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ABSTRACT: Ensuring digital media security through robust image watermarking is essential to prevent unauthorized
distribution, tampering, and copyright infringement. This study introduces a novel hybrid watermarking framework
that integrates Discrete Wavelet Transform (DWT), Redundant Discrete Wavelet Transform (RDWT), and Möbius
Transformations (MT), with optimization of transformation parameters achieved via a Genetic Algorithm (GA). By
combining frequency and spatial domain techniques, the proposed method significantly enhances both the imper-
ceptibility and robustness of watermark embedding. The approach leverages DWT and RDWT for multi-resolution
decomposition, enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks.
RDWT, in particular, offers shift-invariance, which improves performance under geometric transformations. Möbius
transformations are employed for spatial manipulation, providing conformal mapping and spatial dispersion that
fortify watermark resilience against rotation, scaling, and translation. The GA dynamically optimizes the Möbius
parameters, selecting configurations that maximize robustness metrics such as Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), Bit Error Rate (BER), and Normalized Cross-Correlation (NCC). Extensive
experiments conducted on medical and standard benchmark images demonstrate the efficacy of the proposed RDWT-
MT scheme. Results show that PSNR exceeds 68 dB, SSIM approaches 1.0, and BER remains at 0.0000, indicating
excellent imperceptibility and perfect watermark recovery. Moreover, the method exhibits exceptional resilience to a
wide range of image processing attacks, including Gaussian noise, JPEG compression, histogram equalization, and
cropping, achieving NCC values close to or equal to 1.0. Comparative evaluations with state-of-the-art watermarking
techniques highlight the superiority of the proposed method in terms of robustness, fidelity, and computational
efficiency. The hybrid framework ensures secure, adaptive watermark embedding, making it highly suitable for
applications in digital rights management, content authentication, and medical image protection. The integration
of spatial and frequency domain features with evolutionary optimization presents a promising direction for future
watermarking technologies.

KEYWORDS: Digital watermarking; Möbius transforms; discrete wavelet transform; redundant discrete wavelet
transform; genetic algorithm; robustness; geometric attacks

1 Introduction
The rapid proliferation of digital content across the internet has increased concerns over copyright

protection and content authenticity. Digital watermarking serves as a crucial technique for embedding
hidden information within digital media, enabling content authentication and protection against unau-
thorized alterations [1,2]. Achieving an optimal balance between imperceptibility and robustness remains
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a key challenge, as watermarks must be resilient to attacks such as noise, compression, and geometric
transformations while remaining visually unobtrusive [3,4].

Frequency-domain transformations, particularly the DWT and its variant, the RDWT, have been widely
adopted in watermarking due to their multi-resolution capabilities and robustness against attacks [5,6]. The
DWT has been widely adopted for its ability to maintain image fidelity while embedding watermarks in
significant frequency components. However, the RDWT offers additional advantages by providing better
handling of geometric attacks due to its multiresolution analysis [6–8].

However, these methods struggle with geometric distortions, which can degrade watermark retrieval
accuracy. To address this limitation, Möbius Transformations (MT) have been explored for their ability to
manipulate spatial structures effectively, enhancing watermark resilience against distortions [9]. Addition-
ally, GA provide an efficient approach for optimizing Möbius parameters, ensuring an optimal trade-off
between imperceptibility and robustness [10]. Our approach uses the DWT and RDWT to embed watermarks
in midfrequency subbands, thus minimizing alterations to critical low-frequency components. This ensures
that diagnostic quality is preserved while ensuring robustness against attacks. Additionally, the MT allows
for dispersed watermark embedding, further reducing visible artifacts in the image.

Robustness against geometric transformations such as rotation, scaling, and translation (RST) is a
critical challenge in digital watermarking. In this section, we analyze the invariance properties of DWT,
RDWT and MT and compare them with moment-based watermarking techniques such as Polar Harmonic
Transforms (PHT) and zero-watermarking schemes. This paper introduces a hybrid watermarking approach
that integrates DWT and RDWT with Möbius Transformations, optimized using GA. The key contributions
of this work are:

• A novel combination of DWT/RDWT with Möbius transformations, enabling enhanced resistance to
geometric distortions.

• GA-based optimization of Möbius parameters, ensuring an adaptive and efficient embedding process.
• Comprehensive evaluation under various attacks, demonstrating superior robustness and impercepti-

bility, with PSNR exceeding 68 dB, SSIM approaching 1.0, and BER maintained at 0.0000.

Experimental results confirm that the RDWT-MT scheme outperforms conventional DWT-based
watermarking methods in resilience against attacks such as Gaussian noise, cropping, and JPEG compression.
This research contributes to the advancement of secure and efficient digital watermarking techniques.

2 Related Work
Hybrid domain techniques in digital watermarking have been extensively studied, focusing on enhanc-

ing robustness and imperceptibility. Several approaches combine frequency-domain transformations with
optimization techniques, achieving varying degrees of success against attacks. Table 1 summarizes key studies
related to DWT, RDWT, and Möbius transform-based watermarking.

Table 1: Summary of related work in digital watermarking

Study Methodology Key findings Limitations
Rasti et al. [11] DWT + Chirp Z Transform

+ QR Decomposition (QR)
+ Singular Value

Decomposition (SVD)

Robust against noise
and filtering; lacks
resilience to JPEG

compression

Limited embedding
capacity, reduced

effectiveness against
cropping and scaling

(Continued)
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Table 1 (continued)

Study Methodology Key findings Limitations
Singh et al. [12] DWT + SVD + QR Code Good imperceptibility,

resistant to Gaussian
noise

Requires additional
security measures, lacks
hybrid attack evaluation

Najafi and
Loukhaoukha [13]

Sharp Frequency Localized
Contourlet Transform

(SFLCT) + SVD

High PSNR, robust
against sharpening

and JPEG
compression

Lacks security features,
limited embedding

capacity

Zhou et al. [14] Average Pixel
Difference-based Coefficient
Block Transform (APDCBT)

+ DWT + SVD

High fidelity, robust
against attacks

Does not address
watermark security and
false-positive detection

Liu et al. [15] DWT + SVD +Hessenberg
Decomposition (HD) +
Fruit Fly Optimization

High PSNR, resilient
to multiple attacks

Struggles with hybrid
attacks, lacks detailed
embedding capacity

analysis

Begum
et al. [16]

DCT + DWT + SVD +
Arnold Encryption

High imperceptibility,
robust against

common attacks

Vulnerable to Gaussian
noise, scaling, and hybrid

attacks

Srivastava
et al. [17]

DWT + DCT + SVD +
Arnold Map

Strong
imperceptibility and

security

High computational
complexity, struggles
with hybrid attacks

Zeng et al. [18] Nonsubsampled Contourlet
Transform (NSCT) + SVD +

DWT +Human Visual
System (HVS)

Effective against
multiple attacks

Reduced resilience to
rotation, lacks detailed

embedding capacity

Souto Ferreira
et al. [19]

Möbius Transform for Image
Distortion Correction

Effective spatial
transformations for

geometric distortions

Not applied to
watermarking, lacks

robustness evaluation

Zhou et al. [20] Möbius Transform for Data
Augmentation in Deep

Learning

Enhances feature
learning in low-data

scenarios

Does not focus on
security or digital

watermarking
This Study DWT/RDWT +Möbius

Transform + GA
Optimization

High robustness,
imperceptibility, and
adaptability against

attacks

Computational
complexity due to GA

optimization

To strengthen our discussion, we have included recent advancements in watermarking techniques.
One notable study, “Robust watermarking method for securing color medical images using Slant-SVD-
QFT transforms and OTP encryption [21]”, presents a hybrid approach that enhances robustness against
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attacks while ensuring secure watermark embedding. This method integrates Slant transform, SVD, and
Quaternion Fourier Transform (QFT) alongside One-Time Pad (OTP) encryption, contributing to improved
imperceptibility and security. Our work differs by incorporating Möbius transformations with RDWT and
GA optimization, offering a unique balance between imperceptibility and robustness against geometric
distortions [22]. The wavelet transform is widely used in watermarking due to its multiresolution analysis
capability, but it exhibits limitations in geometric invariance:

• DWT: Lacks invariance to rotation and scaling due to its non-redundant structure. It suffers from shift
variance, which impacts watermark retrieval under geometric attacks.

• RDWT: Addresses the shift-variance issue of DWT by removing downsampling steps, making it more
resilient to small translations. However, it still lacks inherent resistance to rotation and scaling trans-
formations. The Redundant Wavelet Transform (RWT) has previously been used for enhanced signal
representation in video applications, emphasizing its potential for high-quality transformation [23].
AbdElHaleem et al. [24] proposed a hybrid watermarking method combining RDWT-SVD and particle
swarm optimization, which shares conceptual similarity with our GA-based optimization approach.

Despite significant progress, existing methods have limitations in handling geometric distortions,
hybrid attacks, and watermark security. Our approach addresses these issues by integrating Möbius trans-
formations with RDWT and optimizing parameters using GA. The proposed method ensures superior
robustness while maintaining imperceptibility. The integration of MT with RDWT and DWT offers sig-
nificant advantages for image watermarking, balancing imperceptibility and robustness without relying on
additional complex techniques. This approach demonstrates the potential of MT in advancing watermarking
technology and addressing existing limitations effectively.

This paper presents a hybrid watermarking framework that combines frequency and spatial domain
transformations with an optimization algorithm to achieve robust watermark embedding. The key scientific
contributions include:

• Innovative Hybrid Approach: Combining DWT, RDWT, and Möbius Transformations provides a unique
mechanism for embedding watermarks that enhances resilience against various distortions.

• Genetic Algorithm Optimization: Unlike conventional approaches, this study optimizes Möbius param-
eters dynamically, leading to improved robustness and adaptability.

• Comprehensive Attack Analysis: The proposed model is evaluated under different attack scenarios,
including noise, compression, and geometric distortions, demonstrating superior resistance.

• Improved Imperceptibility vs. Robustness Trade-off: By leveraging a combination of transform tech-
niques and optimization strategies, the method achieves high imperceptibility (PSNR > 68 dB) while
maintaining strong watermark extraction accuracy (NCC ≈ 1.0).

3 Theoretical Backgrounds
This section presents a succinct summary of the core techniques utilized in developing our proposed

methods: the DWT and the MT. These methodologies form the backbone of our watermarking approach,
with DWT facilitating multiresolution analysis and MT offering robust geometric transformations crucial
for enhancing both imperceptibility and robustness in digital watermarking applications. Our methodology
integrates MT with DWT and employs a GA for parameter optimization, aiming to achieve durable and
inconspicuous watermarking in digital images.
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3.1 Discrete Wavelet Transform (DWT)
The wavelet transform is widely used in watermarking due to its ability to analyze images in both the

spatial and frequency domains [25–27]. The DWT decomposes an image into four frequency subbands:
LL (approximate image), HL (horizontal edges), LH (vertical edges), and HH (diagonal details) [28–30].
Watermarks are typically embedded in DWT subbands, with low-frequency (LL) embedding ensuring better
imperceptibility due to larger coefficient values, while high-frequency (HH) embedding may impact visual
quality [31,32].

Watermark, often a logo or bit sequence, is embedded into the DWT subbands of a host image,
leveraging multi-resolution analysis to enhance robustness. LL subband embedding maintains image quality,
whereas HH subband embedding increases vulnerability to attacks. Fig. 1 illustrates the distribution of image
values across frequency subbands following Haar wavelet decomposition.

Figure 1: Illustrates the transformed values of an image following Haar DWT decomposition

The DWT is a key mathematical tool in image processing and watermarking, enabling multi-resolution
analysis by decomposing an image f (x, y) into four subbands: LL (approximation), HL (horizontal details),
LH (vertical details), and HH (diagonal details). These subbands capture different frequency components,
with LL preserving most of the image energy and HL, LH, and HH highlighting edge details.

Mathematically, the decomposition is defined as:

LL = 1√
2
( f (x , y) * ∅(x) ∗ ∅(y)) (1)

HL = 1√
2
( f (x , y) ∗ φ (x) ∗ ∅(y)) (2)

LH = 1√
2
( f (x , y) ∗ ∅(x) ∗ φ (y)) (3)

HH = 1√
2
( f (x , y) ∗ φ (x) ∗ φ (y)) (4)
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where ϕ(x) and φ(x) represent scaling (approximation) and wavelet (detail) functions, respectively. Fig. 1
illustrates the hierarchical decomposition of DWT, refining details in the LL subband across levels for efficient
feature extraction.

In watermarking, LL subband embedding ensures imperceptibility, while HL, LH, and HH subbands
are used for balancing robustness and visibility. Haar wavelet decomposition preserves spatial structure,
making DWT an effective choice for watermarking applications. However, DWT suffers from shift variance
due to downsampling, affecting robustness against geometric attacks. The RDWT overcomes this issue by
eliminating downsampling, making it shift-invariant and better suited for watermarking under distortions.

3.2 Redundant Discrete Wavelet Transform (RDWT)
The RDWT offers a shift-invariant property, addressing the shift variance problem inherent in DWT

schemes. Unlike DWT, RDWT eliminates the downsampling operation, providing an overcomplete rep-
resentation of frequency coefficients. This results in each subband retaining the same size as the original
image, enhancing robustness. The increased redundancy in the transformed domain contributes to more
effective watermark embedding. RDWT can be applied at multiple levels, although this paper uses a one-
level RDWT. The decomposition process is illustrated in Fig. 2a, with the results applied to the bridge image
shown in Fig. 2b.

Figure 2: One-Level RDWT Decomposition and Visualization. (a) One-level Redundant Discrete Wavelet Transform
(RDWT) decomposition of a grayscale image into four subbands: LL (approximation), HL (horizontal), LH (vertical),
and HH (diagonal). Unlike DWT, RDWT maintains the original image size across all subbands, enhancing robustness
by preserving spatial information. (b) Visual example of RDWT applied to a 512 × 512 bridge image, demonstrating
that all subbands (LL, LH, HL, HH) retain the exact dimensions (512 × 512 pixels), which facilitates shift-invariant
watermark embedding and extraction [33]

In image processing, DWT is commonly used because of its spatial–frequency localization properties,
which simplify data analysis while reducing computational complexity. However, DWT suffers from shift
variance, where even minor shifts in the image can lead to significant changes in wavelet coefficients
and inaccurate watermark extraction. The RDWT addresses this issue by providing shift invariance and
directionality, maintaining the same subband size as the original image does, unlike the DWT, where the
subband size decreases with the decomposition level [23]. The choice between DWT and RDWT significantly
impacts the robustness and imperceptibility of watermarking schemes. While DWT is widely used due
to its multi-resolution analysis capability, it suffers from down-sampling, which can lead to information
loss. In contrast, RDWT eliminates down-sampling, preserving all frequency components and improving
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watermark robustness. This section provides a mathematical comparison between DWT and RDWT and
demonstrates how RDWT enhances watermarking performance.

DWT decomposes an image into multiple frequency subbands using wavelet filters. However, it applies
down-sampling, leading to a loss of resolution. The decomposition of an image into approximation (low-
frequency) and detail (high-frequency) subbands is given by:

DWTl ow (n) = ∑
k

x (k) g (2n − k) (5)

DWThi gh (n) = ∑
k

x (k) h (2n − k) (6)

where g (n) and h (n) are the low-pass and high-pass wavelet filters, respectively. The factor 2n in down-
sampling reduces the number of coefficients, causing information loss that may affect watermark resilience.

RDWT overcomes the down-sampling issue by maintaining the original signal length at each decom-
position level. The RDWT equations are:

RDWTl ow (n) = ∑
k

x (k) g (n − k) (7)

RDWThi gh (n) = ∑
k

x (k) h (n − k) (8)

here, RDWT preserves spatial resolution and redundancy, ensuring no loss of frequency components. This
improves watermark robustness, as the watermark remains embedded in all transformed subbands, making
extraction more reliable.

3.3 Möbius Transformations (MT)
Möbius transformations, also known as linear fractional transformations, are fundamental in complex

analysis, projective geometry, and number theory [34]. They are defined as Eq. (9):

f (z) = az + b
cz + d

where ad − bc ≠ 0 (9)

where a, b, c, and d are complex numbers, ensuring invertibility.
These transformations are bijective on the extended complex plane (C∪{∞}) and conformal, meaning

they preserve angles and local shapes. A key property is their ability to map circles and lines to other
circles and lines, maintaining geometric structure [35]. Möbius transformations form a mathematical
group under composition, meaning the combination of two transformations results in another Möbius
transformation [36].

They can also be represented as 2 × 2 matrices, simplifying composition through matrix multiplication:
with matrix multiplication:

M = ( a b
c d ) (10)

Two matrices represent the same Möbius transformation if they differ by a nonzero scalar multiple [37].
Special cases include translations, scalings, rotations, and inversions, making Möbius transformations widely
applicable in complex analysis, physics, and computer graphics [9], as shown in Fig. 3.
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Figure 3: Effects of Möbius transformations consisting of (a) Identity transform (No change); (b) Scaling; (c) Rotation;
(d) Inversion; (e) Shearing; (f) Translation

To optimize these parameters, we employ a GA, which follows these steps. First, an initial population of
Möbius parameters (a, b, c, d) is generated randomly. Then, each individual is assessed based on robustness
metrics such as Normalized Cross-Correlation (NCC), Bit Error Rate (BER), Structural Similarity Index
(SSIM), and Peak Signal-to-Noise Ratio (PSNR). The top-performing parameter sets are retained through a
selection process, and variations are introduced via crossover and mutation to prevent convergence to local
optima. The final parameters are chosen when the fitness function stabilizes. These optimized parameters
dynamically adapt to different image characteristics, ensuring optimal embedding and resistance to attacks.

The inverse of a Möbius transformation, Eq. (1), is given in Eq. (9):

f −1 (w) = dw − b
−cw + a

(11)

Möbius transformations are widely used across complex analysis, geometry, and computer science. In
complex analysis, they preserve angles and shapes through conformal mapping. Geometrically, they model
circles and lines in Euclidean and hyperbolic planes. In computer graphics and image processing, they enable
geometric transformations, texture mapping, and image warping. Additionally, in physics, they play a role
in special relativity and quantum mechanics, describing spacetime transformations.
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4 Methodology
Our digital watermarking approach combines the DWT and RDWT with the Möbius transform to

increase both the resilience and imperceptibility of the watermark. To refine this process, we utilize a GA
to identify the most effective parameters for the Möbius transform. The schemes comprise three key stages:
embedding the watermark, extracting the watermark, and optimizing the Möbius transform parameters.

The MT provides a unique spatial manipulation technique that enhances the robustness of watermark-
ing schemes. Key properties include:

• Angle preservation: Möbius transformations maintain the conformal structure of an image, making
them effective in resisting distortions.

• Nonlinear mapping: The ability to redistribute pixel intensity nonlinearly allows for improved resistance
to geometric distortions.

• Flexible parameter tuning: GA optimization helps fine-tune Möbius parameters, improving watermark
resilience against attacks. Möbius transformations provide several advantages in enhancing watermark
robustness. First, they offer resistance to cropping by redistributing watermark pixels nonlinearly
across the image, preventing complete removal by partial cropping. Additionally, their angle-preserving
and scale-adaptive properties ensure that the watermark remains extractable even under significant
rotation and scaling transformations. Furthermore, when combined with an RDWT, Möbius transfor-
mations enhance robustness against JPEG compression by embedding the watermark across multiple
frequency bands.

4.1 Embedding Algorithm
In the initial stage of watermark embedding, the process begins with the decomposition of the original

image via the DWT and RDWT. This decomposition results in four frequency subbands: LL, LH, HL, and
HH. The LL subband, which is notable for preserving significant image details at a lower resolution, is selected
as the target for watermark embedding. Fig. 4 and Algorithm 1 illustrate the sequence of these operations.

Figure 4: Watermark Preparation (a) Original image; (b) LL subband; (c) Original watermark image; (d) Resized
watermark
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Algorithm 1: The proposed watermark embedding
Apply the transform (DWT for DWT-MT scheme and RDWT for RDWT-MT scheme), onto the cover image
to decompose it into its four subbands, which are LL, LH, HL and HH.
1. DWT/RDWT (I) = (LL, (LH, HL, HH)) #The original image I is divided into these subbands through
the application of the DWT and RDWT.
2. Wgra y = grayscal e(W) #The watermark image W is converted to grayscale.
3. Wresized = resize(Wgra y , (m, n)) #The watermark image W is resized to align with the dimensions of
the LL subband.
4. A = MT T #Apply MT to LL subband.
5. LĹ (x́ , ý) = LL (x́ , ý) + αWresized(x , y) #The transformed watermark is embedded into the LL
subband using an embedding strength α
6. AW = IDWT/IRDWT(LĹ, (LH, HL, HH)) #The watermarked image is reconstructed by performing
the inverse DWT and inverse RDWT on the modified subband
7. End

Step 1: DWT/RDWT Decomposition
The DWT/RDWT is utilized to partition the original image into four distinct subbands: LL, LH, HL, and

HH, as outlined in Eqs. (12) and (13). Fig. 5 visually depicts this decomposition process, where the original
image I is divided into these subbands through the application of the DWT and RDWT:

DWT (I)= (LL, (LH, HL, HH)) (12)
RDWT (I)= (LL, (LH, HL, HH)) (13)

LL refers to the low-low subband, LH denotes the low-high subband, HL represents the high-low
subband, and HH signifies the high-high subband.

Step 2: Watermark Preparation
The watermark image W is converted to grayscale and resized to align with the dimensions of the LL

subband via Eqs. (14) and (15), as illustrated in Fig. 6:

Wgra y = grayscal e(W) (14)
Wresized = resize(Wgra y , (m, n)) (15)

where m and n denote the dimensions of the LL subband.
Step 3: Möbius Transform Application
Utilize the Möbius transform on the watermark coordinates (x, y) with the parameters (a, b, c, d),

adjusted for enhanced resilience and minimal visual alteration. The Möbius transform formulas are defined
in Eqs. (16)–(18).

Mobius (x , y, a, b, c, d) = (ax + b
cx + d

∣ay + b
c y + d

) (16)

where a, b, c, and d are the Möbius transform parameters. Let the transformed coordinates be (x́, ý):

x́ = ax + b
cx + d

, ý = ay + b
c y + d

(17)
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Figure 5: Illustrates the schematic outlining the watermark embedding process

The MT is applied to the LL subband as follows:

A = MT T (18)

Step 4: Embedding
The transformed watermark is embedded into the LL subband using an embedding strength α. Each

pixel (x, y) in the watermark is defined in Eq. (19):

LĹ (x́ , ý) = LL (x́ , ý) + αWresized(x , y) (19)

where LĹ denotes the modified LL subband after embedding the watermark, α represents the scaling factor
(α = 0.05 for watermark embedding into the LL subband).
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Figure 6: Diagram of the watermark extracting process

Step 5: Inverse the DWT and RDWT
The watermarked image is reconstructed by performing the inverse DWT and inverse RDWT on the

modified subband, following the formulation in Eqs. (20)–(23):

Í = IDWT(LĹ, (LH, HL, HH)) (20)
Í = IRDWT(LĹ, (LH, HL, HH)) (21)
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where Í is the watermarked image.
Finally, the inverse DWT is applied via the DWT-modified coefficients to obtain the watermarked image

AW.

AW = DWT−1 (22)

For RDWT-MT, the inverse RDWT is applied via RDWT-modified coefficients to obtain the water-
marked image AW.

AW = RDWT−1 (23)

The Möbius Transform Tensor (MTT) plays a crucial role in spatially modifying the LL subband before
embedding the watermark. By applying the Möbius transformation, the LL subband undergoes a controlled
distortion that enhances the robustness of the watermark against geometric attacks. The transformation
parameters (a, b, c, d) govern the mapping function, ensuring that the watermark information is spread
efficiently across the image. The revised manuscript now includes a detailed discussion on how the MTT
is derived from Möbius coefficients, how it interacts with the LL subband, and how it affects watermark
embedding and extraction.

4.2 Watermark Extraction
The process of watermark extraction involves recovering the embedded watermark from the water-

marked image, following the inverse procedure depicted in Fig. 6 and Algorithm 2.

Algorithm 2: The proposed watermark extraction
Apply (DWT for DWT-MT scheme or RDWT for RDWT-MT scheme) on the watermarked image
A ∗ w (possibly distorted) to decompose it into four subbands LL, LH, HL, HH.
1. DWT (watermarkingimage) = (LLW , (LHW , HLW , HHW)) #Apply (DWT for DWT-MT scheme or
RDWT for RDWT-MT scheme) on the watermarked image A ∗w (possibly distorted) to decompose it into
four subbands LL, LH, HL, HH
2. A∗w = MT−1∗T #Perform MT−1 to the LL subband
3. For each pixel (i, j) in I′_W do

4. Watermark(W∗) = LLW − LLO

α
#This difference is then divided by the embedding strength (α) to

extract the watermark.
5. End For
6. Return W′
7. End

Step 1: DWT decomposition
The DWT for the DWT-MT scheme or RDWT for the RDWT-MT scheme is applied to the watermarked

image A ∗ w (possibly distorted) to decompose it into four subbands, LL, LH, HL, and HH, as defined
in Eq. (24):

DWT (watermarking image) = (LLW , (LHW , HLW , HHW)) (24)
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Step 2: Inverse Möbius Transform
Utilize the inverse Möbius transform on the LL subband to recover the original watermark positions.

This involves applying the inverse Möbius transform to the coordinates (x, y) of the watermark image, as
described in Eqs. (25) and (26):

(x́ , ý) = (dx − b
a − cx

, d y − b
a − c y

) (25)

MT−1 is performed on the LL subband as follows:

A∗w = MT−1∗T (26)

Step 3: Watermark Extraction
The disparity between the watermarked LL subband and the original LL subband is calculated. This

difference is then divided by the embedding strength (α) to extract the watermark, as depicted in Eq. (27):

Watermark(W∗) = LLW − LLO

α
(27)

where W* is the extracted watermark from the LL subband, LLW denotes the LL subband of the watermarked
image, and LLO represents the LL subband of the original image. The parameter α indicates the embedding
strength utilized during the watermarking process.

Alpha (α) is a scaling factor that controls the intensity or strength of the watermark embedded into
the host image. A higher value of alpha increases the visibility of the watermark but may also increase the
distortion in the host image. Conversely, a lower alpha value keeps the watermark less visible, reducing the
risk of noticeable distortion but possibly making the watermark more susceptible to removal or attacks.
The value of alpha is chosen based on a combination of experimental results, the specific requirements of
the application, and a balance between the visibility of the watermark (imperceptibility) and its resilience
to attacks (robustness). Typically, this involves testing different values, using optimization techniques, and
assessing the resulting image quality and watermark robustness.

4.3 Optimization Procedure Employing the GA
The GA optimizes Möbius transform parameters for watermark embedding and extraction. The process

follows these steps, as shown in Fig. 7:

1. Initialization: Generate an initial population of Möbius transform parameters (a, b, c, d).
2. Fitness Evaluation: Assess individuals based on SSIM, Mean Squared Error (MSE), BER, and NCC,

measuring watermark extraction accuracy.
3. Selection: Choose high-fitness candidates for reproduction.
4. Crossover: Combine selected individuals to create new solutions.
5. Mutation: Introduce variations to prevent local optima.
6. Replacement: Retain the best candidates while introducing new ones.
7. Termination: Stop when a fitness threshold is met or after a fixed number of generations.

This iterative process ensures optimal Möbius transform parameters, enhancing watermark robustness
and imperceptibility Algorithm 3.
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Figure 7: Diagram of the watermark-extracting process
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Algorithm 3: Genetic optimization of Möbius transform parameters
Input: Population size N, Generations G, Crossover rate CR, Mutation rate MR
Output: Optimized Möbius parameters P*
1. Begin
2. P_0 = Initialize_Population(N) #Initialize population P_0
3. For g = 1 to G do #Iterate through generations
4. For each p in P_g do
5. F(p) = Evaluate_Fitness(p) #Evaluate fitness F for each individual p
6. End For
7. P′_g = Select_Parents(P_g, F) #Select parents based on fitness
8. O_g = Crossover(P′_g, CR) #Generate offspring via crossover
9. O′_g =Mutate(O_g, MR) #Apply mutation to offspring
10. P_{g + 1} = Combine(O′_g, P_g) #Form new population
11. If Convergence_Criterion(P_{g + 1}) then
12. Break #Check for convergence
13. End If
14. End For
15. P* = Best_Solution(P_{g + 1}) #Extract the best solution P*
16. Return P*
17. End

The reversibility of the proposed watermarking algorithm is ensured by the properties of DWT/RDWT
and Möbius transformations. Since DWT/RDWT is inherently reversible, the original image can be recon-
structed from its wavelet coefficients, provided no data loss occurs. Likewise, the bijective nature of the
Möbius transform enables accurate mapping between transformed and original coordinates when parame-
ters are correctly applied. Practical reversibility depends on precise parameter application and minimal data
loss during embedding. It is verified by PSNR, SSIM, BER, and visual inspection. If the extracted watermark
matches the original without degradation, the algorithm is considered effectively reversible.

The reversibility is quantitatively assessed using PSNR and SSIM metrics. Specifically, the PSNR
values for the watermarked images are high (e.g., 68+ dB), and SSIM values are near 1.0, suggesting
that the watermarking process introduces minimal distortion and preserves the structural integrity of the
original image.

For example, the PSNR values in Table 2 of your paper, where PSNR values consistently exceed 68 dB,
and SSIM values approach 1.0, indicate that the watermarked images retain nearly identical visual quality to
the original images, confirming the reversibility of your method.

Table 2: Please Imperceptibility results

Host
images

Watermark
size

DWT-MT RDWT-MT

PSNR SSIM MSE NPCR BER PSNR SSIM MSE NPCR BER

X-ray 1
32 × 32 68.0529 0.9998 0.0000 65.56 0.0000 70.0012 0.9999 0.0000 66.21 0.0000
64 × 64 68.2365 0.9998 0.0000 65.92 0.0000 69.2546 0.9999 0.0000 66.11 0.0000

256 × 256 inf 1.0000 0.0000 69.55 0.0000 Inf 1.0000 0.0000 69.99 0.0000

(Continued)
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Table 2 (continued)

Host
images

Watermark
size

DWT-MT RDWT-MT

PSNR SSIM MSE NPCR BER PSNR SSIM MSE NPCR BER

X-ray 2
32 × 32 60.1970 0.9984 0.0000 62.46 0.0000 62.3564 0.9999 0.0000 65.35 0.0000
64 × 64 63.2546 0.9998 0.0000 63.25 0.0000 64.2568 0.9999 0.0000 64.44 0.0000

256 × 256 inf 1.0000 0.0000 66.76 0.0000 Inf 1.0000 0.0000 68.32 0.0000

Baboon
32 × 32 61.8011 0.9981 0.0000 63.33 0.0000 63.2563 0.9988 0.0000 64.32 0.0000
64 × 64 63.3332 0.9998 0.0000 63.55 0.0000 64.2356 0.9999 0.0000 64.22 0.0000

256 × 256 inf 1.0000 0.0000 65.22 0.0000 Inf 1.0000 0.0000 66.33 0.0000

Pepper
32 × 32 62.6086 0.9995 0.0000 60.44 0.0000 63.2568 0.9997 0.0000 62.35 0.0000
64 × 64 63.5648 0.9998 0.0000 61.53 0.0000 64.3562 0.9999 0.0000 63.32 0.0000

256 × 256 inf 1.0000 0.0000 65.36 0.0000 Inf 1.0000 0.0000 66.38 0.0000

Airplane
32 × 32 60.1542 0.9998 0.0000 61.22 0.0000 61.3569 0.9999 0.0000 63.39 0.0000
64 × 64 62.2546 0.9998 0.0000 65.35 0.0000 63.3698 0.9999 0.0000 66.37 0.0000

256 × 256 inf 1.0000 0.0000 64.22 0.0000 Inf 1.0000 0.0000 65.44 0.0000

Girl 1
32 × 32 60.5555 0.9998 0.0000 61.11 0.0000 62.2536 0.9998 0.0000 63.35 0.0000
64 × 64 63.5565 0.9989 0.0000 65.32 0.0000 64.2135 0.9999 0.0000 66.33 0.0000

256 × 256 inf 1.0000 0.0000 64.29 0.0000 Inf 1.0000 0.0000 65.22 0.0000

Girl 2
32 × 32 61.2569 0.9996 0.0000 61.87 0.0000 62.3698 0.9997 0.0000 63.99 0.0000
64 × 64 64.5462 0.9998 0.0000 63.54 0.0000 65.2588 0.9999 0.0000 64.44 0.0000

256 × 256 inf 1.0000 0.0000 62.11 0.0000 Inf 1.0000 0.0000 63.66 0.0000

5 Experimental Results and Discussion
This section presents experimental results based on a collection of five sample images: two medical

images (X-rays, each with a size of 1024 × 1024 pixels) and three nonmedical images (baboon, Peppers,
Airplane, Girl1 and Girl2, each with a size of 512 × 512 pixels), as illustrated in Fig. 8a–h. The original
watermark image employed is the University of Tehran logo, which is two sizes: 32 × 32 and 256 × 256 pixels,
as shown in Fig. 8. All medical images used in the experiments are authentic samples obtained from patients
and sourced from. The dataset includes a diverse collection of authentic medical cases spanning various
imaging modalities, such as MR images, CT scans, and X-rays. The nonmedical image samples are sourced
from the USC-SIPI image database, which is available for access at the following location [38].

5.1 Robustness Analysis
This section evaluates imperceptibility, robustness, security, and capacity, comparing our method with

existing approaches. Objective metrics such as PSNR, MSE, SSIM, BER, and NPCR quantify image quality
and watermark resilience

PSNR (Peak Signal-to-Noise Ratio) measures image fidelity, where values above 40 dB indicate high
quality [39]. The formula to compute the PSNR is given by Eq. (28):

PSNR = 10 × log10 (
M × N × 2552

∑M
i=1∑N

i=1[A(i , j) − Aw (i , j)]2
) (28)
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Figure 8: Sample of tested images: (a,b) X-ray; (c) Baboon; (d) Peppers; (e) Airplane; (f,g) Girls as host images (h)
University of Tehran logo as watermark

MSE (Mean Squared Error) quantifies pixel-level distortion, with lower values indicating better image
preservation [40]. The MSE is calculated via the formula depicted in Eq. (29):

MSE = 1
M × N ∑i

∑
j
(I (i , j) − J (i , j))2 (29)

SSIM (Structural Similarity Index) assesses perceptual similarity between the original and watermarked
images [41]. The formula for calculating the SSIM is as follows and is represented by Eq. (30):

SSIM = (2μAμAW + C1)(2σAAW + C2)
(μ2

A + μ2
AW
+ C1)(σ 2

A + σ 2
AW
+ C2)

(30)

BER (Bit Error Rate) evaluates extraction accuracy, with lower values indicating higher robustness [42].
The BER (bit error rate) formula, as denoted by Eq. (31), calculates the proportion of erroneous bits between
the extracted watermark and the original watermark:

BER = sum(A⊕AW)
M × N

× 100% (31)
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NPCR (Number of Pixels Change Rate) measures pixel modifications, with grayscale images typically
around 99.61% [43]. The NPCR is calculated via Eqs. (32) and (33):

NPCR =
M
∑
i=1

N
∑
j=1

D(i , j)
T

× 100% (32)

D (i , j) =
⎧⎪⎪⎨⎪⎪⎩

0, i f CI1 (i , j) = CI2(i , j)
1, i f CI1 (i , j) ≠ CI2(i , j)

(33)

5.2 Analysis of Visual Transparency
We evaluated the visual fidelity of our proposed methods across various image categories, employing

metrics including PSNR, SSIM, MSE, NPCR, and BER, as outlined in Table 2 and Fig. 9.

Figure 9: Showcases the following images: (a) X-ray (host image); (b) Watermark image; (c) Watermarked image; (d)
Extracted watermark

Table 2 compares the imperceptibility of digital watermarks embedded using DWT-MT and RDWT-
MT based on PSNR, SSIM, MSE, NPCR, and BER. RDWT-MT consistently achieves higher PSNR and
SSIM values, indicating better imperceptibility and image similarity. Both methods show MSE = 0.0000,
ensuring negligible distortion, and BER = 0.0000, confirming perfect watermark extraction. RDWT-MT
outperforms DWT-MT, particularly for larger watermark sizes, offering superior image quality preservation
and robustness.

Table 3 compares histogram similarity metrics (chi-square distance, intersection, Bhattacharyya dis-
tance, and correlation) for DWT-MT and RDWT-MT across different host images (X-ray 1, X-ray 2, Baboon,
Peppers) and watermark sizes (32 × 32, 64 × 64, 256 × 256).

RDWT-MT consistently outperforms DWT-MT, achieving lower chi-square and Bhattacharyya dis-
tances and higher correlation values, indicating better histogram similarity. This advantage is most evident
in smaller watermark sizes, while for larger sizes (256 × 256), both methods perform similarly, with RDWT-
MT slightly leading in certain metrics. Bolded results in Table 3 highlight RDWT-MT’s superiority in
maintaining histogram characteristics, ensuring more accurate and robust watermarking across different
image types.
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Table 3: Histogram similarity metrics such as the chi-square distance, intersection, Bhattacharyya distance, and
correlation

Host
images

Watermark
size

DWT-MT RDWT-MT

Chi-
square

distance

Correlation intersection Bhattacharyya
distance

Chi-
square

distance

Correlation intersection Bhattacharyya
distance

X-ray 1
32 × 32 0.00177 0.9997 6.9728 0.00509 0.00022 0.9999 6.97 0.00302
64 × 64 0.00155 0.9998 6.9755 0.00425 0.00044 0.9999 6.97 0.00254

256 × 256 0.0 1.0 6.9757 0.0 0.0 1.0 6.88 0.0

X-ray 2 32 × 32 2.38289 0.9998 12.4103 0.00089 1.25645 0.9999 5.32 0.00005
256 × 256 0.0 1.0 12.4113 0.0 0.0 1.0 5.55 0.0

Baboon
32 × 32 0.00738 0.9993 11.8534 0.00985 0.00546 0.9993 5.56 0.00564
64 × 64 0.00685 0.9995 11.5868 0.00045 0.00215 0.9995 5.56 0.00035

256 × 256 0.0 1.0 11.8750 0.0 0.0 1.0 5.36 0.0

Peppers
32 × 32 0.00013 0.9997 13.2407 0.00112 0.00004 0.9995 11.22 0.00012
64 × 64 0.00005 0.9995 13.2658 0.00225 0.00004 0.9991 10.36 0.00055

256 × 256 0.0 1.0 13.2488 1.05367 0.0 1.0 5.69 0.0

Note: Bold values indicate best performance.

Table 4 compares imperceptibility results for 32 × 32 watermarking across Baboon, Peppers, and X-ray
images, evaluating PSNR and SSIM for DWT-MT, RDWT-MT, and methods from related studies consistent
with earlier approaches [28,44–46] Bold values indicate the best results.

Table 4: Presents a comparison of the imperceptibility results with those of related studies, with a focus on a watermark
size of 32 × 32

Host
images

Our
(DWT-MT)

Our
(RDWT-

MT)

[47] [48] [49] [18] [50] [51] [52]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baboon 61.8011 0.9981 63.3589 0.9999 61.8001 0.9952 43.08970.9964 52.33 0.9922 51.23 0.9952 41.3954 0.9822 51.85 0.9966 59.654 0.9962

Pepper 62.6086 0.9995 63.3698 0.9999 58.9221 0.9899 43.05920.9875 55.33 0.9889 54.21 0.9955 49.07000.9911 54.99 0.9993 59.989 0.9978

X-ray 68.0529 0.9998 70.1145 0.9999 53.60560.9898 42.52350.9777 57.04 0.9972 56.11 0.9972 48.25460.9899 56.87 0.9995 55.645 0.9995

Note: Bold values indicate best performance.

Baboon Image: RDWT-MT achieves the highest PSNR (63.3589 dB) and SSIM (0.9999), outperforming
DWT-MT (61.8011 dB, 0.9981).

Peppers Image: RDWT-MT leads with PSNR (63.3698 dB) and SSIM (0.9999), surpassing DWT-MT
(62.6086 dB, 0.9995).

X-ray Image: RDWT-MT achieves PSNR (70.1145 dB) and SSIM (0.9999), outperforming DWT-MT
(68.0529 dB, 0.9998).

Overall, RDWT-MT consistently outperforms DWT-MT and other methods, ensuring superior imper-
ceptibility and structural similarity in all tested images.
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5.3 Robustness Analysis
An attack is any action that modifies the watermark or disrupts extraction, whether intentional

or accidental. Common attacks include noise addition, filtering, lossy compression (JPEG), geometric
transformations (translation, rotation, scaling, cropping), and analog-to-digital conversion.

In medical image watermarking, these attacks can impact interpretation and authentication. Our
evaluation against noise, filtering, geometric transformations, blurring, and hybrid attacks shows NC values
consistently above 1.0, ensuring robust watermark recovery (Table 5, Fig. 10).

Table 5: Robustness evaluation of the DWT-MT/RDWT-MT proposed methods

Method Host
images

Evolution
mea-
sure

Histogram
equal-
ization

Gaussian
noise

(0,
0.01)

Sharpening
(0.2)

Average
filtering

(3 × 1)

Cropping
(50%)

JPEG com-
pression

(30)

Salt &
Pepper
noise
(2%)

Poisson
noise

Scaling
(50%)

DWT-MT

X-ray 1

PSNR 38.2228 37.0512 42.9125 33.1524 42.6255 41.8463 35.9608 35.9228 37.9228
SSIM 0.8325 0.8111 0.9182 0.7723 0.8439 0.8722 0.8526 0.7125 0.8826
BER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000

X-ray 2

PSNR 36.9215 42.2699 37.3042 48.5853 38.3329 38.6120 37.0214 33.2546 36.7705
SSIM 0.8501 0.8649 0.8537 0.8860 0.8152 0.8367 0.8787 0.8881 0.8901
BER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Baboon

PSNR 36.4359 38.9227 39.0154 37.5140 35.0312 38.7245 39.3254 42.4359 39.4359
SSIM 0.8594 0.8409 0.8819 0.8602 0.8478 0.8504 0.8802 0.9994 0.8894
BER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Peppers

PSNR 33.7258 36.5252 35.9774 36.3545 34.5852 36.4582 34.5256 37.7222 35.7308
SSIM 0.8564 0.8562 0.8642 0.8546 0.8596 0.8643 0.8415 0.8555 0.8965
BER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

RDWT-MT

X-ray 1

PSNR 35.2659 35.2569 40.5569 30.0325 39.3698 38.3569 32.6598 39.1520 34.2569
SSIM 0.8632 0.8536 0.9536 0.8111 0.8936 0.9003 0.8923 0.8882 0.9012
BER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X-ray 2

PSNR 38.3699 41.5698 45.3698 40.2569 40.2569 41.1155 42.2228 43.1555 41.1598
SSIM 0.8889 0.8998 0.9123 0.9195 0.8555 0.8777 0.8999 0.9562 0.9222
BER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Baboon

PSNR 39.3569 41.1258 42.2225 41.1589 42.5289 42.2698 43.3336 48.2257 42.2587

SSIM 0.8912 0.8777 0.9125 0.9236 0.8936 0.9135 0.9025 0.9544 0.9144
BER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000 1.0000

Peppers

PSNR 39.3654 40.0025 39.9999 41.1177 40.0258 41.2569 40.2569 45.2546 39.9988
SSIM 0.8988 0.9022 0.9147 0.8977 0.8933 0.8922 0.8977 0.8444 0.9422
BER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Bold values indicate best performance.

Table 5 compares DWT-MT and RDWT-MT across X-ray 1, X-ray 2, Baboon, and Peppers images under
various distortions (histogram equalization, noise, sharpening, filtering, cropping, JPEG compression, and
scaling). Performance is assessed using PSNR, SSIM, BER, and NCC.
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Figure 10: Watermarked Images and the Extracted Watermark after Attacks, (a) original image; (b) salt and pepper
noise; (c) gaussian noise; (d) rotation (45); (e) scaling (0.5×); (f) brightness adjustment; (g) Extracted watermark after
each attack

X-ray 1: RDWT-MT achieves the highest PSNR (40.5569, Gaussian noise) and SSIM (0.9536, sharpen-
ing), ensuring better image quality and structural similarity. BER = 0.0000, NCC = 1.0000 indicate perfect
watermark recovery.

X-ray 2: RDWT-MT excels under JPEG compression, achieving PSNR (45.3698) and SSIM (0.9123),
demonstrating strong compression robustness.

Baboon: RDWT-MT achieves PSNR (43.3336) and SSIM (0.9236, average filtering), outperforming
DWT-MT in preserving image quality.

Peppers: Highest PSNR (41.1177) and SSIM (0.9147, sharpening) with RDWT-MT, confirming supe-
rior resilience.

Overall, bolded results in Table 5 highlight RDWT-MT’s superiority, ensuring robust watermarking
with better image quality and structural preservation.

Fig. 10 illustrates the visual outcomes of the proposed watermarking scheme when subjected to various
image processing attacks. It compares the appearance of watermarked images and their corresponding
extracted watermarks across different attack types. The figure demonstrates the robustness of the RDWT-MT
method, showing minimal visual degradation and high fidelity in watermark recovery, even under distortion
scenarios. This visual validation aligns with the quantitative metrics (e.g., PSNR, SSIM, BER, NCC) discussed
in the results section.

Table 6 compares the robustness of DWT-MT and RDWT-MT against various attacks using the NCC
metric, alongside results from other methods [18,44,47,53].

• No attack: Both methods achieve NCC = 1.0000, ensuring perfect watermark retrieval.
• Rotation (45○): RDWT-MT (NCC = 1.0000) outperforms DWT-MT (NCC = 0.9954), showing bet-

ter resilience.
• Gaussian noise (variance= 0.01): RDWT-MT (NCC = 1.0000) vs. DWT-MT (NCC = 0.9898), confirming

stronger noise resistance.
• Histogram equalization: RDWT-MT (NCC = 1.0000), demonstrating robustness where DWT-MT is

unavailable (N/A).
• Compression (factor = 50): Both methods achieve NCC = 1.0000, handling compression effectively.
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Table 6: Robustness comparison among DWT-MT and RDWT-MT based watermarking schemes

Type of attack [47] [44] [53] [18] Proposed
DWT-MT

Proposed
RDWT-MT

No attack 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Rotation (45) 0.9899 0.8150 0.9890 0.9954 0.9992 1.0000

Gussian noise (0.01) 0.9898 0.9774 0.9899 0.9810 0.9899 1.0000
Histogram equalization 0.9897 N/A 0.9899 N/A 0.9898 1.0000

Compression (50) 0.9897 1.0000 1.0000 0.9895 1.0000 1.0000

Note: Bold values indicate best performance.

Compared to other methods, RDWT-MT consistently achieves the highest NCC, proving superior
robustness against rotation, noise, and histogram modifications. To enhance security, AES encryption
(128-bit) is integrated, encrypting the watermark before embedding it into the LL subband of RDWT using
Möbius-based embedding. Upon extraction, decryption restores the original watermark, ensuring confiden-
tiality, resistance to collusion attacks, and protection against deep learning-based watermark removal, while
maintaining robust imperceptibility.

To validate the contribution of Möbius transformations, we compare watermark robustness with and
without Möbius Transformations under various attacks. The Table 7 presents the results of our experimen-
tal evaluations:

Table 7: Robustness comparison of watermarking with and without Möbius transformations

Attack type NCC (without MT) NCC (with MT) PSNR (dB) SSIM
Rotation (45○) 0.8150 1.0000 42.56 0.956
Gaussian Noise 0.9774 1.0000 40.33 0.953
Cropping (50%) 0.8900 1.0000 38.21 0.912

JPEG Compression 0.9954 1.0000 39.85 0.921

The Möbius transformation plays a critical role in enhancing watermark robustness by spatially redis-
tributing the watermark to withstand geometric and non-geometric attacks. Through GA-based parameter
optimization, the transform dynamically adapts to different image conditions, ensuring a high level of
imperceptibility and resilience. The experimental results validate that Möbius-transformed watermarking
outperforms conventional methods, particularly against geometric distortions, making it a strong candidate
for secure digital watermarking applications.

5.4 Complexity Test
The complexity test in image watermarking assesses how performance varies with image detail, texture,

and high-frequency components (Table 8). It evaluates robustness and efficiency by applying the water-
marking method to images of different complexities and measuring processing time, watermark quality, and
robustness. This analysis helps determine whether the method remains effective or degrades with increasing
image complexity, offering insights into its real-world applicability [54].
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Table 8: The time needed for embedding and extraction (in seconds)

Methods Image Watermark size Embedding
process

Extraction
process

Total time

Our study DWT-MT

X-ray 2
32 × 32 1.3869 1.2776 2.3485
64 × 64 1.0022 1.2761 2.2221

256 × 256 0.3439 1.2801 1.7893

X-ray 2
32 × 32 0.0722 0.0728 1.2235
64 × 64 0.0566 0.5466 1.2111

256 × 256 0.0248 0.1294 1.1254

Cameraman
32 × 32 0.4526 0.3524 1.1606
64 × 64 0.3698 0.3145 1.0569

256 × 256 0.2254 0.2546 1.5255

Baboon
32 × 32 0.0776 0.0743 1.2354
64 × 64 0.0555 0.0565 1.1589

256 × 256 0.0339 0.0713 1.5462

Peppers
32 × 32 0.4239 0.4272 1.5462
64 × 64 0.3258 0.3369 1.2255

256 × 256 0.2281 0.4224 1.2458

Our study RDWT-MT

X-ray 2
32 × 32 1.2345 1.1176 1.9658
64 × 64 1.0001 1.1161 1.8221

256 × 256 0.1589 1.2124 1.5593

X-ray 2
32 × 32 0.0562 0.0566 1.0135
64 × 64 0.0333 0.4468 1.1025

256 × 256 0.0158 0.1115 1.0078

Cameraman
32 × 32 0.2278 0.2254 1.0256
64 × 64 0.2298 0.2111 1.0059

256 × 256 0.1158 0.1533 1.3348

Baboon
32 × 32 0.0556 0.0693 1.1411
64 × 64 0.0369 0.2133 1.1159

256 × 256 0.0911 0.0533 1.3362

Peppers
32 × 32 0.2259 0.2692 1.3692
64 × 64 0.2118 0.2025 1.1511

256 × 256 0.1181 0.3324 1.1582

Wang et al. [45] Baboon 64 × 64 1.3332 1.3365 2.7705
Peppers 64 × 64 1.3035 1.2184 2.2102

Wang et al. [55] Cameraman 64 × 64 3.8826 2.7631 6.6457

Li et al. [56] Baboon 64 × 64 3.2156 2.6665 6.2153

Keshavarzian and
Aghagolzadeh [57]

Cameraman 32 × 32 3.2543 2.2222 4.3592
Baboon 32 × 32 1.2566 1.5656 2.4681

Note: Bold values indicate best performance.
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Table 8 highlights the most efficient embedding and extraction times in bold. RDWT-MT outperforms
DWT-MT in processing speed, achieving:

• X-ray 2 (256 × 256): 1.5593 s total (0.1589 s embedding, 1.2124 s extraction), compared to DWT-MT
(1.7893 s total).

• Cameraman (256 × 256): 1.3348 s total (0.1158 s embedding, 0.1533 s extraction).
• Peppers (256 × 256): 1.1582 s total (0.1181 s embedding, 0.3324 s extraction).

Other methods [44,54–57], have higher total times, often exceeding 2 s. This demonstrates that our
RDWT-MT method not only achieves better robustness but also significantly improves processing efficiency
compared to other methods.

Moment-based transforms such as Polar Harmonic Transforms (PHT) [58] and zero-watermarking
approaches [59] provide strong invariance to RST transformations but often require extensive compu-
tations. PHT represents images in a radial coordinate system, enhancing geometric robustness, while
zero-watermarking extracts invariant features instead of embedding the watermark directly. However, these
methods may introduce higher computational complexity and degrade perceptual quality. The hybrid
approach integrating RDWT, Möbius Transform, and GA optimization offers a more efficient and flexible
alternative by improving resistance to geometric distortions, balancing robustness and imperceptibility, and
dynamically optimizing transformation parameters for enhanced attack resilience. By leveraging wavelet
decomposition and Möbius-based spatial transformations, this approach ensures secure and adaptive
watermarking suitable for modern digital security challenges.

The computational efficiency of the proposed watermarking method, which integrates DWT/RDWT
with Möbius Transformations optimized by a GA, involves trade-offs between robustness and processing
time. While the embedding and extraction times for DWT-MT and RDWT-MT schemes increase with
image size, with embedding times around 1.78 s for DWT-MT and 1.56 s for RDWT-MT on 256 × 256
images, the GA optimization introduces additional computational complexity. For example, optimizing
Möbius transformation parameters with a population size of 50 and 100 generations takes approximately
3.6 s. Although these times are higher than traditional methods like DWT-based watermarking, which
typically require less than 0.3 s, the proposed method offers superior robustness against geometric distor-
tions. Future work could focus on enhancing efficiency through parallel computing, GPU acceleration, and
approximate computing techniques to balance performance with real-time applicability.

Recent advancements in deep learning have introduced watermarking methods based on Convolutional
Neural Networks (CNNs) and Generative Adversarial Networks (GANs), which leverage feature learning
to enhance robustness and imperceptibility [60]. While deep learning-based approaches adapt well to
various image distortions, they typically require large datasets for training and are computationally intensive,
making real-time implementation challenging. In contrast, our proposed method, which integrates Möbius
transformations and genetic optimization, achieves high robustness without the need for extensive training.
Our approach maintains strong robustness comparable to deep learning techniques while ensuring moderate
computational complexity, making it more practical for real-time applications. Unlike CNN or GAN-based
watermarking, which rely on extensive datasets and computationally expensive models, our method remains
efficient and adaptable. These findings emphasize the advantages of integrating Möbius transformations
and genetic algorithms in watermarking systems, particularly for resource-constrained scenarios where
training-based approaches may not be feasible.

In the analysis of watermarking techniques, several key metrics are used to evaluate performance
and robustness. This section examines these metrics—entropy, NPCR, UACI (unified average changing
intensity), and pixel correlation—to understand their implications for the watermarking process.
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• Entropy measures the amount of information or randomness in an image. In watermarking, entropy
values for the watermark and the extracted image should be comparable to ensure that the watermarking
process does not significantly alter the information content of the image. High entropy values indicate
that the watermark is well integrated into the image, preserving its informational characteristics

• The NPCR quantifies the proportion of pixels that change between the original and watermarked images.
A low NPCR value indicates minimal pixel changes, reflecting that the watermarking process has a subtle
impact on the image. This is desirable, as it suggests that the watermark is less likely to be detectable or
to significantly degrade the quality of the original image [50].

• The UACI measures the average change in intensity values between the original and watermarked
images. Like the NPCR, a low UACI value suggests that the watermarking process introduces minimal
intensity changes, which helps maintain the visual quality of the image [51].

• Pixel correlation assesses the similarity between the original and watermarked images. High pixel
correlation values indicate that the watermarked image closely resembles the original image, suggesting
that the watermarking process does not significantly alter the image’s appearance [52].

A well-performing watermarking method should exhibit high entropy for both the watermark and the
extracted image, low NPCR and UACI values, and high pixel correlation. These metrics collectively ensure
that the watermarking process preserves the image quality and information content while embedding the
watermark effectively, as shown in Table 9.

Table 9: NPCR, UACI, entropy and pixel correlation for different image and watermark sizes

Image Watermark
size

NPCR UACI Entropy
(Water-
mark)

Entropy (Extract) Pixel
corre-
lation

DWT-MT

X-ray 1
32 × 32 0.0022 0.0002 6.6568 6.6985 0.9998
64 × 64 0.0042 0.0003 6.6222 6.6111 0.9997

256 × 256 0.0051 0.0007 6.5642 6.3258 0.9950

X-ray 2
32 × 32 0.0088 0.0003 6.3568 6.2548 0.9902
64 × 64 0.0087 0.0001 6.2586 6.3054 0.9912

256 × 256 0.0019 0.0007 6.3365 6.7254 0.9975

Cameraman
32 × 32 0.0002 0.0001 7.6846 7.6846 0.9998
64 × 64 0.0003 0.0002 7.6589 7.6245 0.9997

256 × 256 0.0001 0.0008 6.6654 6.3584 0.9979

Baboon
32 × 32 0.0006 0.0003 6.3598 6.3214 0.9980
64 × 64 0.0007 0.0004 6.2597 6.3258 0.9985

256 × 256 0.0018 0.0005 6.3584 6.3215 0.9938

Peppers
32 × 32 0.0021 0.0003 6.2548 6.1458 0.9982
64 × 64 0.0011 0.0002 6.2569 6.2589 0.9985

256 × 256 0.0055 0.0014 7.3584 7.3598 0.9918

(Continued)
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Table 9 (continued)

Image Watermark
size

NPCR UACI Entropy
(Water-
mark)

Entropy (Extract) Pixel
corre-
lation

RDWT-MT

X-ray 1
32 × 32 0.0012 0.0001 5.5256 5.5698 0.9999
64 × 64 0.0014 0.0002 5.5568 5.5723 0.9999

256 × 256 0.0015 0.0004 5.5782 5.5788 0.9999

X-ray 2
32 × 32 0.0077 0.0002 5.6698 6.5895 0.9985
64 × 64 0.0081 0.0003 5.6726 6.5932 0.9980

256 × 256 0.0015 0.0005 5.6832 6.5955 0.9977

Cameraman
32 × 32 0.0001 0.0000 6.6589 6.3698 0.9998
64 × 64 0.0002 0.0001 6.6852 6.4852 0.9997

256 × 256 0.0001 0.0005 6.5698 6.2255 0.9996

Baboon
32 × 32 0.0004 0.0002 5.6983 5.6985 0.9988
64 × 64 0.0005 0.0003 5.9683 5.7895 0.9985

256 × 256 0.0006 0.0005 5.9988 5.8887 0.9984

Peppers
32 × 32 0.0012 0.0002 5.5599 5.6698 0.9987
64 × 64 0.0022 0.0003 5.6989 5.6892 0.9985

256 × 256 0.0015 0.0008 5.7569 5.7892 0.9980

Note: Bold values indicate best performance.

Table 9 highlights the best results for NPCR, NACI, entropy, and pixel correlation across different
watermarking schemes and image sizes. RDWT-MT demonstrates superior robustness with the lowest
NPCR values (e.g., 0.0012 for X-ray 1, 32× 32 watermark) and higher pixel correlation, while DWT-MT excels
in information preservation, achieving the highest entropy (6.5642 for watermark, 6.3258 for extraction).
Compared to other methods, RDWT-MT consistently provides better robustness, whereas DWT-MT offers
superior pixel similarity, showcasing their complementary strengths. However, real-world implementation
presents challenges such as computational overhead, memory requirements, scalability, hardware con-
straints, and real-time processing limitations. To address these, parallel computing and GPU acceleration
can optimize computational performance, adaptive wavelet decomposition and data compression can reduce
memory usage, and deep learning-driven Möbius parameter selection can improve scalability. Additionally,
lightweight implementations for mobile and embedded systems can enhance feasibility, while approximate
computing and hardware acceleration can support real-time applications like video watermarking and
streaming. This hybrid approach effectively balances robustness, security, and efficiency, making it well-
suited for modern digital security challenges.

5.5 Sensitivity Analysis of Key Parameters in Watermarking Performance
The performance of the proposed watermarking scheme is influenced by various parameters, including

the embedding strength (α) and GA optimization settings such as population size, mutation rate, and
crossover rate. To evaluate their impact, we conducted a sensitivity analysis examining robustness and
imperceptibility. The embedding strength (α) controls the trade-off between robustness and image quality,
with experimental results showing that α = 0.05 provides an optimal balance, maintaining PSNR > 64 dB
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while ensuring high NCC values even under attacks. The GA population size affects convergence speed and
computational cost, where a population size of 50–100 was found to be optimal, yielding high NCC values
(≥0.9991) while maintaining reasonable execution time. Furthermore, the mutation rate and crossover rate
influence optimization efficiency, with results indicating that a mutation rate of 0.05–0.1 and a crossover
rate of 0.7–0.9 offer the best balance between convergence and solution diversity. These findings guide
parameter selection for robust and imperceptible watermarking, ensuring adaptability and efficiency in
practical applications, as shown in Tables 10 and 11.

Table 10: Effect of α on Robustness and Imperceptibility

α Value PSNR (dB) SSIM NCC (without Attack) NCC (after Attack)
0.01 72.5 0.9998 0.9953 0.7650
0.03 68.2 0.9995 0.9985 0.8752
0.05 64.8 0.9992 0.9997 0.9351
0.07 60.4 0.9989 0.9998 0.9672
0.10 57.2 0.9983 1.0000 0.9856

Table 11: Effect of GA population size on optimization efficiency

Population size Convergence time (s) Final NCC Execution time (s)
20 1.5 0.9754 2.8
50 2.1 0.9923 3.5
100 3.6 0.9991 5.2
200 7.8 1.0000 9.6

6 Conclusion
This study proposed a robust image watermarking framework based on the integration of Discrete

Wavelet Transform (DWT), Redundant Discrete Wavelet Transform (RDWT), and Möbius Transformations
(MT), with parameter optimization via a Genetic Algorithm (GA). The hybrid DWT/RDWT-MT model
achieved a high degree of imperceptibility and robustness, as demonstrated by experimental results showing
PSNR values exceeding 68 dB, SSIM values approaching 1.0, and zero Bit Error Rates (BER) across multiple
image types and attack scenarios. The use of Möbius transformations significantly enhanced the watermark’s
resilience to geometric and signal processing attacks by enabling spatial redistribution of watermark data.

Furthermore, the proposed scheme outperformed existing state-of-the-art watermarking techniques in
terms of robustness, histogram preservation, and computational efficiency. It maintained high watermark
recovery accuracy (NCC ≈ 1.0) even under severe attacks such as cropping, noise addition, and compres-
sion. The integration of GA further contributed to dynamic parameter adaptation, improving the overall
watermark extraction performance.

As part of future work, we aim to address the following enhancements: (i) real-time implementation
of the proposed scheme using GPU acceleration or parallel computing; (ii) integration with deep learning
models, such as CNNs or GANs, for adaptive and content-aware watermarking; and (iii) extension to video
watermarking and real-time streaming scenarios. Additionally, reinforcement learning could be explored to
dynamically adjust embedding strength and transformation parameters in changing environments.
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The proposed method offers a promising, scalable solution for secure image watermarking across
sensitive domains, such as medical imaging and multimedia authentication.
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