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ABSTRACT: Traditional cameras inevitably suffer from motion blur when facing high-speed moving objects. Event
cameras, as high temporal resolution bionic cameras, record intensity changes in an asynchronous manner, and their
recorded high temporal resolution information can effectively solve the problem of time information loss in motion blur.
Existing event-based deblurring methods still face challenges when facing high-speed moving objects. We conducted
an in-depth study of the imaging principle of event cameras. We found that the event stream contains excessive noise.
The valid information is sparse. Invalid event features hinder the expression of valid features due to the uncertainty
of the global threshold. To address this problem, a denoising-based long and short-term memory module (DTM) is
designed in this paper. The DTM suppressed the original event information by noise reduction process. Invalid features
in the event stream and solves the problem of sparse valid information in the event stream, and it also combines with
the long short-term memory module (LSTM), which further enhances the event feature information in the time scale.
In addition, through the in-depth understanding of the unique characteristics of event features, it is found that the
high-frequency information recorded by event features does not effectively guide the fusion feature deblurring process
in the spatial-domain-based feature processing, and for this reason, we introduce the residual fast fourier transform
module (RES-FFT) to further enhance the high-frequency characteristics of the fusion features by performing the
feature extraction of the fusion features from the perspective of the frequency domain. Ultimately, our proposed event
image fusion network based on event denoising and frequency domain feature enhancement (DNEFNET) achieved
Peak Signal-to-Noise Ratio (PSNR)/Structural Similarity Index Measure (SSIM) scores of 35.55/0.972 on the GoPro
dataset and 38.27/0.975 on the REBlur dataset, achieving the state of the art (SOTA) effect.
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1 Introduction
Motion blur commonly occurs in conventional cameras, particularly when the camera is shaking or

objects are moving at high speed. This phenomenon primarily results from long exposure times, during
which the camera is unable to effectively accumulate information about the light emitted or reflected by
objects within a short period. Consequently, important textures and details in the image are lost. In high-
speed motion scenarios, conventional cameras often struggle to capture sufficient dynamic information,
leading to severe image blur and posing a significant challenge to most existing deblurring methods.
Traditional approaches treat deblurring as an inverse problem and attempt to recover a sharp image via
inverse convolution by estimating the blur kernel. However, these methods heavily depend on accurate blur
kernel estimation, which is difficult to achieve in real-world scenarios with unknown or complex motion
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patterns. In contrast, deep learning-based deblurring methods learn the mapping from blurred to sharp
images through large-scale data training. Although such methods have significantly improved deblurring
performance, they still exhibit notable limitations in handling fast-moving objects. This is mainly because
conventional frame-based images [1] fail to capture motion information during exposure. Event cameras,
by contrast, operate on an asynchronous event-driven mechanism that records changes in luminance with
extremely high temporal resolution. They generate sparse event streams that accurately reflect the direction,
speed, and edge information of object motion. This enables not only explicit capture of dynamic scene
changes but also implicit provision of positional cues for blurred regions. Traditional methods are limited
by their inability to accurately perceive motion trajectories, which restricts their deblurring performance.
Therefore, leveraging the high temporal resolution and motion-awareness capabilities of event cameras for
image deblurring has emerged as a promising and increasingly mainstream approach.

Fig. 1 presents a comparison of the architectural differences between our method and recent event-based
deblurring approaches. These methods are described in more detail in the next related methods section.
Sun et al. [2] proposed the EFNet network architecture and introduced the event-image feature fusion
module (EICA) for the first time, which achieves significant state-of-the-art (SOTA) results in the field of
image deblurring through the dual-channel extraction and fusion of event features and traditional RGB
image features. Subsequently, Yang et al. [3] further improved EFNet and proposed the DLEFNet network
architecture. Unlike Sun et al., Yang et al. borrowed the EICA module and applied deformable convolution
and the LSTM network model to event data processing for the first time. This further enhanced the ability
to extract temporal information from event features. By improving the modeling of temporal information
in event features, DLEFNet achieves a more significant improvement in deblurring performance. The SOTA
method DiffEvent [4] treats image deblurring as a generative problem by introducing diffusion priors and a
sampling strategy that jointly estimates the sharp image and residual image. This approach effectively reduces
residuals and more accurately restores details, significantly improving deblurring performance.

Figure 1: (a) Conventional model (b) Noise estimation model (c) Time-series modeling model (d) Our model

However, the above methods still exhibit significant shortcomings. In the traditional model shown
in Fig. 1a, insufficient consideration of the random noise problem–due to the high sensitivity of the event
camera and the uncertainty in setting the global threshold [5] leads to the event stream being interspersed
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with a large amount of redundant random noise and invalid events. This results in sparse effective informa-
tion and limited expressive capability, reducing the model’s effectiveness in recovering details in dynamically
ambiguous regions. The noise estimation-based model in Fig. 1b mitigates the interference of excessive noise
in the event data by introducing a noise estimation mechanism. However, the denoising process inevitably
removes some effective information, leading to a loss of temporal information. This limits the model’s ability
to capture the completeness and continuity of motion details, making it difficult to accurately restore complex
dynamic changes. Furthermore, although the model based on temporal modeling in Fig. 1c improves the
temporal representation of event features by introducing an LSTM-based module, it overlooks the inter-
modal resolution differences and inconsistencies in feature representation during the fusion process [6] with
RGB features. Consequently, the high-frequency details of the moving object structure, edges, and textures
contained in the event features are not fully exploited, hindering the model’s performance in high-frequency
detail reconstruction and edge recovery.

To address the above issues, we thoroughly analyze the characteristics of the event stream. We found
that due to the high sensitivity of event sensors and the high degree of integration within electronic devices,
there is a substantial amount of redundant random noise in the event stream. This noise leads to sparse
valid information and somewhat inhibits the expression of meaningful features. At the same time, the event
stream contains rich high-frequency feature information, particularly high-frequency components related
to detailed features such as the structure, texture, and edges of moving objects. However, traditional spatial-
domain feature processing methods, which typically rely on convolutional operations, tend to focus on
extracting low-frequency information, failing to effectively utilize these important high-frequency features.
To overcome these challenges, we propose the DNEFNET network, which introduces the DTM and RES-
FFT [7] modules to enhance deblurring performance. The DTM module suppresses invalid features in the
event data, emphasizing valid features for more accurate representation and improved temporal expressive-
ness. The RES-FFT module shifts image feature extraction from the spatial domain to the frequency domain,
thereby enhancing high-frequency details in the fused features and better preserving the edges and fine
details captured by event data. The specific process is outlined in Algorithm 1. Experimental results on both
synthetic and real datasets (e.g., GoPro and REBlur) demonstrate that our method outperforms existing
state-of-the-art approaches in terms of deblurring performance and visual quality.

Algorithm 1: DNEFNET image processing
Require: Event data E ∈ RCev×H×W , Blurred image B ∈ RC×H×W

1: Conv(E , B) → E1 , B1
2: DTM(E1) → e∗1, e∗2, e∗4
3: for i = 1 to 3 do
4: Downsample(binput , scale = 0.5) → b∗
5: EICA(e∗i , b∗) → F i

fusion
6: F i

fusion → binput
7: end for
8: Upsample(binput , scale = 4) → binput
9: SAM(binput) → FSAM

10: RES-FFT(FSAM) → Fout
11: Conv3x3(Fout) → Isharp
12: Return Isharp
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In summary, our main contributions are as follows.
1. We deeply analyze the imaging principle of event cameras and find that there is a large amount of

redundant random noise in event data, which leads to sparse and limited expression of effective features,
while high-frequency features are underutilized. To this end, we propose the DNEFNET network, which
effectively solves the core problems of insufficient expression of event features and underutilization of high-
frequency features by combining frequency-domain enhancement and denoising mechanisms.

2. We design a novel Denoising Long and Short-Term Memory (DTM) module that integrates denoising
with time-series modeling. By suppressing redundant noise and emphasizing effective features, this module
significantly enhances feature representation and improves the model’s ability to express temporal features.

3. We introduce a RES-FFT-based residual block that extends feature processing from the spatial domain
to the frequency domain. This block effectively isolates and enhances high-frequency information in the
fused features, improving edge recovery and detail reconstruction, thereby providing a robust solution for
event-based deblurring tasks.

4. Our deblurring network (DNEFNET) achieves PSNR and SSIM scores of 35.55/38.26 dB and
0.972/0.975 on the GoPro and REBlur datasets, respectively. These results are significantly better than existing
deblurring methods, demonstrating state-of-the-art performance.

2 Related Work

2.1 Frame-Based Image Deblurring Method
Traditional deblurring methods typically treat the task as an inverse problem. In image processing,

blurring is viewed as the result of convolving the original image with a blurring kernel. These methods
construct a blurring model based on the known or estimated convolutional structure of the blurring kernel
and apply inverse convolution to achieve deblurring. These methods can be broadly categorized into two
approaches: blind deblurring and non-blind deblurring, depending on whether the blur kernel is assumed
to be known. Early non-blind deblurring methods use classical image inverse convolution algorithms. For
example, Ref. [8] proposes the use of Wiener filtering based on minimum mean square error to deblur
images, while Ref. [9] introduces the Lucy-Richardson inverse convolution method for image clarification.
However, these approaches often fail to fully exploit the a priori information inherent in natural images,
leading to inaccurate recovery. In blind deblurring architectures, where the blurring kernel is unknown, the
goal is to simultaneously recover the blurred image and estimate the blur kernel [10,11] propose solutions that
involve adding various constraints for regularization and incorporating additional priors. While these non-
deep learning methods perform well in many cases, they tend to produce unsatisfactory results in complex
real-world scenarios, particularly under extreme blur conditions.

2.2 Image Deblurring Method Based on CNN Network
With the success of deep learning, many Convolutional Neural Network (CNN) deep models have

been proposed, leading to significant progress in image deblurring. For example, Ronneberger et al. [12]
propose a multiscale CNN network (U-NET) that recovers clear images from blurred ones by integrating
multiscale feature information. Zhu et al. [13] propose utilizing Deformable Convolutional Networks (DCNs)
to estimate blur patterns and regions. By specifically learning the relationship between blurred areas
and clear images, their approach optimizes feature alignment, further enhancing deblurring performance.
Cho et al. [14] introduce MIMO-UNET, which facilitates inter-scale information exchange and improves
deblurring performance by adding input channels for different scale images, extracting surface information
using the Shallow Convolutional Module (SCM), and applying the attention mechanism for selective feature
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extraction. Tao et al. [15] propose a coarse-to-fine scale recurrent network to enhance the efficiency of
multiscale image deblurring. Similarly, Zamir et al. [16] introduce inter-stage feature fusion [17] to further
optimize deblurring performance. To reduce the computational cost associated with multiscale frameworks,
Zhang et al. [18] propose a network architecture based on a multi-patch strategy (DMPHN), exploring
different stacking methods and achieving good results in image deblurring. Although these methods
demonstrate strong performance for mildly blurred images, they remain ineffective in cases of extreme
blurring due to their inability to capture temporal features, such as the motion information of objects.

2.3 Event-Based Image Deblurring
In extreme environments, traditional image sensors often fail to effectively record object motion

information due to exposure time limitations, resulting in poor performance of traditional deblurring
methods in complex scenarios such as high-speed motion and rapid lighting changes. In contrast, event
cameras, with their asynchronous imaging and microsecond time resolution, accurately capture dynamic
changes in scenes. While image data excels in texture and spatial details, it can be complemented by event
data, leading to increased attention on deblurring methods based on event-image fusion. Pan et al. [19]
introduce the earliest event-based deblurring model, the Event-based Double Integration (EDI) model,
which integrates event data for deblurring. However, due to sampling limitations of event cameras and the
resulting noise, Pan et al. [20] further propose the MEDI model, which mitigates noise interference by
obtaining smaller noise estimates through multi-image and event integration. Wang et al. [21] demonstrate
that adding event data channels to image-based deblurring networks improves their performance, while
Xu et al. [22] devise a semi-supervised framework to address data inconsistency issues by utilizing real-world
events. Recent advancements include EFNET [2], which constructs a two-segment U-Net architecture: one
segment processes event information, while the other focuses on image deblurring. This network introduces
new event representations and fusion modules, achieving excellent results. Yang et al. [3] propose using
an LSTM network with deformable convolution to further extract event information, enhancing temporal
feature representation and achieving strong performance. Although these methods address event camera
noise caused by global threshold uncertainty, they fail to deeply analyze the causes of noise generation.
Redundant and invalid feature information in event data leads to sparse valid information, impacting
effective feature representation. Moreover, most methods rely on spatial-domain feature processing, which
struggles to fully utilize the structural motion and rich high-frequency details provided by event data.
This limitation hampers the performance of existing event-based deblurring models in complex real-world
scenarios. Effectively leveraging high-frequency information and temporal dynamic features in event data
remains a critical challenge in current event-driven deblurring research.

3 Method

3.1 Representation of Events
Event cameras [23] are bio-inspired sensors that asynchronously record logarithmic changes in image

intensity. Unlike conventional cameras, which capture full image frames at fixed intervals, event cameras
generate an event whenever the intensity at a specific pixel exceeds a predefined threshold. Free from the
limitations of fixed exposure times and restricted dynamic range, event cameras are capable of capturing
high-speed motion with microsecond-level temporal resolution. Instead of producing discrete frames, they
detect rapid intensity variations and output a continuous stream of asynchronous events that encode these
changes. Assume a pixel location k and a manually defined exposure time T. Then, an event e can be
represented as (xk , yk , tk , pk), where (xk , yk) denotes the spatial coordinates of the pixel, and tk represents
the timestamp of the event. The polarity pk ∈ {+1,−1} indicates the direction of the intensity change (increase
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or decrease) at pixel k at time tk . The generation of this polarity can be expressed as follows:

pk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+1, if log( Jt (xk, yk)
Jt−Δt (xk , yk)

) > c

−1, if log( Jt (xk, yk)
Jt−Δt (xk, yk)

) < c.
(1)

In Eq. (1), c denotes the pixel brightness change threshold specified by the event camera, if the intensity
change log ( Jt(xk , yk)

Jt−Δt(xk , yk)
) produced by pixel k during the instantaneous time Δt exceeds the threshold c, a

corresponding event is generated and pixel point k is updated.

3.2 Overall Architecture
As shown in Fig. 2, DNEFNET consists of two main components: the feature extraction module and

the deblurring module. The feature extraction module processes the input image and event data through
two separate channels. In the event channel, the event stream contains a significant amount of random
noise, leading to sparse and ineffective representation of valid information. To address this issue, we
design the DTM module, which first suppresses invalid features through a denoising process, allowing the
remaining valid information to become more concentrated. Although this denoising process may result
in the loss of some temporal details, DTM compensates for this by performing temporal modeling on the
denoised event features, thereby enhancing their temporal expressiveness. As a result, the DTM module not
only improves the denoising effectiveness of the event stream but also strengthens its ability to represent
temporal information.

Figure 2: Overall network architecture

For the image channel, we perform multi-level fusion of the processed event features with image features
at different scales, enhancing image sharpness and improving edge recovery. The second part of the network
is the deblurring module. Traditional deblurring methods typically operate in the spatial domain, where
high-frequency components of the fused features are often underutilized. To overcome this limitation,
we introduce the RES-FFT residual block, replacing the conventional residual blocks in U-Net with RES-
FFT blocks, thereby shifting feature processing from the spatial domain to the frequency domain. This
enhances and separates the high-frequency components within the fused features, significantly improving
the model’s capability to reconstruct motion edges and texture details and leading to clearer and more
detailed deblurred results.
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DNEFNET fully leverages the high spatial resolution and rich texture detail of image data while
simultaneously applying fine-grained denoising and temporal modeling to event data. This effectively solves
the problem of sparse and ineffective feature representation in event streams. Moreover, through deep
analysis of event characteristics, DNEFNET extracts and enhances high-frequency information in the fused
features, enabling the model to more accurately capture motion edges and fine textures, thereby improving
deblurring quality and detail preservation.

Thanks to these innovations, DNEFNET achieves superior deblurring performance on both the
GoPro [24] and REBlur [2] datasets, especially under challenging scenarios involving complex scenes and
extreme motion blur, demonstrating strong robustness and enhanced detail recovery.

3.3 DTM
Given a potentially clear image L( f ), according to the EDI model proposed in [19] we can derive its

fuzzy image based on the event data e. The specific derivation process can be expressed as follows.

B = 1
T ∫

f+T/2

f−T/2
L(t)dt,

= L( f )
T ∫

f+T/2

f−T/2
exp(c∫

t

f
pkds) dt.

(2)

In Eq. (2), B denotes the observed blurred image, pk represents the polarity component of the event
stream, T is the manually set exposure time, and f refers to the midpoint of the exposure interval. L( f )
denotes the latent sharp image corresponding to B. Due to the high sensitivity of event sensors and the high
degree of electronic integration, electronic noise is inevitably introduced. This makes it challenging to apply
a globally fixed threshold c uniformly across all pixels, resulting in significant uncertainty at the pixel level.
Such threshold deviations cause the event stream to contain a large amount of redundant random noise,
which lacks meaningful information. This noise degrades feature representation quality and contributes to
the sparse nature of valid event data.

The EDI model proposed in [19] is developed under idealized conditions. While it effectively establishes
a mathematical relationship between blurred images and latent sharp images, its performance deteriorates
in real-world scenarios, where complex and unknown environmental factors limit its practical applicability.

Therefore, to mitigate the sparsity of valid information in the event stream and enhance the con-
centration of meaningful features, we propose a denoising-based Long and Short-Term Memory module
(DTM), whose structure is illustrated in Fig. 3. The DTM module is designed to address two key challenges:
suppressing redundant random noise and preserving temporal information in event features. It achieves this
by first applying a denoising process to eliminate invalid features caused by noise, thereby enhancing the
compactness and relevance of the feature representation. However, since denoising may inevitably remove
some valid information, the module further incorporates a temporal modeling mechanism to recover and
enhance the temporal expressiveness of the denoised features.

The DTM module thus consists of two main components: a denoising sub-module that filters out
random noise and a temporal modeling sub-module that captures long- and short-term dependencies in the
denoised feature stream.

In the denoising stage, we first normalize the input event data e ∈ RC×H×W to ensure training stability
and a reasonable data distribution. Specifically, we compute the mean μ and standard deviation σ of the
input and normalize it to obtain a standardized distribution enorm with zero mean and unit variance. This
normalization provides a more stable basis for subsequent network processing. Then, enorm is passed through
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two convolutional layers: a 1 × 1 convolution to perform inter-channel linear mapping, followed by a 3 × 3
convolution to extract local edge features.

Figure 3: The detailed structure of DTM block

This sequence of operations yields the shallow feature representation Fshallow. The deep convolution
process enhances salient local regions, effectively suppressing noise events, which typically exhibit weak or
irregular patterns due to the threshold uncertainty c. This initial suppression of noise provides a crucial
pre-processing step for the denoising pipeline. The full denoising process is summarized in Eq. (3), where μ
denotes the mean and σ represents the standard deviation of the input e.

enorm =
e − μ

σ
,

Fshal l ow = Conv2 (Conv1(enorm)) .
(3)

In traditional denoising methods, although nonlinear activation functions such as ReLU and GELU can
effectively enhance shallow features and suppress noise, they often lead to increased inter-block complexity
and computational overhead. To address this issue, inspired by NAF [25], we introduce a simplified activation
structure called SimpleGate, as illustrated in Fig. 4a. Specifically, the input shallow feature map Fshallow is
split into two equal parts, F1 and F2 along the channel dimension, which are then fused through element-
wise multiplication to generate the output FSG, as defined in Eq. (4). This lightweight gating mechanism
enables selective enhancement and suppression of channel-wise features, effectively reducing the influence
of redundant noise in event data. Moreover, SimpleGate achieves strong noise suppression capability with
significantly lower computational cost, providing an efficient and practical solution for feature modulation
in the denoising module.

F1, F2 = split(FShal l ow),
FSG = SimpleGate(F1, F2) = F1 ⊙ F2.

(4)
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Figure 4: (a) SimpleGate implementation (b) SCA implementation ∗: Channel-wise multiplication

To further enhance the denoising capability in conjunction with SimpleGate, we introduce a spatially
compressed channel attention mechanism (SCA), as depicted in Fig. 4b. As described in Eq. (5), SCA first
applies global average pooling to the input feature map FSG to compute the spatially averaged channel-wise
vector V. This vector is then passed through a 1 × 1 convolution to generate the channel attention weights
WCA. These weights are subsequently multiplied with FSG to produce the refined feature map FCA. Since
noisy events typically exhibit weak or insignificant activation across the channel dimension, the channel
attention mechanism adaptively reweights the feature map, selectively enhancing the more informative
channels while attenuating the impact of noisy or irrelevant ones. This process strengthens the representation
of valid features and further suppresses the influence of invalid event-induced artifacts, thereby improving
the effectiveness and robustness of the denoising operation.

V = GAP(FSG),
WCA = Conv1x1(V),
FC A =WC A ⊙ FSG .

(5)

However, some temporal information may be lost during the inevitable processing of valid features
in the denoising module. To address this issue, we introduce an LSTM-based temporal enhancement
module within DTM. This module takes the denoised event features as input and compensates for potential
information loss by leveraging historical data, thereby ensuring the completeness and coherence of the output
in the temporal domain. The LSTM network effectively restores the temporal continuity of the denoised
features, preserving the integrity of valid information and mitigating the loss typically associated with single-
frame denoising. Furthermore, by processing the event features frame by frame, the LSTM embeds temporal
dependencies into the output, ensuring consistency across adjacent time steps and improving both the
temporal resolution and feature representation capability.

Ct = ft ⊙ Ct−1 + it ⊙ tanh (Conv ([FC A, ht−1]) , Wc) ,
ht = ot ⊙ tanh (Ct) .

(6)

In Eq. (6), ht and Ct represent the hidden state and memory unit at the current time step, respectively.
ht−1 and Ct−1 correspond to the hidden state and memory unit at the previous time step. ot denotes the
candidate value at the current time step. ft represents the activation value of the forget gate, it denotes the
input gate, and wc refers to the convolution weight. By leveraging the unique memory unit of the LSTM
and the combined action of the three gates, the model effectively extracts temporal sequences from the
event stream data. This approach not only captures local spatial correlations but also preserves and enhances
temporal information. During frame-by-frame processing of event features, the model integrates temporal
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dependencies into the output features, ensuring temporal compensation and consistency in the denoised
features, thus improving feature representation capability.

3.4 FFT Based U-Net Network Architecture
The traditional U-Net architecture performs well in image deblurring tasks; however, when fusing

event data and image data, existing methods often struggle to fully exploit the high-frequency feature
information of the event data. Since event data primarily consists of sparse edges and motion trajectories,
which contain crucial information for accurately localizing object motion and blur regions, the extraction
and utilization of high-frequency details are particularly important in feature fusion. However, conventional
spatial-domain convolution operations have limited capacity to capture these high-frequency components,
which can lead to the degradation of edges, structures, and texture details of moving objects, thus negatively
impacting the deblurring performance. To address this issue, we design an enhanced U-Net architecture
that incorporates RES-FFT residual blocks. Unlike traditional spatial-domain residual blocks, the RES-FFT
block shifts the feature processing from the spatial domain to the frequency domain, isolating and enhancing
high-frequency components, such as edges and motion trajectories, to more effectively recover detailed
features. The structure of the RES-FFT residual block is illustrated in Fig. 5a. In Eq. (7), we transform the
input features from the spatial domain to the frequency domain using a Fourier Transform (FFT) to isolate
high-frequency components that contain essential information, such as edges and motion trajectories. The
fused features processed by the feedforward network are denoted as Ff usion . In the frequency domain, these
high-frequency components are convolved with 1 × 1 and 3 × 3 convolutions to further extract detailed
features, enhancing sensitivity to ambiguous regions and motion information, thereby generating high-
frequency features Fhi gh for further processing. Meanwhile, the low-frequency information is retained in the
spatial domain through two standard convolution operations. Subsequently, an inverse Fourier Transform
(IFFT) is applied to map the enhanced high-frequency features back to the spatial domain, outputting the
Fourier feature Ff f t . This is then pixel-wise added to the original spatial features, which have undergone two
convolution operations, ensuring effective complementarity between the spatial and frequency domains. This
process strengthens the high-frequency information while preserving low-frequency and overall structural
information. The final processed feature, Fout , is then output. It is important to note that the object motion
information and high-frequency features of the blurred region recorded in the event data are crucial for
the deblurring process. The RES-FFT module effectively extracts these features through precise frequency-
domain operations, significantly enhancing the fusion feature representation and improving the model’s
ability to recover edge details and reconstruct high-frequency features.

Fconv = Conv3×3 (Relu (Conv3×3 (Ffusion))) ,
Y = FFT (Ffusion) ,
Fhigh = Conv1×1 (Relu (Conv3×3(Y))) ,
Ffft = IFFT (Fhigh) ,
Fout = Ffft + Fhigh.

(7)

In addition, to enhance the deep feature extraction capability of the network, we adopt a stacked design
in both the encoder and decoder, extending the number of residual blocks to four layers. This further deepens
the feature learning capacity of the network. The specific architecture of the network is shown in Fig. 5b. This
multi-module synergistic design, which combines event features and image features, enables our variant of
the U-Net architecture to handle the deblurring task more efficiently in event and image fusion scenarios.
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Figure 5: (a) Specific architecture of RES-FFT (b) The deblurring part of DNEFNET

4 Experiments

4.1 Dataset
GoPro: We used the GoPro dataset [24], which is widely used for motion deblurring tasks, for training

and evaluation. The dataset contains 3214 pairs of blurred and clear image pairs with an image resolution
of 1280 × 720. The blurred images are generated by averaging multiple frames of clear images taken at high
speed. In order to adapt our two-channel model to event data, we generated event stream data corresponding
to each pair of blurred images using the ESIM event simulator. The training set contains 2103 pairs of images,
and the test set contains 1111 pairs of images for evaluating the performance of the model.

REBlur: We pre-trained the model on the GoPro dataset and fine-tuned it on the REBlur [2] real dataset
to assess the model’s generalization ability on real event data. The REBlur dataset is designed for event-image
deblurring tasks and includes three motion modes and 12 linear and non-linear blurring scenarios, totaling
36 sequences and 1469 image-event data pairs. Of these, 486 pairs are used for training and 983 pairs for
testing. Since the REBlur dataset contains blurred images with varying speeds and motion modes, we further
evaluate the model’s deblurring performance at different blurring levels to assess its robustness in extreme
blurring and complex motion scenarios.

Table 1: Comparative results on motion deblurring on the GoPro dataset

Method PSNR ↑ SSIM ↑
BANET [26] 32.54 0.957

MPRNet 32.66 0.959
MIMO-unet 32.68 0.959
HINET [27] 32.71 0.959

Restormer [28] 32.92 0.961
U-former [29] 33.06 0.967

(Continued)
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Table 1 (continued)

Method PSNR ↑ SSIM ↑
SSAMAN [30] 33.53 0.965

NAFNET 33.71 0.967
MADANET [31] 33.84 0.964

RED∗ 28.98 0.849
ERDNet∗ [32] 32.99 0.935

HINET∗ 33.69 0.961
EFNET∗ 35.46 0.972

DiffEvent∗ 35.55 0.972
Ours 35.55 0.972

Note: ∗ denotes event-based approach, bolded
meanings denote best results.

4.2 Experiment Parameters
Experiments were performed on a server with four 2080Ti GPUs, using data augmentation [33] and

distributed training. We used the AdamW optimizer with an initial learning rate of 2e−4 and a minimum
learning rate of 1e−7. 200,000 iterations were performed on the GoPro dataset in 43 hours. Subsequently, 1800
iterations were fine-tuned on the REBlur dataset, using a single GPU, with all other configurations remaining
the same. In addition, SCER preprocessing was performed on the event data.

4.3 Comparisons with State-of-the-Art Methods
We compare our approach to state-of-the-art image-only and event-based deblurring methods on the

GoPro and REBlur datasets. These include image-based methods such as Restormer, SSAMAN, NAFNET,
HINET, MIMO-unet++, U-former, MADANET+, BANET, MPRNet, and SRN, as well as event-based
deblurring methods like ERDNet, DiffEvent, EFNET, RED, and other recent advancements. Since most
event-based deblurring methods do not have publicly available implementations, to ensure a fair comparison
and fill this gap, we introduce an event channel in HINET, making it adaptable to event datasets. This
modified version is labeled as HINET∗.

GOPRO: We present the comparative results of our deblurring experiments on the GOPRO dataset
in Table 1. Compared to existing event-based and image-based methods, our approach outperforms the
others, with subjective metrics comparable to the best event-based deblurring method (DiffEvent). The main
reason for this is that the GOPRO dataset is synthetic, lacking the complex, non-uniform blurring and varied
motion patterns found in real-world scenes. The simple and consistent blurring in this dataset is more suited
to DiffEvent’s global fusion strategy, which excels at recovering image details. In contrast, our method focuses
on the recovery of local details and high-frequency features, with an emphasis on enhancing effective features
and recovering high-frequency details. However, due to the lower level of blurring and the single type of
blur in the GOPRO dataset, noise and information sparsity in the event stream are less problematic, and the
image’s edge and high-frequency details are not significantly impacted. As a result, our method performs
similarly to DiffEvent on this dataset. However, in more realistic and complex blurring environments, our
method demonstrates superior performance and better detail recovery.

In Fig. 6, we visually present some qualitative results of our method on the GoPro dataset. It is evident
that image-based methods suffer from the loss of sharp edge information during the deblurring process,
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resulting in more blurred images. The main reason for this is that, as shown in [25–28], image-based
deblurring methods, limited by RGB images, do not capture the object’s motion trajectory during the
exposure time, leading to the loss of some temporal information. As a result, these methods fail to achieve
targeted deblurring. EFNET, on the other hand, incorporates event data and performs a good fusion of event
and image information, resulting in a better deblurring effect compared to image-based methods. However,
EFNET does not fully account for the high-frequency details captured in the event features or the impact
of redundant noise, leading to a lack of some details and textures in the output. In contrast, DNEFNET
addresses both the high-frequency details in the events and the effect of redundant noise, allowing it to better
restore the structural and textural details of the blurred image compared to other methods.

Figure 6: Visual comparison on GoPro

REBlur: In Table 2, we present the comparative results of deblurring experiments on the REBlur dataset,
where our method achieves a new state-of-the-art (SOTA) performance, outperforming the current diffevent
method in both PSNR and SSIM metrics. This improvement is attributed to our DTM module and RES-FFT-
based residual block, specifically designed for event data, which enable more precise capture of localized
motion trajectories and high-frequency features. In contrast, Diffevent adopts a global fusion strategy based
on diffusion models and Transformers, treating event image deblurring as a generative task. However, this
approach has limitations in local detail recovery, leading to ineffective utilization of local high-frequency
information in non-uniform blurring and subtle motion features.

Additionally, in Fig. 7, we visually demonstrate the deblurring effects of different methods under various
blurring conditions, where the blur intensity per frame is set based on pixel displacement, ranging from
0.5–5 pixels/frame and 5–20 pixels/frame. In the two sets of comparative experiments simulating low-speed
and medium-speed motion, while all methods generally achieve deblurring, they struggle to recover fine
details such as text, image edges, and other intricate structures. In contrast, in the 20–50 pixels/frame fast-
motion simulation, our method produces deblurred images that are noticeably more consistent with the
ground truth clear images. The superior visual quality compared to other methods further demonstrates
that our approach can effectively restore local high-frequency details and achieve exceptional deblurring
performance, even under extreme blurring conditions.
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Table 2: Comparative results on motion deblurring on the REBlur dataset

Method PSNR ↑ SSIM ↑
BANET 31.16 0.925

Restormer 34.82 0.955
SRN 35.10 0.961

HINET 35.58 0.965
NAFNet 36.00 0.964
HINET∗ 37.68 0.973
EFNET∗ 38.12 0.973

DiffEvent∗ 38.23 0.974
Ours 38.27 0.975

Note: ∗ denotes event-based approach,
bolded meanings denote best results.

Figure 7: Visual comparison on REBlur

4.4 Hyperparametric Analysis
In Fig. 7, we visualize the deblurring effect of our method under different blurring levels. In Fig. 8,

we further compare and analyze the quantitative deblurring performance of DNEFNET and EFNET under
various blurring conditions. As shown in the line graph, DNEFNET and EFNET exhibit similar deblurring
effects under low blurring conditions. However, as the blurring level increases, the PSNR of EFNET decreases
significantly, while DNEFNET maintains high PSNR and SSIM, indicating that it is able to effectively recover
clear images even in complex, non-uniform blurring environments. DNEFNET reduces blur residue and
enhances image quality in extreme blurring situations by accurately capturing localized motion trajectories
and enhancing high-frequency details. In contrast, EFNET only performs a simple fusion of event and image
features, failing to fully utilize the temporal dynamics of the event data. This limitation makes it difficult to
effectively remove blur in highly blurred situations, and the lack of a mechanism to recover high-frequency
information ultimately leads to a loss of clarity and detail. Therefore, under the high blur condition of the
REBlur dataset, DNEFNET demonstrates stronger deblurring capabilities.
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Figure 8: Indicator values for different levels of fuzziness under the REBlur dataset

4.5 Ablation Experiment
On the REBlur dataset, we conducted ablation experiments to investigate the contribution of different

modules in the network. Table 3 and Fig. 9 show the results of our defuzzification experiments on the REBlur
dataset. First, as shown in Table 3, DTM significantly improves the deblurring effect compared to the original
baseline model, with a significant increase in the SSIM value despite a slight decrease in the PSNR value,
indicating that the denoising improvement effectively enhances the structural consistency of the image,
especially in terms of detail retention. In Fig. 9, we compare the DTM-processed event data with the original
event data, and it can be clearly seen that the DTM-processed event information has clearer contours and
restores more texture details. This shows that DTM effectively solves the problem of sparse and ineffective
representation of valid information in the event stream and, at the same time, improves the expression ability
of event features on the time scale. Through subjective performance and qualitative analysis, we verify the
effectiveness of the DTM module. Second, the introduction of the RES-FFT residual block shifts the feature
processing from the spatial domain to the frequency domain, thus further enhancing the high-frequency
details in the fused features. This strategy effectively enhances the model’s ability to recover motion edges
and detailed textures and improves the reconstruction of high-frequency information. In terms of PSNR
and SSIM metrics, the incorporation of RES-FFT improves them by 0.09 dB and 0.3%, respectively. This
further demonstrates the advantage of the RES-FFT-based residual block over the traditional U-Net network
architecture in processing event-image fusion data and improves the deblurring performance of the model.

Table 3: Quantitative study of different components in the method on the REBlur dataset

Method PSNR ↑ SSIM ↑
Base 38.12 0.9730

Base+DTM 38.06 0.9753
Base+RES-FFT 38.21 0.9755

Ours 38.27 0.9758

Note: Bolded meanings denote best results.
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Figure 9: Visual comparison of ablation experiments under the REBlur dataset

5 Conclusion
In this study, we proposed a novel deblurring network architecture, DNEFNET, which successfully

addressed the issues of effective information sparsity and limited utilization of high-frequency features in
event-based deblurring tasks. To this end, first, we designed the DTM module, which effectively mitigated
the problems of redundant noise and information sparsity in the event stream, significantly enhancing
the representation of event features. Second, we introduced a residual block based on RES-FFT, which
improved the model’s ability to recover edge information and reconstruct high-frequency details, thereby
compensating for the shortcomings of traditional spatial-domain methods in high-frequency information
extraction. This provided an innovative solution for the event-based deblurring task.

Future research can further optimize the proposed method in several directions. Since event data
captures the trajectory of a moving object during exposure, the high-frequency features it contains can be
leveraged to estimate the object’s motion direction and the blurred regions in the image. This feature is not
only essential for deblurring tasks but also has wide applications in target tracking. By utilizing the motion
trajectory information from event data, the motion trends of the target can be effectively predicted, thus
improving the accuracy and robustness of target tracking. Therefore, an important direction for our future
research will be to explore how to fully exploit the high-frequency information in event data to enhance the
cooperative performance of target tracking and deblurring tasks.
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