to provide generation services for the power system and meet diverse
electricity demands.

Figure 1: Virtual power plant intelligent scheduling system framework

When a power generation task arrives, the power system submits task information to the schedul-
ing controller, including parameters such as the urgency type, power generation amount, and expected
completion time. Based on this information and the current state of each generation unit, the scheduling
controller formulates a generation strategy π. According to this strategy, the scheduling controller selects the
appropriate generation unit to execute the task and decides whether to start the task immediately based on the
unit’s status. At the same time, in order to model this scheduling problem, this study provides mathematical
definitions for the generation task and the generation units.

Generation task: A power generation task Ri = {Rid
i , Rtype

i , Ni , Tarr
i , Ei} is defined as the i-th power

generation task of the power system. Specifically, Rid
i is the ID of the i-th power generation task assigned

to the scheduling controller; Rtype
i is the identifier for the i-th power generation task type, used to categorize

the power demand into two types: emergency power demand and non-emergency power demand; Ni
is the amount of electrical energy required to complete the i-th power generation task. Meanwhile, Tarr

i is
the arrival time of the i-th power generation task, which is recorded by the scheduling controller; Ei is the
expected completion time of the i-th power generation task, and this information is immediately submitted
to the scheduling controller upon the arrival of the power generation task.

Generation units: This study primarily considers two types of generation unit modes: dynamic peaking
unit (DPU) and stable baseload unit (SBU). For emergency generation tasks, DPU are prioritized to ensure
a rapid response to load demand, although this may result in higher operational costs. For non-emergency
generation tasks, SBU are prioritized to minimize generation costs and ensure the long-term stability of
the power system. By appropriately allocating different types of generation units to meet various generation
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demands, the load on the power system can be effectively alleviated, while providing diversified generation
service options.

For the generation unit set in the Virtual Power Plant, the j-th generation unit can be represented as
U j = {U id

j , U type
j , Pj , U loss

j }, where U id
j is the ID of the j-th generation unit; U type

j is the type of the j-th
generation unit (DPU or SBU); Pj is the generation power of the j-th generation unit; U loss

j is also the energy
loss rate per unit time of the j-th generation unit.

2.2 Problem Statement
From the perspective of the Virtual Power Plant, one of the main optimization problems in this study

is to minimize the total operational cost ω, which can be expressed as:

ω =min
n
∑
i=1

Ci (1)

where Ci represents the total cost of the power generation task, which consists of two components: the cost
of electricity production and the energy loss cost during the generation process. The main objective of the
scheduling controller is to minimize Ci , thereby reducing the total production cost over the entire operation
period. The specific formula for Ci is:

Ci = pt Ni +U loss
j Tgen

i (2)

where U loss
j represents the energy loss of the j-th generation unit; Tgen

i is the generation time of the i-th
power generation task. The energy loss cost corresponding to the power generation unit U j for the power
generation task Ri is expressed as the product of the unit energy loss rate U loss

j and the generation time Tgen
i .

The electricity production cost is determined by the energy demand Ni of the power generation task and the
cost per unit of electricity pt , which is related to the type of generation unit and the time period of generation.

During high load demand periods, the frequency of start-ups and shut-downs, as well as the output
adjustment frequency of generation units, will increase, leading to higher operational costs for dynamic
peaking unit. This will cause a slight increase in the short-term levelized cost of energy (LCOE). However,
during periods of lower and more stable load demand, stable baseload units typically provide the basic
load, operating more smoothly, and at such times, the LCOE tends to approach its average value or may
even decrease.

In generator scheduling, in addition to minimizing costs, another important objective is to reduce
the average response time. The average response time directly impacts the operational efficiency of the
system and is a key indicator of power generation scheduling performance. The response time Ti of a power
generation task is defined as the total duration from the arrival of the i-th task to its completion, which
consists of the following two parts:

Ti = Tgen
i + Twait

i j (3)

Here, Tgen
i represents the generation time of the i-th power generation task; Twait

i j represents the time
the i-th power generation task waits for execution in the generation unit U j. The definition of generation
time is:

Tgen
i = Ni

Pj
(4)
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where Pj represents the generation power of the j-th generation unit. Assume that when the power generation
task Ri arrives, there are q waiting tasks in the generation unit U j ’s request queue, and there are n tasks R′i
allocated to U j before Ri . Then, the waiting time Twait

i j can be calculated as:

Twait
i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

n
∑
i=0

Tgen
i j , if q > 0

0, if q = 0
(5)

where Tgen
i j represents the generation time of the i-th power generation task in the j-th generation unit.

Based on the above definitions, this study introduces another important metric, Esp
i , which is the reciprocal

of the response time of the power generation task Ri . This reflects the efficiency of the system’s response time
and is used to evaluate the effectiveness of the power generation scheduling:

Esp
i =

1
Ti

(6)

As mentioned earlier, power generation tasks can be sent to the scheduling controller by the power
system at any time. To meet the task requirements, it must be ensured that the power generation tasks are
completed within the specified time. Each power generation task Ri has an expected completion time Ei ,
which is the deadline. If the power generation is completed within the deadline, the power generation task is
considered successfully executed; otherwise, the power system cancels the task, leading to a failure response.
Based on this, the conditions for the successful execution of the power generation tasks are defined as follows:

success(Ri , U j) =
⎧⎪⎪⎨⎪⎪⎩

1, if Ti ≤ Ei

0, otherwise
(7)

where Ei represents the maximum acceptable response time for the power generation task Ri . Based on the
above formula, it is possible to determine whether the power generation task Ri is successfully completed
after being assigned to the generation unit U j.

3 DRL-Based Power Generation Unit Scheduling Implementation

3.1 Deep Q-Network
For the virtual power plant generation unit scheduling problem, this study proposes a solution based

on deep reinforcement learning (DRL), utilizing one specific implementation of DRL–Deep Q-Network
(DQN) [19]. DQN [20] was first introduced by Mnih et al., combining convolutional neural networks with
traditional Q-learning, which significantly improved the performance of reinforcement learning algorithms
in handling problems with continuous state spaces.

In traditional Q-learning, the agent evaluates the effectiveness of performing a certain action in different
states using the Q-value function Q(s, a), and relies on a lookup table to store the Q-value for each state-
action pair. The Q-value reflects the expected long-term reward that can be obtained by choosing a particular
action in a given state. By continuously updating the Q-values in the lookup table, the agent can gradually
learn the optimal action strategy for different states. However, this table-based approach is primarily suitable
for tasks with small-scale, discrete state spaces. For example, in board games or simple grid worlds, the
number of states and actions is limited, making it easy to map each state-action pair to the lookup table and
store its Q-value. As the agent learns, the Q-values are progressively updated and eventually converge to the
optimal strategy.
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But in complex environments, the combination of states and actions may reach millions or even
billions, causing the size of the lookup table to grow exponentially. This significantly increases storage and
computational costs, making traditional Q-learning inefficient. To address this issue, Deep Q-Networks
(DQN) propose an innovative solution: using a deep neural network (DNN) to directly approximate the
Q-values instead of storing all state-action pairs. Specifically, DQN approximates the optimal Q-values
(Q(s, a, θ)) using the neural network parameters θ, and continuously optimizes θ through gradient descent,
allowing the Q-values to gradually converge to the optimal strategy. Compared to traditional methods, DQN
can efficiently handle high-dimensional state spaces while achieving dual improvements in computational
efficiency and strategy accuracy in dynamic scheduling tasks. Additionally, to ensure that the agent explores
the unknown environment while utilizing existing knowledge, DQN employs an ε-greedy strategy.

a =
⎧⎪⎪⎨⎪⎪⎩

random A, if β < ε
arg max

a∈A
Q(s, a), if β ≥ ε (8)

In the equation, A is the action set, including all possible actions the agent can choose from; β is a
random number generated in the interval [0, 1], used to decide whether to explore; ε is the exploration rate.
Specifically, the agent selects a random action (exploration) with probability ε at each time step, and with
probability 1− ε, it selects the action that maximizes the Q-value (exploitation).

In the high-dimensional environment studied in our research, the Virtual Power Plant (VPP) schedul-
ing system involves multiple variables, including unit operating status, real-time load demand, and the
characteristics of various load curves (e.g., residential, commercial, and industrial patterns). Additionally,
the scheduling process includes a series of discrete decisions, such as when to start or stop specific types
of generation units (e.g., dynamic peaking unit or stable baseload unit) and adjusting task allocation
strategies. Therefore, the various state-action combinations in VPP scheduling form a vast state-action space.
Traditional reinforcement learning algorithms, such as Q-learning, struggle to address this challenge due
to their slow learning rate. DQN offers an effective solution by utilizing deep neural networks to estimate
Q-values. Unlike traditional Q-learning, which uses lookup tables, DQN uses DNNs to approximate Q-value
computation, significantly improving the ability to handle discrete action space problems. Furthermore,
DQN does not rely on explicitly labeled actions or predefined training samples for training. Instead, it learns
Q-values from experience data through continuous interaction between the agent and the environment,
gradually optimizing the scheduling strategy. This method is particularly effective in dynamic resource
allocation problems, allowing it to adjust decisions based on the changing environment and achieve
better scheduling results. Currently, this DRL-based approach has proven effective in various applications,
particularly in complex systems requiring dynamic and real-time optimization [16]. Therefore, this study
adopts the DQN model as the DRL approach to solve the VPP generation unit scheduling problem.

3.2 Markov Decision Process for Power Generation Unit Scheduling
When using DQN to solve complex problems, we can represent the mathematical model of the problem

as a Markov Decision Process (MDP) [21], formalized as a five-tuple (S, A, P, R, γ). Here, S represents the set
of all possible states perceivable by the environment; A represents the set of all actions available to the agent; P
represents the state transition probability, which is the probability of transitioning to the next state given the
current state and action; R represents the immediate reward obtained after performing an action in a specific
state, and γ is a discount factor between 0 and 1, used to quantify the importance of future rewards relative
to immediate rewards. Through the optimization of this process, the agent can learn how to make the best
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decision based on the current state and target requirements in a complex environment, thereby achieving
efficient task scheduling and resource allocation.

In this study, we model the scheduling problem of Virtual Power Plant (VPP) generation units as a
Markov Decision Process (MDP). At each time step, the scheduling controller selects an action based on
the current state, then transitions to the next state after executing the action, while receiving an immediate
reward based on the reward function. The agent continuously interacts with the environment, learning how
to select the optimal action in different states to maximize long-term rewards. Through this process, the MDP
framework helps optimize the scheduling strategy, ensuring that the power system not only completes the
generation tasks on time but also minimizes production costs while meeting system stability requirements.
Each component of the MDP will be described in detail below.

3.2.1 State Space
The state space is denoted asS, which consists of vectors st at each time step t. Each state vector st

contains key information about the current power generation task and the status of the generator units.
Specifically, the state vector st includes not only the type Rtype

i of the i-th power generation task, the electricity
demand Ni of the task, and the expected completion time Ei of power generation task i, but also the allocated
generator units U j, the power cost pt , and the waiting time Twait

i j of the i-th power generation task in
generator unit U j. Therefore, the state vector st is defined as:

st = (Rtype
i , Ni , Ei , U j , pt , Twait

i1 , Twait
i2 , . . . , Twait

i j ) (9)

This state representation provides the core information required by the scheduling controller for real-
time decision-making, supporting the optimization decisions of the scheduling controller. For example,
during peak demand periods, the state vector at a certain time step t may be represented as st = (Emergency,
100 KW, 0.4 h, U3, 0.05/kWh, 0, 8, . . . , 10 min).

3.2.2 Action Space
The action space A represents the set of scheduling actions that the scheduling controller can take at

each time step, where each action involves selecting an appropriate generation unit to meet the current power
demand. Specifically, each action is denoted by a and is defined as follows:

at = (U1 , U2, . . . , U j) (10)

In the equation, U j represents the selected generation unit j. For example, when an emergency power
generation task arrives, the scheduling controller may take an action at = U2, which involves selecting a
dynamic peaking unit U2 to quickly provide power output, ensuring the balance between power supply
and demand.

3.2.3 Reward Function
The reward function r(st , at , st+1) in deep reinforcement learning is used to evaluate the effectiveness

of the agent’s actions. It quantifies the immediate reward the agent receives after taking an action in a given
state, helping the agent learn to select the optimal action to maximize long-term returns. To achieve the
lowest cost and ensure that tasks are completed on time, the reward function designed in this study is as
follows:

r = (1 + eλ−Ci)Esp
i (11)
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In the equation, Ci represents the total cost of the power generation task, which includes electricity
production cost and energy losses, as shown in Eq. (2); Esp

i represents the inverse of the response time of
the power generation task, reflecting the efficiency of the system’s response time, as shown in Eq. (6). The
reward function takes into account the total cost of the power generation task (including production costs
and energy losses) and the task’s response time. The exponential term is used to penalize high-cost tasks,
encouraging the selection of low-cost scheduling solutions. The term Esp

i , which is inversely proportional to
the response time, is used to increase the sensitivity of the scheduling controller to response time, ensuring
the quality of scheduling services.

Specifically, the exponential term eλ−Ci introduces a hyperparameter λ, which is used to balance the
weight between cost and response time. When λ is higher, the impact of the cost Ci in the exponential term
of the formula on the reward increases, making the scheduling controller more inclined to choose low-cost
power generation schemes to maximize economic benefits. At the same time, this also encourages the system
to prefer more cost-efficient operations in power generation decisions, effectively reducing costs. Conversely,
when λ is lower, the impact of generation costs on the reward diminishes, and the scheduling controller will
focus more on the response time, prioritizing generation units that can complete tasks more quickly. On the
other hand, the term Esp

i , which is inversely proportional to the response time, ensures that the scheduling
controller completes the power generation task in the shortest time possible, thereby ensuring service quality.
When Esp

i is smaller, it indicates a longer response time for the task, resulting in a lower reward. Conversely,
when the response time is shorter, the scheduling controller is able to complete the task more quickly,
and the corresponding reward is higher. Through this dual optimization strategy, the optimization of cost
and response time is effectively integrated, ensuring the minimization of costs while maintaining service
quality, thereby further enhancing the overall operational efficiency and economic viability of the Virtual
Power Plant.

3.3 Model Implementation
The optimization process of the intelligent scheduling framework for the Virtual Power Plant (VPP)

proposed in this study consists of three key steps: First, the agent interacts with the environment to collect
transition data, including the current state, action taken, reward received, and next state. Then, the collected
data are stored in a replay buffer, forming an experience pool for subsequent learning. Finally, the agent
randomly samples mini-batches from this pool to optimize and update its neural network parameters. In
this section, we provide a detailed description of the scheduling process based on Deep Q-Networks (DQN)
and summarize the complete optimization procedure in Algorithm 1.

Algorithm 1: Power generation unit scheduling algorithm based on DQN
1: Initialization ε, learning rate f, small batch size S, exploration period η.
2: Normalize the experience replay buffer size D, and set N.
3: Initialize the Q-network with random weights θ.
4: Copy the weights θ to the target network Q′, and set θ′ = θ.
5: for each power generation task Ri arriving at time t do
6: With an exploration rate ε, randomly select a generation unit action at; otherwise, select

at = arg max
a∈A

Q(st , at ; θ).
7: Based on the selected generation unit at, schedule the power generation task, receive the

corresponding reward rt, and observe the state transition to st+1.
8: Store the experience tuple (st , at , rt , st+1) in the experience replay buffer D.

(Continued)
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Algorithm 1 (continued)
9: if t mod f == 0 then
10: if t mod η == 0 then
11: θ′ = θ, update the target network.
12: end if
13: for randomly sample a mini-batch S from the experience replay buffer D do
14: For each sampled tuple (st , at , rt , st+1), calculate the target value as:
15: targett = rt + γ max

a
Q(st+1 , a; θ).

16: Perform gradient descent updates on parameter θ using the loss function.
17: end for
18: Gradually decrease the exploration rate ε.
19: end if
20: end for

Interaction Process: At the initial stage of each time step t, the Virtual Power Plant (VPP) receives
scheduling requests from different power generation tasks. By analyzing key parameters such as task
type, expected completion time, and required power generation, the system determines its initial state.
Subsequently, the agent collects the current waiting time and per-unit electricity cost information
from each generation unit. After integrating this information, an example state can be observed as
{Rtype

i , Ni , Ei , U j , pt , Twait
i1 , Twait

i2 , . . . , Twait
i j }. Subsequently, the agent selects the optimal scheduling strategy

based on the policy π generated by the neural network and evaluates it using a specific reward function. By
continuously optimizing the decision-making policy, this mechanism enables the agent to gradually improve
the scheduling plan, enhancing scheduling efficiency while effectively reducing costs.

Experience Replay: Traditional deep reinforcement learning methods typically operate under the
assumption of a static and invariant data distribution. However, in real-world applications, data often exhibits
significant temporal correlations. To address this issue and improve the stability of the training process, we
introduce the experience replay mechanism. Under this mechanism, the interaction between the agent and
the environment is stored as a tuple, which includes the current state st , the chosen action at , the received
reward rt , and the subsequent state st+1, and is stored in the experience replay buffer, as shown in Fig. 2.
During training, the agent no longer learns solely from immediate samples but instead randomly samples a
batch of historical records from the experience replay buffer (i.e., mini-batches) for learning. This random
sampling approach effectively reduces the temporal correlation between samples, mitigates noise interference
in the training process, and significantly enhances the stability and convergence of the model.

Training Process: At the beginning of training, the system first initializes all parameters and performs
deep neural network training based on the input data. To improve training stability and convergence speed,
we employ a double-network architecture in the deep Q-network (DQN). The main Q-network is used to
calculate Q-values and guide the agent in selecting the optimal action by minimizing the mean squared
error between the current estimated value and the target value. Meanwhile, the target network generates
stable target Q-values as a training reference to avoid instability caused by overly frequent policy updates.
In each iteration, the agent executes scheduling decisions based on the policy of the main Q-network
and records the corresponding rewards and state transition information. These data are then stored in the
experience replay buffer. During subsequent training, the system randomly samples small batches of data
from the buffer, uses the loss function to evaluate the deviation between the predicted Q-values and the target
Q-values, and optimizes the parameters of the main Q-network through stochastic gradient descent (SGD) to
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continuously improve the accuracy of scheduling decisions. To further enhance training stability and reduce
parameter update fluctuations, we adopt a delayed update mechanism, periodically copying the parameters
of the primary Q-network to the target network. This ensures a smooth transition of target Q-values and
prevents instability caused by frequent updates.

Figure 2: Implementation framework of virtual power plant intelligent scheduling based on DRL

To effectively balance the trade-off between exploration and exploitation, we adopt the ε-greedy strategy
for action selection. At the early stage of training, the agent selects actions randomly with a high ε value
to fully explore the state space of the environment. As training progresses, the ε value gradually decreases,
and the agent increasingly relies on the Q-values output by the DQN model to select actions with higher
expected rewards, gradually converging toward the optimal strategy. With the accumulation of interaction
experience, the training process updates the parameters of the DQN model through the experience replay
mechanism, improving learning efficiency and enhancing model stability.

4 Experiment Evaluation
This section provides a detailed evaluation of the proposed DQN-based intelligent scheduling method

for Virtual Power Plants (VPPs) in comparison with other scheduling methods. We built a simulation
environment using Python 3.9 and conducted experiments on a desktop equipped with an 11th Gen Intel(R)
Core(TM) i7-11700 @ 2.50 GHz processor and 16 GB of RAM. The experiment was conducted using the
PyTorch framework to train and evaluate the deep reinforcement learning model, with the primary objective
of demonstrating the superiority of the proposed method in terms of average response time, task success
rate, and cost efficiency.

4.1 Experiment Setup
This experiment simulates a power scheduling system consisting of 10 generation units, including

dynamic peaking unit and stable baseload unit, with the goal of optimizing scheduling strategies to meet
diverse electricity demands. Stable baseload unit are primarily responsible for providing a steady long-term
power supply, meeting the base load demand at a lower cost. In contrast, dynamic peaking unit are used to
quickly respond to short-term fluctuations and sudden load changes, offering flexible scheduling support
to the system. Power generation tasks are categorized into emergency tasks and regular tasks. emergency



Comput Mater Contin. 2025;84(1) 873

tasks are typically handled by dynamic peaking unit to ensure a fast system response, while regular tasks
are mainly undertaken by stable baseload units to achieve continuous low-cost power generation. To better
reflect real-world scenarios, each generation unit is assigned different energy loss rates and power generation
costs, effectively simulating the complexity of actual scheduling operations.

To better reflect real-world power load conditions, this experiment introduces three typical daily load
curves: residential, commercial, and industrial. The residential load curve exhibits distinct morning and
evening peak characteristics. The morning peak typically occurs between 6:00–9:00 AM, while the evening
peak is concentrated between 6:00–10:00 PM. During these two peak periods, electricity demand accounts
for approximately 60% of the total daily load, whereas demand during off-peak hours is relatively low and
remains stable [22]. The commercial load curve gradually increases in the morning and reaches its peak
between 10:00 AM–4:00 PM. This load pattern is characterized by high stability and concentration, requiring
the system to maintain a strong response capacity during daytime hours. In contrast, the industrial load
curve remains relatively stable throughout the day, operating at high load levels most of the time. This makes
it more suitable for stable baseload unit, which provide long-term, steady power support.

Considering that the power generation capacity of renewable energy sources (such as wind and solar
power) is significantly influenced by natural factors such as wind speed and solar radiation intensity, their
output exhibits volatility and intermittency. This experiment simulates renewable energy output using a
segmented modeling approach. The peak output of wind power is mainly concentrated in the early morning
hours (2:00–5:00 AM), with power generation randomly distributed in the range of 70 to 100 kWh. The peak
output of photovoltaic (PV) power occurs during midday (10:00–2:00 PM), with a generation range of 50 to
70 kWh. During other periods, the output remains relatively low, fluctuating between 0 and 50 kWh. To better
reflect real-world conditions, this experiment incorporates the time-varying characteristics of renewable
energy output into the demand modeling of power generation tasks. The task demand is dynamically adjusted
based on the contribution of renewable energy at the time of arrival. This approach effectively captures the
impact of renewable energy fluctuations on virtual power plant scheduling tasks, optimizing the distribution
of the generation unit workload.

In the experiment, the expected completion time and energy demand for power generation tasks are
designed to follow a truncated normal distribution. Specifically, the energy demand Ni follows a normal
distribution N(200, 202), with a mean of 200 kWh and a standard deviation of 20 kWh. Therefore, most
energy demands are concentrated between 195 and 205 kWh. To fully reflect the impact of renewable energy
fluctuations on power generation tasks, the energy demand Ni is dynamically adjusted after initial generation
based on the renewable energy contribution at the task’s arrival time. Additionally, the expected completion
time Ei for each power generation task is set to follow a normal distribution N(0.5, 0.12), meaning most
values are concentrated between 0.3 hours and 0.7 h. To simulate the arrival times of power generation tasks,
the experiment refers to the time distribution characteristics of the residential, commercial, and industrial
daily load curves as presented in [23]. The task arrival rate is set for three different scenarios: peak, normal,
and off-peak periods. The arrival of tasks in each period is modeled using a Poisson distribution to analyze
the performance of the DQN-based scheduling method under different load demand patterns.

Hyperparameter Settings: To ensure the neural network model can learn efficiently, this experiment
designs a deep neural network (DNN) with a feedforward structure as the model architecture. Specifically,
the DNN consists of two hidden layers, each containing 10 neurons, which can extract complex state features.
During the training process, an experience replay mechanism is used, with the replay memory size set to 1000.
The mini-batch size is set to 30 to ensure the model learns from a sufficient number of samples during each
training iteration. The learning rate is set to 0.01 to prevent drastic fluctuations during parameter updates,
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ensuring training stability. The parameters of the target network θ′ are synchronized with the evaluation
network every 50 iterations.

To further improve model performance, the experiment configures other key hyperparameters: the
discount factor γ is set to 0.9, indicating that the model prioritizes maximizing long-term rewards; the
learning frequency f is set to 1; the initial exploration rate ε is set to 0.9 and gradually decays at a rate of 0.006
per iteration. This setup encourages thorough exploration of the state space in the early stages of training
while shifting the focus toward optimization in later stages.

Evaluation Metrics: During the evaluation process of the experiment, we use average response time,
success rate, and average cost as core performance metrics to balance the trade-off between scheduling
efficiency and economic benefits. The average response time measures the timeliness of scheduling response,
representing the average time required for tasks to be allocated and completed by the scheduling controller.
It is calculated as follows:

T av g = ∑
N
i=1 Ti

N
(12)

where N represents the total number of power generation tasks, and Ti is the response time of power
generation task i, i.e., the duration from the task’s arrival to its completion.

The success rate quantifies the proportion of tasks completed within the specified time, reflecting the
reliability of the scheduling strategy. It is calculated as follows:

Sr = 100 × (N success

N
) (13)

where N success represents the number of successfully completed power generation tasks, which are tasks
satisfying Ti ≤ Ei . Meanwhile, N denotes the total number of power generation tasks.

The average cost represents the average energy cost of power generation tasks, which comprehensively
considers operational costs, energy losses, and scheduling overhead during the execution process. It is
calculated as follows:

Cav g = ∑
N
i=1 Ci

N
(14)

where Ci represents the cost of power generation task i, and N is the total number of power generation tasks.
A lower average cost indicates that the scheduling strategy effectively optimizes energy consumption and
reduces operational costs, demonstrating superior performance in economic efficiency.

4.2 Experimental Results
This study evaluates various intelligent scheduling strategies for Virtual Power Plant (VPP), including

two traditional approaches: Earliest Allocation (EA) and Discrete Particle Swarm Optimization (DPSO).
The EA strategy adopts a time-priority approach, assigning power generation tasks to the earliest available
generation unit to minimize average response time. DPSO, based on swarm intelligence optimization,
utilizes particle swarm search to find the optimal task allocation scheme, aiming to improve scheduling
efficiency. Additionally, we explore three deep reinforcement learning-based scheduling methods, including
our proposed DQN-based intelligent scheduling method, an improved DDQN-based model, and a PPO-
based baseline model. Although these methods employ different neural network architectures, they all enable
efficient discrete action decision-making and have been widely applied to similar intelligent scheduling
problems [24].
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It is important to note that, to prevent the unit differences among various metrics in the reward function
from affecting the agent’s learning strategy, this experiment applies normalization to all metrics. Therefore,
the “average cost” and “average response time” in the figures are represented as dimensionless abstract values.
In the following experimental results, we use the following abbreviations to denote different scheduling
strategies: EA (Earliest Allocation), DPSO (Discrete Particle Swarm Optimization), DQN (the proposed
scheduling method based on Deep Q-Network), DDQN (Double Deep Q-Network method), and PPO
(Proximal Policy Optimization-based scheduling method).

4.2.1 Different Proportions of Emergency Tasks
In this section, we evaluate the impact of the proportion of emergency tasks on five scheduling strategies.

To achieve this, we construct a scheduling scenario where the number of power generation tasks arriving
at the Virtual Power Plant (VPP) at any given time exceeds the number of available generation units. The
proportion of emergency tasks gradually increases from 10% to 90% in increments of 20%. The ratio of
dynamic peaking units to stable baseload units (SBU) is fixed at 1:1.

From Figs. 3a, 4a and 5a, it can be observed that as the proportion of emergency tasks increases, the
proposed DQN scheduling method consistently outperforms other methods in terms of average response
time. Specifically, under the residential daily load curve, when the proportion of emergency tasks is 10%,
the average response time of DQN is reduced by 15% and 34% compared to DPSO and PPO, respectively.
When the proportion of emergency tasks increases to 90%, DQN still achieves reductions of 13% and 9%
compared to DDQN and PPO, respectively. Under the commercial daily load curve, DQN achieves the
highest reduction in response time compared to DDQN, reaching 39% (at 10% emergency task proportion),
and remains significantly lower than PPO and Earliest Allocation (EA) across all emergency task proportions.
Under the industrial daily load curve, DQN demonstrates outstanding adaptability in high emergency task
proportion scenarios (90%), with its average response time reduced by 12% and 34% compared to PPO and
DDQN, respectively.

Figs. 3b, 4b and 5b show that regardless of the proportion of emergency tasks, the task success rate of
the DQN method remains significantly higher than that of other scheduling methods, consistently exceeding
80%. As the proportion of emergency tasks increases, the DQN method exhibits greater advantages over
DDQN, PPO, DPSO, and EA, especially in high emergency task proportion conditions, where it maintains
a leading success rate. Specifically, under the industrial daily load curve, when the proportion of emergency
tasks reaches 90%, the task success rate of the DQN method is approximately 1.19 times that of DDQN and 1.11
times that of PPO. This indicates that in high-load task environments, the DQN method can more effectively
adapt to scheduling demands and ensure reliable task completion.

Meanwhile, as shown in Figs. 3c, 4c and 5c, the DQN method generally outperforms DDQN and EA
in cost reduction and, in some cases, achieves a performance close to that of PPO. Under the residential
daily load curve, the cost of the DQN method is reduced by approximately 27% and 39% compared to
DDQN and EA, respectively, across different emergency task proportions. Notably, when the proportion
of emergency tasks reaches 90%, the DQN method achieves significantly lower costs than DDQN and EA,
demonstrating excellent cost control capabilities. Under the commercial daily load curve, the DQN method
also performs exceptionally well, achieving a cost reduction of 27% and 6% compared to DDQN and PPO,
respectively, when the proportion of emergency tasks is 50%. Under the industrial daily load curve, the
DQN method consistently demonstrates stable cost optimization capabilities across different emergency
task proportions. Even when the proportion of emergency tasks reaches 90%, the cost of the DQN method
remains lower than that of DDQN and PPO, further illustrating its adaptability and economic efficiency in
high-load environments.
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Figure 3: Comparison of different proportions of emergency tasks under the residential daily load curve: (a) average
response time; (b) success rate, (c) average cost

From the above results, it can be concluded that regardless of the proportion of emergency tasks, the
DQN method exhibits strong adaptability and stability, effectively reducing response time while maintaining
a high task success rate. Additionally, DQN outperforms DDQN and DPSO in cost control and even
surpasses PPO in some cases, indicating its ability to improve scheduling performance while maintaining
strong economic efficiency. Overall, the DQN-based scheduling method demonstrates high robustness,
scheduling flexibility, and economic efficiency across different emergency task proportions, making it
well-suited for highly dynamic load scheduling environments.

4.2.2 Different Proportions of Dynamic Peaking Unit
In this section, we evaluate the impact of the dynamic peaking unit (DPU) proportion on scheduling

strategies. The proportion of emergency tasks is fixed at 50%, while the DPU proportion is gradually
increased from 30% to 70% in increments of 10%. The experimental results, as shown in Figs. 6–8, indicate
that the DQN method outperforms other scheduling strategies in terms of response time and success
rate under residential, commercial, and industrial daily load curves, especially when the DPU proportion
increases to 60%–70%. For example, under the industrial load curve, the average response time of DQN
is approximately 12% lower than that of PPO, while its success rate is about 13% higher than that of
DDQN. Furthermore, in cost control, as the DPU proportion increases, the costs of DDQN and DPSO rise
significantly, whereas DQN maintains a relatively low cost level. Notably, when the DPU proportion reaches
70%, the cost of DQN is approximately 58% lower than that of DDQN and 39% lower than that of DPSO,
demonstrating its outstanding economic efficiency.
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Figure 4: Comparison of different proportions of emergency tasks under the commercial daily load curve: (a) average
response time; (b) success rate; (c) average cost

Figure 5: Comparison of different proportions of emergency tasks under the industrial daily load curve: (a) average
response time; (b) success rate; (c) average cost
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Figure 6: Comparison of different proportions of dynamic peaking units under the residential daily load curve:
(a) average response time; (b) success rate; (c) average cost

Figure 7: Comparison of different proportions of dynamic peaking units under the commercial daily load curve:
(a) average response time; (b) success rate; (c) average cost



Comput Mater Contin. 2025;84(1) 879

Figure 8: Comparison of different proportions of dynamic peaking units under the industrial daily load curve:
(a) average response time; (b) success rate; (c) average cost

4.2.3 Different Virtual Power Plant Scales
In this section, to verify the scalability of the proposed deep reinforcement learning (DQN)-based

scheduling method in large-scale virtual power plant systems, we expand the scheduling scenario and evalu-
ate the performance of various scheduling strategies under different system scales (20, 50, and 100 generation
units). Additionally, to simulate resource-constrained real-world operating conditions, the experiment sets
the task load of the virtual power plant significantly higher than the available generation unit capacity.
Furthermore, the ratio of dynamic peaking units to stable baseload units is fixed at 1:1, and the proportion
of emergency tasks is maintained at 50%, ensuring a more realistic reflection of the complexity of actual
operational environments.

As shown in Fig. 9, as the system scale expands, the advantage of cost optimization weakens to some
extent, particularly when the number of generation units increases to 100, where the cost is slightly higher
than that of PPO. However, in terms of response time, DQN consistently maintains a low level across all
system scales, significantly outperforming other methods. Specifically, in larger system scales, DQN achieves
a 23% and 6% reduction in response time compared to DDQN and DPSO, respectively, ensuring stable
scheduling efficiency. Regarding task success rate, DQN also performs exceptionally well, maintaining a
higher success rate than other methods across all system scales. Although there is a slight decline in the largest
system scale, DQN still achieves a 75.8% success rate, demonstrating strong scheduling stability. Overall,
the DQN-based scheduling method exhibits strong scheduling capabilities across different system scales.
Notably, in large-scale virtual power plant environments, it continues to effectively reduce response time,
improve task success rate, and maintain competitive cost control, demonstrating excellent scalability.
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Figure 9: Comparison under different system scales: (a) average response time; (b) success rate; (c) average cost

4.2.4 Evaluation of Scheduling Strategy Robustness under Renewable Energy Fluctuations
The volatility of renewable energy sources (such as wind and solar power) often affects the scheduling

performance of virtual power plants. To evaluate the robustness of different scheduling strategies in uncertain
environments, we define two scenarios: low volatility and high volatility. In the low volatility scenario, wind
power output is set within the range of 80 to 90 kWh (±5% fluctuation), and solar power output is set
within 60 to 65 kWh (±5% fluctuation). The total renewable energy output remains relatively stable, and
the scheduling system is minimally affected by renewable energy fluctuations. In the high volatility scenario,
wind power output expands to a range of 50 to 120 kWh (±35% fluctuation), and solar power output expands
to 30 to 80 kWh (±40% fluctuation). The renewable energy output exhibits significant randomness, which
may lead to extended task response times or an increased task failure rate.

Meanwhile, to quantify the robustness of different scheduling strategies under these two scenarios,
we introduce three key evaluation metrics: (1) Response Time Variance (RTV)-Measures the fluctuation in
task completion time. A smaller variance indicates that the scheduling system is more stable in a renewable
energy fluctuation environment. (2) Success Rate Stability (SRS)-Measures the decline in task success rate
between the high volatility and low volatility scenarios, assessing the adaptability of scheduling strategies to
renewable energy fluctuations. (3) Cost Variability (CV)-Measures the fluctuation in scheduling costs under
different environments. A smaller coefficient of variation indicates greater stability in economic efficiency.
The calculation formula for response time variance (RTV) is as follows:

RTV = 1
N

N
∑
i=1
(Ti − Tavg)2 (15)



Comput Mater Contin. 2025;84(1) 881

where Ti is the response time of power generation task i; Tavg is the average response time of power
generation tasks; and N is the total number of power generation tasks. The definition of Success Rate Stability
(SRS) is:

SRS = (Sr
max − Sr

min
Sr

max
) × 100% (16)

where Sr
max and Sr

min represent the maximum and minimum values of task success rate, respectively. The
calculation method for Cost Variability (CV) is as follows:

CV = ( σcost

μcost
) × 100% (17)

where σcost and μcost represent the standard deviation and mean of the cost, respectively.
From the results in Table 1, it can be seen that the DQN scheduling method we adopted demonstrates

stronger robustness in dealing with the volatility of renewable energy. Compared to other methods, DQN
maintains the lowest response time and the highest success rate in both low and high volatility environments.
At the same time, DQN’s response time variance (RTV) and success rate standard deviation (SRS) are
much lower than those of other baseline methods, indicating its ability to remain stable even in fluctuating
environments. Furthermore, DQN’s cost volatility (CV) is also lower than that of DDQN and PPO, ensuring
the stability of scheduling economics. These results prove that DQN can effectively adapt to the volatility of
new energy sources, providing a more stable and efficient task scheduling strategy.

Table 1: Experimental results under low and high variability

Variability Policy Average response time Success rate Average cost RTV SRS CV
low EA 0.188 74.5 0.617 0 13.333 1.809

DPSO 0.276 45.5 0.292 0 14.257 2.759
DDQN 0.179 84.4 0.357 0.001 20.275 6.257
DQN 0.157 92 0.35 0 7.661 4.114
PPO 0.299 78.7 0.26 0.002 28.083 9.326

high EA 0.201 72.8 0.659 0 14.028 2.342
DPSO 0.282 44.9 0.286 0 8.018 2.604
DDQN 0.188 82.8 0.389 0.005 18.597 9.523
DQN 0.164 85.6 0.339 0.003 10.24 5.255
PPO 0.2 80.4 0.291 0.026 16.368 8.608

The four experiments mentioned above comprehensively assess the advantages of DQN in virtual power
plant intelligent scheduling, including average response time, task success rate, cost control, and robustness
under different renewable energy volatility environments. These experiments verify the stability of the DQN
method in various operating scenarios and show that it can maintain good scheduling performance under
different experimental variables. The reason DQN excels across all evaluation metrics is primarily due to
its Q-learning-based dynamic optimization mechanism, which allows it to adjust the scheduling strategy
according to different load environments and task urgency levels. Specifically, DQN can continuously
optimize scheduling decisions through reinforcement learning. Under high emergency task proportions,
it prioritizes scheduling dynamic peaking unit (DPU) to ensure quick task execution, while under low
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emergency task proportions, it tends to use stable baseload unit (SBU) to reduce overall production costs,
thereby effectively controlling energy consumption while ensuring task success rates.In addition, DQN
employs the Experience Replay mechanism, allowing the agent to learn long-term optimal strategies in
complex and dynamic load environments, rather than relying solely on short-term task feedback. As a result,
it can still maintain low response times and high task success rates under different load curves. Compared to
PPO and other methods, DQN, through value function optimization, can quickly find the optimal strategy,
ensuring timely task response. By applying a target network, it avoids instability in strategy updates due
to load fluctuations, demonstrating stronger adaptability and stability when facing different virtual power
plant scales and renewable energy volatility. In terms of cost control, DQN can make intelligent decisions
during task allocation, making the coordination between DPU and SBU more efficient. This avoids the high
energy consumption problems caused by traditional methods’ over-reliance on DPU, while also ensuring the
economic efficiency of the overall scheduling by maximizing cumulative rewards and reducing additional
costs due to frequent start-ups and shut-downs of units. Moreover, when faced with different virtual power
plant scales and renewable energy volatility, the DQN method demonstrates greater adaptability and stability,
with task success rates always above 75%. Even when the system scale expands to 100 generation units, it still
maintains good cost control ability, further proving its excellent scalability and environmental adaptability. In
summary, DQN not only outperforms traditional methods and other deep reinforcement learning methods
in overall scheduling performance but also provides robust and efficient intelligent scheduling strategies
when facing dynamic load changes and renewable energy volatility, offering strong support for the intelligent
operation of virtual power plants.

4.2.5 Comparison and Analysis of DQN, PPO, and DDQN Methods
In the above experiments, we compare and evaluate the virtual power plant scheduling strategies

optimized using DQN, PPO, and DDQN by varying multiple experimental parameters. Preliminary experi-
mental results indicate that the deep reinforcement learning scheduling method using DQN demonstrates a
clear advantage in terms of convergence speed and stability. Next, we will conduct a detailed analysis of this
comparative result. To this end, we further compare the differences in loss convergence and reward values
among DQN, PPO, and DDQN in an environment where the proportion of urgent tasks is fixed at 50%,
and the ratio of dynamic peaking units to stable baseload units is set to 1:1. Additionally, the hyperparameter
settings for this experiment are completely consistent with those described in Section 4.1, including the replay
memory size (1000), mini-batch size (30), learning rate (0.01), discount factor (0.9), exploration rate (initial
value of 0.9), and learning frequency (1).

In the virtual power plant scheduling problem, the scheduling strategy needs to efficiently allocate tasks
between dynamic peaking unit (DPU) and stable baseload unit (SBU). Since the action space of this problem
is discrete, the Q-network structure of DQN is particularly well-suited for solving such tasks. As shown
in Fig. 10a, DQN calculates the loss using Mean Squared Error (MSE), providing stable Q-value estimates and
directly outputting the Q-values for each unit to achieve optimized scheduling. In contrast, the PPO method
shown in Fig. 10b optimizes through policy loss and value function loss, mainly used to generate continuous
action probability distributions or discrete action values. Although the loss calculation methods of the two
algorithms differ, their convergence trends are generally similar in the iterative process. However, DQN has a
clear advantage in handling this entirely discrete scheduling problem, as it focuses on the selection of discrete
actions without dealing with the complexity of continuous action spaces. Additionally, as shown in Fig. 10c,
DDQN reduces the bias in Q-value estimation by adopting a double Q-network structure, but its convergence
speed is significantly slower than that of DQN. Specifically, during the first 400 training iterations, the loss
of DQN decreases more rapidly, indicating that it can converge to a better solution more quickly in the early
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stages of learning. In contrast, DDQN has a more conservative update mechanism, leading to lower learning
efficiency in the initial training phase.

Figure 10: Comparison of loss convergence between DQN, PPO, and DDQN. (a) shows the loss convergence curve of
DQN at the 100th training epoch; (b) shows the loss convergence curve of PPO at the 100th training epoch; (c) shows
the loss convergence curve of DDQN at the 100th training epoch

In the comparison of transfer learning performance, PPO collects new data for online learning with
each policy update, which typically requires complex gradient calculations. DQN, on the other hand, uses
the experience replay mechanism to sample from past experiences and implement parallel learning, which
generally allows DQN to be more efficient during the training process. In contrast, DDQN introduces a
more conservative Q-value update strategy through the double Q-network structure. While it reduces the
overestimation of Q-values, it also limits the exploration ability of the policy, making it difficult for the model
to quickly find the optimal scheduling solution in the early stages. As shown in Fig. 11, DQN reaches reward
convergence after approximately 15 training epochs, while PPO requires about 50 training epochs to stabilize
and converge, with significant reward fluctuations during the convergence process. The convergence speed
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of DDQN is significantly slower than that of DQN. During the first 25 training epochs, its reward value
is noticeably lower than that of DQN, showing lower initial learning efficiency, and it only stabilizes and
converges after about 35 training epochs. Therefore, in virtual power plant scheduling tasks, DQN shows
higher training efficiency and greater stability, especially when handling rapidly changing load demands,
allowing it to adapt more quickly and optimize scheduling strategies.

Figure 11: Comparison of mean reward between DQN, PPO, and DDQN

5 Conclusion
This paper proposes a deep reinforcement learning-based intelligent scheduling method for Virtual

Power Plants (VPPs) to address the volatility and uncertainty of renewable energy sources such as wind
and solar power, as well as the complexity and diversity of user load demands. The method uses Deep
Q-Network (DQN) to optimize the coordinated scheduling of dynamic peaking unit (DPU) and stable
baseload unit (SBU) to meet the electricity demand and strict response time requirements of power gener-
ation tasks. Experimental results show that, compared to traditional scheduling methods (such as Earliest
Allocation and Discrete Particle Swarm Optimization) and other deep reinforcement learning algorithms
(such as DDQN and PPO), the proposed DQN-based intelligent scheduling method demonstrates significant
advantages in task response time, task success rate, and cost control, particularly in high-dynamic load
demand and renewable energy fluctuation environments, where it shows stronger robustness.Furthermore,
this study further explores the scalability of the DQN-based intelligent scheduling method under different
virtual power plant scales. The results indicate that it can stably adapt to large-scale complex scheduling
environments, effectively improving the system’s flexibility and economic efficiency. Future work will focus
on exploring more efficient deep reinforcement learning models, such as those incorporating attention
mechanisms or multi-agent reinforcement learning, to further optimize scheduling strategies and enhance
the adaptability and generalization capabilities of virtual power plants.
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