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ABSTRACT: TarGuess-I is a leading model utilizing Personally Identifiable Information for online targeted password
guessing. Due to its remarkable guessing performance, the model has drawn considerable attention in password security
research. However, through an analysis of the vulnerable behavior of users when constructing passwords by combining
popular passwords with their Personally Identifiable Information, we identified that the model fails to consider popular
passwords and frequent substrings, and it uses overly broad personal information categories, with extensive duplicate
statistics. To address these issues, we propose an improved password guessing model, TGI-FPR, which incorporates
three semantic methods: (1) identification of popular passwords by generating top 300 lists from similar websites, (2)
use of frequent substrings as new grammatical labels to capture finer-grained password structures, and (3) further
subdivision of the six major categories of personal information. To evaluate the performance of the proposed model,
we conducted experiments on six large-scale real-world password leak datasets and compared its accuracy within the
first 100 guesses to that of TarGuess-I. The results indicate a 2.65% improvement in guessing accuracy.
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1 Introduction
Password-based authentication remains a critical component in cybersecurity [1]. However, password

security relies on heuristic methods that often lack strong theoretical support. Historically, research in this
field has reached a mature phase, with advanced algorithms that adhere to rigorous probabilistic models. The
introduction of Markov models [2] and Probabilistic Context-Free Grammars (PCFG) [3,4] has significantly
propelled password-guessing algorithms [5–8]. In response to pressing password security concerns, Huang
et al. [9] proposed a user authentication scheme that avoids preset passwords by utilizing instant messaging
services, effectively reducing phishing vulnerabilities. These theories and techniques enable more precise
password-guessing methods, especially in the context of large-scale personal information breaches, which
adds to the increasing importance of research in this field. In recent years, the security research community
has shown great concern for these leakage events [10–12]. Emerging trends include the development of
targeted password-guessing algorithms that use individuals’ Personally Identifiable Information (PII) to
predict possible passwords [13–15].

Das et al. [15] highlighted the risk of password reuse and introduced the concept of a cross-site
cracking algorithm. However, this algorithm did not account for common passwords, leading to sub-optimal
performance. Li et al. [14] explored the impact of PII on password security and suggested a personalized
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PCFG model that matches and replaces PII based on length. Although this approach affected the effectiveness
of the cracking process, it lacked precision in gathering the PII usage of users. Wang et al. [13] pioneered a
password-guessing framework, TarGuss, which integrates a category-specific, PII-aware PCFG and detects
password reuse behavior, and this model achieves improved performance compared to previous cracking
algorithms. These studies have advanced password security research [16–18] and have influenced updates to
the NIST SP800-63-3 standard [19].

In the realm of password guessing, contemporary research predominantly centers on algorithmic
development, often neglecting systematic discussions on the efficacy of these algorithms across varying
scenarios. Machine learning-based guessing algorithms, such as FLA, constrained by the rate of password
generation, are more aptly suited for application as password strength meters (PSMs). Conversely, statistical
guessing algorithms like PCFG, while faster in generation, frequently encounter performance bottlenecks
under extensive guess counts due to their reliance on training datasets. Moreover, in practical scenarios,
attackers might employ diverse tactics for password guessing, making the selection of the most efficient
algorithm under fixed computational resources a topic worthy of thorough exploration.

Password guessing has recently emerged as a research hotspot, yielding a plethora of scholarly con-
tributions. In 2022, Li et al. [20] introduced a targeted password guessing model, PG-Pass, which treats
directed password guessing as a summarization task. By employing pointer network technology, this model
has pioneered new methodologies and perspectives in the field of directed password guessing. In the same
year, He et al. [21] unveiled PassTrans, a transformer-based model designed to simulate credential stuffing
attacks. This model, tailored around user behaviors of reusing or slightly altering old passwords to create
new ones, offers fresh insights into the patterns of password reuse and the security risks inherent in such
scenarios. In 2023, Wang et al. [17] developed RFGuess, a framework based on random forests that delineates
three typical password guessing scenarios, thus enriching the methodological spectrum of password guessing
research. Concurrently, Xu et al. [16] proposed PassBERT, a bi-directional Transformers framework that
marks the inaugural application of pre-training to password cracking. By designing a universal password
pre-training model and proposing three fine-tuning approaches tailored to different attack scenarios, this
framework also introduced a hybrid password strength detector, thereby charting new technical directions
and conceptual approaches for password guessing attacks and defense research. In 2024, Su et al. [22]
introduced a password guessing model, PagPassGPT, constructed using a generative pre-trained Transformer
(GPT), and a password generation algorithm, D&C-GEN. Demonstrating superior performance in both
trawling and cross-site guessing scenarios, these developments achieve higher hit rates with lower repetition.

In selecting TarGuess-I as the baseline for our study, we focused on its unique approach of leveraging
personally identifiable information (PII) for targeted password guessing. This method is particularly relevant
in real-world scenarios where attackers often have access to some user PII, thus providing a practical and
significant benchmark for comparison. Despite the emergence of newer models, TarGuess-I’s incorporation
of PII remains critical for understanding how such information can enhance the effectiveness of password
guessing strategies. Additionally, grammar-based models like TarGuess-I offer advantages in terms of
interpretability and resource efficiency. These models allow for clearer insights into the password generation
process, crucial in security applications where understanding model decisions is necessary. They also require
significantly less computational power and data, making them suitable for environments with resource
limitations. While newer neural network approaches are promising due to their ability to capture complex
patterns, the foundational attributes of TarGuess-I ensure its continued relevance in comparative studies,
providing a baseline that complements the more recent data-driven techniques.

The TarGuess framework was developed to address password guessing issues, with four models
(TarGuess-I to IV) created to respond to different attack scenarios by analyzing vulnerable user behaviors.
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In TarGuess-I, attackers exploit users’ explicit PII, such as names, birthdays, and phone numbers—readily
accessible on the internet for password construction [13,23]. Additionally, the other three models cater to
attack needs, involving either users’ implicit PII (like gender and profession) or information leaked from
other accounts, including ‘sister’ passwords leaked from other user accounts. This study primarily focuses
on TarGuess-I, whose practical application and impact have become increasingly significant with the rising
occurrences of PII leakage.

Wang et al. noted that the TarGuess-I model excels in password cracking by leveraging users’ PII, and
it achieves a success rate of over 20% within 100 attempts [13]. In recent years, improving the performance
of password-guessing models has emerged as a key research focus [24]. Through an analysis of user
behavior in constructing passwords based on the TarGuess-I model, we found some limitations of the
model. Accordingly, we made three improvements to the TarGuess-I model and verified their feasibility
through experiments. Based on these enhancements, we propose a novel model, TGI-FPR (where TGI
abbreviates TarGuess-I, and the FPR represents three specific labels), which integrates three semantic
methods. Performance evaluations show that the TGI-FPR model achieves a 2.65% improvement in success
rate compared to the original model, which demonstrates the feasibility of these improvements.

The main contributions of this work are as follows:

Modified Password Guessing Model
By analyzing the vulnerable password-creation behaviors of users in 158,483,166 publicly leaked data

records based on TarGuess-I, we identified effective semantic tags previously unverified and unused in
TarGuess-I. To address this gap, we utilized the adaptability of the TarGuess-I’s PII tags and defined two new
tags: Popular Password Tag P and Frequent Substring Tag F. We further subdivided the original six categories
of personal information and set matching priorities for each subcategory to prevent data duplication. This
led to a derivative of TarGuess-I, named TGI-FPR.

A New Insight
We propose a novel method for modifying password guessing models: passwords are parsed into

frequent substring ‘F-tags’, such as fragments of a user’s name or birthday. These pieces of information do
not appear in the user’s PII. This method incorporates incremental information or enhances the model’s
recognition of personally generated identifiers (such as name and birthday fragments). This method offers
new insights into targeted password guessing.

Extensive Evaluation
To validate the effectiveness of these tags, we conducted experiments using six substantial datasets

from actual leaks. The experimental results demonstrate that our single-tag enhanced model outperforms
TarGuess-I by 0.72% in the best case and 0.32% on average with the first 100 guesses. Among the ten models
tested, our modified model, TGI-FPR, performed the best. With the same PII as TarGuess-I, TGI-FPR
effectively cracked passwords with a 21.1% success rate within 100 guesses, exceeding TarGuess-I by 2.65%.

The remaining sections of this paper are organized as follows: Section 2 elaborates on the vulner-
able behaviors of users when setting passwords and reviews the current research on targeted password
guessing; Section 3 describes the preparatory work, including datasets used and an in-depth analysis of user-
vulnerable password creation behaviors; Section 4 introduces our model in detail; Section 5 presents the
experimental results and provides a detailed analysis. Section 6 concludes the study and outlines directions
for future research.
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2 Related Work
TarGuess utilizes PII for targeted guessing based on PCFG. This section discusses vulnerable user

behaviors and provides a brief overview of the PCFG-based algorithm and the TarGuess-I model.

2.1 Explanation of User Vulnerable Behaviors
Since the initial exploration of user password security behaviors in 1979, the impact of user-vulnerable

behaviors on password traceability has become a focal point in information security research. Current
studies on this subject generally fall into two main categories: data-based analysis and user surveys. The
former [2,9,11,25,26] examines user behaviors through empirical data, revealing behavioral vulnerabilities,
while the latter [15,27–30] delves into security risks in user password settings through survey studies. Overall,
user-vulnerable behaviors can be grouped into three primary categories.

Popular Passwords. Extensive research [2,9] indicates that users often opt for simple combinations of
words or symbols as passwords. To meet password policy requirements (e.g., including letters and numbers),
users often employ simple transformations, such as using “Password1.” We define such commonly used and
simple passwords as “popular passwords.” Wang et al. [31] have found that popular passwords follow a Zipf
distribution, which demonstrates that a few items dominate.

Password Reuse. Research by Stobert and Biddle [30] reveals users’ challenges in managing numerous
accounts and passwords. The complexity of multiple passwords can make them difficult to remember,
especially as it is easy to reuse a single login credential across accounts. Research has found that users typically
maintain over 20 accounts, making it difficult to set unique passwords for each. Consequently, password
reuse has become commonplace, and although seemingly reasonable, it poses security risks by compromising
account security. The research emphasizes effective and secure strategies for password reuse to mitigate these
potential risks.

Passwords Containing PII. Research by Wang et al. [32] indicates that Chinese users tend to incor-
porate pinyin names and related numbers (e.g., phone numbers and birthdays) into their passwords, in
stark contrast to the password construction habits of English-speaking. Furthermore, the research reveals
that native language significantly impacts password construction, with linguistic habits potentially affecting
password security considerably. Generally, Chinese users regard personal information (e.g., names, phone
numbers, and birthdays) as components of their passwords, increasing the risk to their potential security
when protecting personal information. Given that TarGuess-I is suitable for Scenario #1, this study focuses
on two types of vulnerable passwords: popular passwords and passwords containing personal information.

2.2 PCFG-Based Password Guessing Algorithm
Weir et al.’s foundational PCFG algorithm [4] has proven tremendous success in batch-guessing

scenarios [13]. In this algorithm, the probabilistic context-free grammar (PCFG) is defined as G =
(V , Σ, S , R), where:

(1) V is a finite set of non-terminal symbols;
(2) Σ is a finite set of terminal symbols;
(3) S is the set of start symbols, and S ∈ V ;
(4) R is a finite set of rules of the form α → β, where α ∈ V and β ∈ V ∪ Σ.
The core assumption of the algorithm is that the letter, number, and symbol segments in a password are

independent. The algorithm defines a set of tags that parse the password into segments of letters (L), numbers
(D), and symbols (S). These segments are further subdivided in the set V, excluding the start symbol S, into
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length-based types of tag sets, e.g., Ln , Dn , and Sn , where n indicates the length of the segment. During the
training phase, the algorithm counts the frequency of segments within each tag set and generates a context-
free grammar G. In the guessing generation phase, the algorithm derives passwords using grammar G and a
statistically obtained segment frequency table. The generation of candidate passwords relies on the product
of probabilities of segment frequencies. The final guess of candidate passwords is determined by ranking
these probabilities, multiplied by the frequencies of the middle segments of all passwords, as shown in Fig. 1.

Figure 1: Schematic diagram of the PCFGs model

The algorithm is divided into two phases. In the training phase, the frequency of segments within
each tag set is counted to generate a context-free grammar G. In the guessing generation phase, the
algorithm utilizes grammar G and the statistically derived segment frequency table to generate candidate
passwords. The generation of these candidate passwords depends on the product of the probabilities of
segment frequencies. The final guessed candidate passwords are ranked based on the probability obtained
by multiplying the frequencies of the middle segments of all passwords.

2.3 TarGuess-I Model
Wang et al. introduced the TarGuess-I model, which constructs a semantically aware PCFG based on

type-specific PII tags [13]. This model enhances the basic labels in traditional PCFG, LDS, by adding six new
tags: Name (Nn), Username (Un), Birthday (Bn), Telephone Number (Tn), Identity Card (In), and Email
Address (En). Each PII tag is assigned a specific index number, n, which represents different generation
rules. For example, N1 refers to the full name, while N2 refers to the abbreviated form of the full name (e.g.,
“Wang Lili” abbreviated as “wll”). For more details, see Fig. 2. This structure allows the model’s grammar
GI to demonstrate high adaptability, allowing adjustments through the addition of incremental tags without
altering its overall structure.

As shown in Fig. 3, a segment frequency table is created for each user based on their PII data, classifying
and tallying the frequency of PII labels. During the training phase, the PII-related components of the
credentials are parsed and marked with PII labels. In contrast, the remaining parts are marked with LDS
labels, separating sensitive from non-sensitive information. In the guessing phase, an algorithm similar to
PCFG is used to generate intermediate candidate password forms based on PII labels, e.g., N1B8 or N1 abcd.
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After matching the corresponding segments in the user’s PII data, these candidates are added to the final
guessing options.

Figure 2: Schematic of PII label generation for TarGuess-I

Figure 3: Schematic of TarGuess-I

3 Preliminary Work
In this section, we analyze compromised datasets to reveal vulnerabilities in the password settings of

Chinese users and propose optimization strategies for the TarGuess-I model. This approach can also be
applied to languages with similar structures, such as Korean and Japanese, where personal name formats
share similarities with Chinese, allowing for broader applicability of the model in these linguistic contexts.
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3.1 Basic Dataset
We analyzed 158,483,166 user password data leaked from six websites. These data primarily originate

from hacker attacks or insider leaks that have been publicly released online. Due to the lack of datasets
containing complete PII, the study specifically selected the unique PII (email addresses) from the 12306
dataset to correlate passwords in other datasets, thereby facilitating tracking of corresponding PII across
these collections. Table 1 provides details of the size of the matching datasets that contain PII across
various datasets.

Table 1: Dataset overview

Dataset Online platform When leaked Total With PII Data attributes
Weibo Social forum 2020 30, 974, 492 30,648 User name, PW, E-mail

Dodonew E-commerce 2011 15, 697, 635 20,647 User name, PW, E-mail
7k7k Game 2011 14, 611, 588 37,462 User name, PW, E-mail
12306 Train ticketing 2014 210,653 210,653 PW, E-mail, PII

Duowan Game 2011 6, 562, 885 28,634 User name, PW, E-mail
QQ Social forum 2011 90, 425, 913 143,556 User name, PW, E-mail

Twitter Social forum 2012 16, 378, 612 16,205 User name, PW, E-mail
Linkedin Social forum 2012 101, 426, 874 100,356 User name, PW, E-mail

3.2 Analysis Based on Frequent Substrings, Popular Passwords, and Heterogeneous Personal Information
Data
Users may be inclined to use frequent substrings rather than popular passwords. An analysis of the top

ten frequent substrings and popular passwords across six password datasets reveals that the inclusion rate
for frequent substrings ranges from 0.91% to 13.34%, slightly higher than that of popular passwords, which
range from 0.79% to 10.43%, as shown in Table 2. This finding indicates that users prefer frequent substrings
when constructing their passwords. Notably, users often opt for simple numeric sequences like “666666” and
“000000,” as well as semantically rich strings, such as, “iloveyou” and “woaini” in their password choices.

Furthermore, this study extracted the top ten and top hundred frequent substrings and popular
passwords, subsequently matching them with the 12306 datasets containing PII labels for email matching.
This enables the use of certain PII tags (e.g., names and email addresses) for password tagging and
analysis. In Table 3, we display the proportion of passwords that include tags in the left column and those
that completely match the tags in the right column. For instance, if the tag value is “123abc,” the left
column includes passwords such as “123abcd” and “a123abc,” while the right column includes only “123abc.”
Passwords with specific PII tags constitute a significant proportion of up to 13.64%. This indicates that using
PII to construct passwords is common and poses security risks.

Table 2: Top 10 popular passwords (Left) and frequent substrings (Right)*

Rank Dodonew QQ 12306 Duowan
1 123456 123456 abc123 abc123 123456 123456 123456789 123456789
2 a123456 a123456 123456a 123456a a123456 a123456 12345678 12345678
3 123456789 123456789 12qw23we 12qw23we 5201314 5201314 111111 111111
4 111111 111111 123abc 123abc 123456a 123456a qwerty123 qwerty123
5 5201314 5201314 a123456 a123456 111111 111111 00000000 00000000

(Continued)
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Table 2 (continued)

Rank Dodonew QQ 12306 Duowan
6 123123 123123 123qwe 123qwe woaini1314 woaini1314 123123123 123123123
7 a321654 a321654 666666 111 123123 123123 1234567890 123456
8 12345 123123 12345678 12345678 000000 woaini 88888888 8888
9 000000 000000 asd123 asd123 qq123456 qq123456 111111111 111111111
10 123456a 1234 qwerty123 qwerty 1qaz2wsx 1qaz 147258369 147258369
% 0.79 0.91 1.69 1.72 3.28 3.38 10.44 10.52

Rank Weibo 7k7k Twitter Linkedin
1 123456 123456 123456 123456 12345678 12345678 a123456 a123456
2 12345 12345 a123456 a123456 password123 password123 iloveyou iloveyou
3 123456789 123456789 123456789 123456789 a123456 a123456 12345678 12345678
4 password password 111111 111111 123456789 123456789 password password
5 iloveyou iloveyou 5201314 5201314 a321654 a321654 1qaz2wsx 1qaz
6 123123 123123 5201314a 5201314a password1 pass 123456789 123456789
7 1234567 1234567 a321654 a321654 000000 000000 123qwe 123qwe
8 123qwe qwe 12345 12345 admin1234 admin iloveyou iloveyou
9 12345678 12345678 000000 000000 iloveyou iloveyou 88888888 8888
10 abc123 123 123456a 123456a qwerty123 qwerty abc123 123
% 2.05 2.11 13.34 13.34 1.34 1.68 2.31 2.56

Note: *Frequent substrings highlighted in red indicate a different ranking from popular passwords in the same
password dataset.

This study delves into the relationship between frequent substrings, popular password labels, and
heterogeneous personal information labels in password datasets, revealing four key findings.

(1) Data analysis shows that the ratio of passwords containing the top ten and top hundred frequent
substrings is slightly higher than those with the same level of popular passwords. This suggests that frequent
substrings more accurately capture password characteristics.

(2) Some passwords are composed of the top ten or top hundred frequent substrings, with a proportion
similar to those composed constructed with popular passwords. This indicates that some frequent substrings
function effectively as popular passwords.

(3) The results indicate that expanding frequent substring labels from the top ten to the top hundred
significantly increases the number of covered passwords, capturing more password characteristics.

(4) By subdividing personal information labels, such as splitting the full name “wanglili” into “wang”
and “lili,” and the birth date “19950304” into “1995” and “0304,” we can increase the password coverage and
better capture password characteristics.
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3.3 Password Structure
This study explores the expression of frequent substring labels and common password labels in password

structures. We convert the frequent substrings and popular password labels into GTarGuess−I grammar labels
and conduct a comparative analysis of the structural representation of the top hundred popular passwords
alongside frequent substrings. In this analysis, specific labels are defined: “Pn” represents a popular password
of length n, while “F i

n” refers to the frequent substrings ranked i among substrings of length n. The analysis
employs the longest prefix matching rule, which prioritizes matching the PII segments in the password
and subsequently aligns the remaining segments with frequent substring labels. This method facilitates the
acquisition of the structural representation of passwords.

Table 4 displays the top ten password structures and their distributions of Pn , illustrating that these
structures often consist of simple components such as Pn , Ln , Dn , etc. These components are usually
unrelated to PII labels, highlighting the ubiquity of common yet simple strings in passwords. Besides, with
the incorporation of Pn and labels, the password probability model GTarGuess−I can better identify these
common and simple strings, thereby enhancing the efficiency of password cracking.

Table 4: The top 10 password structures in each dataset. The left side uses the Pn marker to identify common passwords,
where n represents the password length; it also uses the marker to identify frequent substrings, where i represents the
substring’s ranking and n its length, along with the proportion of these password structures (popular passwords and
frequent substrings) in each dataset (Pn% and F i

n%)

Rank Dodonew QQ 12306 Duowan Weibo 7k7k Twitter Linkedin
1 E1 E1 P6 F 1

6 P6 F 1
6 P9 D8 D8 F 1

8 D6 F2
6 E1 E1 P6 D8

2 D7 F3
7 P7 F2

6 D6 F2
6 D8 F 1

8 D6 F 1
6 D7 D6 D6 F 1

6 D7 D6
3 P6 F 1

6 D6 F2
8 D7 D6 D9 D9 P7 F 1

7 D8 F 1
8 P7 F 1

7 D8 F 1
8

4 D6 F2
6 D5 F 1

7 N2 D6 D7 E1 E1 L6 N1 D6 E1 D8 D8 N1 D6 E1 E1
5 D8 D6 L6 D6 U1 F 1

7 L6 N1 D6 N1 D1 F 1
9 N2 D7 D11 N1 D1 F 1

9 N2 D6 D11
6 N2 D6 N2 D6 N2 D6 F3

6 D8 U1 D5 N2F 1
6 N4 D1 N1 D1 E2 D7 N4 D1 D6 E2 D7

7 U1 D7 U1 D7 U1 U1 E1 D8 N1 D1 F 1
9 U2 D7 U1 D7 D11 D11 U1 D7 U1 D7 D11 H1

9
8 N2 D7 N2 D7 E1 D3 N3 D1 N2 D7 E1 N3 D1 F3

8 U2 D6 E1 N3 D1 U1 D1 U2 D6 E1 N2 D7 U1 D1
9 U1 U1 N4 D1 D5 U3 N2 D7 E1 D3 N3 D1 U1 D11 D10 N1 P6 N2F 1

6 U2 D6 N1
10 U2 D6 N2F 1

6 D10 N2 D7 U2 D6 N2F 1
7 N4 D1 D5 N2 D7 N2 D7 E1 D3 N3 D1 U2 D6 N2 D7 N3 D1 H3

8
Pn% 4.25 11.26 6.31 18.91 8.72 14.12 8.69 14.09
F i

n% 3.39 10.53 7.22 18.68 8.77 13.61 8.81 13.58

4 Our Model, TGI-FPR

4.1 Framework of the Improved Model
As mentioned earlier, the TarGuss-I fails to fully consider popular passwords and frequent substrings,

and it also suffers from issues related to the overly broad categorization of personal information types and
extensive duplicate counting. To address these issues, we propose a novel model, TGI-FPR, which modifies
the TarGuess-I in three main aspects. The details of TGI-FPR are as follows:

(1) Add the popular password label P1 in grammar GI and employ a list of popular passwords generated
from datasets similar to the target site;

(2) Introduce the frequent substring label F i
n in grammar GI to identify frequently occurring password

segments in the data;
(3) Further subdivide the existing six major categories of personal information labels and establish

priorities for each category to avoid duplicate counting.
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Fig. 4 outlines the refinement of the TarGuess-I algorithm to develop the TGI-FPR algorithm, with the
parts highlighted in red showing the improvements and examples of incrementally parsed passwords. In this
section, we will explore the methods for these enhancements.

Figure 4: Test cases and the modifications we employed for TGI-FPR The parts marked in red are the semantic tags
we added, and the model identified additional password structures after adding these semantic tags

The context-free grammar of our TGI-FPR model G = (V , Σ, S , R) is described as follows:

(1) S ∈ V denotes the start symbol;
(2) V = {S; Ln , Dn , Sn ; Nn , Bn , Un , En , In , Tn ; P1 , F i

n ; e} is a finite set of variables, where:
(a) Letters (Ln), Digits (Dn), and Symbols (Sn) are the basic tags of the PCFG algorithm [4],

representing strings of letters, digits, and symbols of length n, respectively;
(b) Name (Nn), User name (Un), Birthday (Bn), ID number (In), E-mail address (En) and Phone

number (Tn) are syntactic tags of TarGuess-I [13], and they indicate various forms of names,
birthdays, usernames, email addresses, ID numbers, and phone numbers, differentiated by the
number n, respectively; In this work, we have refined the personal information tags from the
traditional model into six major categories and further divided them into 36 subcategories;

(c) Popular Password (P1) is proposed in this paper, with implementation details presented in this
subsection; the number 1 in P1 has no special meaning; it merely complies with the grammatical
format and does not represent length;

(d) Frequent Substrings (F i
n) is proposed in this paper, referring to a set of substrings of length n,

ranked by frequency in descending order and positioned at i;
(e) ε is the terminal symbol.

(3) Σ is the set of 95 printable ASCII characters;
(4) R is a set of rules in the form α → β, where α ∈ V and β ∈ V ∪ Σ.
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4.2 Identification of Popular Passwords
In the grammar GII , we introduce a label to identify popular passwords, which consists of elements

based on the top N popular passwords derived from typical website data statistics. The number ‘1’ is arbitrary
and is used solely to conform to the grammatical structure. For a detailed analysis of the P1 label, see Fig. 5.

Figure 5: Illustration of P1 label analysis

During training, the system matches passwords in the training data with a popular password list using
regular expressions. If a match is found, the frequency of the associated password in the P1 element set
increases. The output of this phase is the context-free semantic representation GII of the P1 label, which
provides foundational data for the guessing phase. In the guessing phase, the system calculates the probability
of the semantic structure of passwords containing the P1 label, followed by the probability of each password
within the P1 element set. The system multiplies these two probabilities to obtain the final probability for
each password and ranks them accordingly.

Fig. 6 demonstrates the similarity of the top N passwords across two distinct services. The study finds
that the similarity exhibits significant fluctuations within the top hundred passwords. When the N value is
increased to about 300, similarity reaches a stable peak; however, further increases in the N value result in a
gradual decline in similarity. Analysis of the data for the top 300 most popular passwords shows that, with the
exception of the comparison between Duowan and 12306, the similarity generally exceeds 60%. Furthermore,
it is important to note that the datasets analyzed in this experiment are predominantly focused on Chinese
password patterns. The popular passwords identified in the Chinese datasets may not be directly applicable
to English-language services, as linguistic and cultural factors significantly influence password choices. The
structure and frequency of popular passwords in English are quite distinct from those observed in Chinese
datasets, reflecting different user behaviors. Given this, we decided not to include the English datasets in
this specific analysis, as the password preferences and trends may differ too greatly to yield meaningful
comparisons across the two languages in the context of this experiment. The variation in the share ratio of
these passwords reveals the influence of different types of services on the choice of popular passwords. Based
on these findings, we set the N value to 300 in cross-site password-guessing scenarios.
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Figure 6: Similarity of the Top-N popular password lists between two datasets. We use difflflib function in Python to
calculate the similarity of the Top-N popular passwords between each site

4.3 Recognition of More Detailed Personal Information Structures
In this subsection, we explore the processing methods of the “12306” dataset, focusing on effectively

classifying and matching the personal information it contains. Each record in the dataset is separated
by “- - - -” into different information items, such as login email, password in plaintext, real name and ID
number, username, mobile number, and bound email. Data processing begins by splitting the record strings
based on “- - - -,” generating a list of information components. Using string inclusion relationships, we achieve
the matching and prioritization of six types of personal information, ensuring that the information categories
are non-repetitive. The dataset displays consistency between “login email” and “bound email.” Structured
processing adheres to the format requirements defined in Fig. 7, ensuring the accuracy and consistency of
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the data. To further clarify, I have added Table 1, which provides a detailed explanation of the data structure
and formatting.

Figure 7: Subdivision of personal information tags

The following sections will introduce the capture matching algorithm for each type of personal
information, starting with the name capture matching algorithm, which is designed to handle Chinese
names. In Chinese culture, names typically consist of a surname followed by a given name. The algorithm
utilizes the PyPinyin library to convert each character of the name into its pinyin (the Romanized phonetic
representation of Chinese characters) without tone marks, and then generates various name permutations
by reordering the surname and given name, or using initials. These variations are then checked against
passwords for potential matches.

(1) Name Structure Capture and Matching
We use the ‘PyPinyin’ library to process name information. The primary goal of this technique is

to convert Chinese characters in names into a pinyin form without tones. For data standardization, the
preprocessing step removes names that include compound surnames and ethnic minority characteristics.

The aim is to retain only names that are two or three characters long.
Algorithm 1 is used for name recognition and can convert two or three-character passwords. In this

algorithm, the lazy_pinyin (string) function takes a string as its input and yields a one-dimensional list as
the output result.
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Algorithm 1: Name capturing match algorithm match_name(line)
Input: A complete line string from the password dataset line
Output: Matched name pinyin structure OR None

1: from pypinyin import lazy_pinyin
2: def match_name(line):
3: parts = line.split(“ —”)
4: password = parts [1]
5: fullname = parts [2]
6: pinyin_fullname = [lazy_pinyin(char) [0] for char in fullname]
7: lastname = pinyin_fullname [0]
8: if len(fullname) == 2:
9: firstname = pinyin_fullname [1]

10: initial_firstname = firstname [0]
11: else:
12: firstname = ”.join(pinyin_fullname[1:])
13: initial_firstname = ”.join(name [0] for name in pinyin_fullname[1:])
14: names = [
15: N1 = lastname + firstname,
16: N2 = lastname [0] + initial_firstname,
17: N3 = lastname,
18: N4 = firstname,
19: N5 = initial_firstname + lastname,
20: N6 = lastname + initial_firstname,
21: N7 = firstname + lastname,
22: N8 = lastname [0] + firstname,
23: N9 = firstname + lastname [0],
24: N10 = initial_firstname + lastname [0],
25: N11 = initial_firstname
26: ]
27: for name in names:
28: if name in password:
29: return name
30: return None

In Algorithm 1, the analysis of substructure is conducted on the “Name” field to ensure that all statistical
data are independent and non-redundant. This method determines data duplication based on name length,
assigning the longest names (e.g., “wangll”) to their corresponding longest digit tags (e.g., “N6”). Shorter tags
(e.g., “N3” for “wang” or “N11” for “ll”) do not account for names already represented by longer tags.

The research analyzes a dataset containing over 140,000 passwords and discovers that more than 30,000
passwords incorporate “Name” information. This finding indicates a significant proportion of passwords
containing name information within the dataset. Furthermore, integrating name information is crucial for
the model’s learning process, as it enhances the model’s ability to process and recognize relevant data.



478 Comput Mater Contin. 2025;84(1)

(2) Capturing and Matching Structures of “Date of Birth,” “ID Number,” and “Mobile Number.”
This section discusses methods for password structure detection through analysis of the birthday

information in ID numbers. The seventh to fourteenth digits of the ID number contain the individual’s date
of birth, which is extracted and formatted into a “yyyy-mm-dd” string. Based on this information, the study
designs 12 logical structures and generates 10 different string formats, as shown in Algorithm 2. These strings
are used to detect specific structures within passwords, organized in descending order from the highest to
the lowest digit.

Algorithm 2: “ Birthdate Capture”Matching Algorithm match_birthdate(line)
Input: A full string line from the password dataset.
Output: “ Birthdate”structure OR None

1: def match_birthdate(line):
2: parts = line.split(“—”)
3: password = parts [1]
4: birthdate = parts [3] [6:14]
5: B1 = birthdate
6: B2 = birthdate[4:] + birthdate[:4]
7: B3 = birthdate[:4] + birthdate[5:]
8: B4 = birthdate[4:]
9: B5 = birthdate[:4]

10: B6 = birthdate[:6]
11: B7 = birthdate[:4] + birthdate [5] + birthdate [7]
12: B8 = birthdate[2:]
13: B9 = birthdate[4:] + birthdate [2:4]
14: B10 = birthdate [2:4] + birthdate[5:]
15: B11 = birthdate[6:] + birthdate [4:6]
16: B12 = birthdate[5:]
17: for B in [B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12]:
18: if B in password:
19: return B
20: return None

In processing data regarding date of birth, strict formatting rules are employed to ensure accuracy
and prevent misclassification. Specific formats such as “B8” (950304) are clearly distinguished and are not
misclassified as “B1” (19950304) or “B4” (0304). When the month and date data are the same, the system
prioritizes recognition based on a predefined order; for example, “0303” is by default recognized as “B4”
rather than “B11,” effectively preventing duplicate counting of data. Data indicate that the Chinese typically
record dates of birth in the “year-month-day” sequence. Other sequences, such as those where the year or
month is placed at the end (e.g., B2, B9, B11), are seldom used and occur with low frequency.

For “ID numbers” and “mobile numbers,” we apply a similar method that treats them as purely numeric
strings. We simply match them one by one according to the categories defined in Fig. 7.

(3) Capturing and Matching Structures of “Username” and “Email Address”
For name fields, the algorithm identifies data composed of character strings, such as N1 to N10, and sorts

them by string length from longest to shortest. The processing method applies a similar approach to fields
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such as date of birth, ID number, and mobile number, employing numeric strings and ensuring independence
between fields.

However, the processing of username and email address fields is more complex, as these fields contain
both characters and numbers and may also include subsets of other data fields (such as names or ID
numbers). The algorithm splits letters and numbers using regular expressions and matches them in a
predefined order.

4.4 Identification of Frequent Substrings
In this work, we propose a novel method for identifying frequent substrings on a password dataset to

effectively filter information from complex data. Initially, the method involves a preliminary dataset analysis
of the dataset by recording the occurrence count of each password substring of length n(n ≥ 3). Subsequently,
a threshold TI is established to remove low-frequency substrings whose occurrences fall below this threshold,
thereby reducing the scale of data analysis. Based on this, the count of each substring is adjusted using the
following the formula:

C (ps)new = C (ps)old −∑
c∈Σ
[C (c + ps)old + C (ps + c)old] (1)

The specific operation involves deducting the total counts of all extended substrings associated with
ps from the original count C (ps)old to obtain the new count C (ps)new. After this adjustment, a second
threshold, T2, is set to filter out substrings that still meet the criteria, and they are identified as frequent
substrings. Finally, all frequent substrings of length are stored in the set Fn and sorted in descending order
of frequency. Substrings ranked i in the set are denoted as F i

n .
All substrings satisfying the specified length and exceeding the threshold T2 are placed in the pending

set Fn and sorted in descending order of frequency. Substrings ranked i in the set are denoted as shown
in Fig. 8.

Figure 8: Schematic of the tagging process. Represents the frequent substring ranked i in frequency among substrings
of length n
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When improving the TarGuess-I model, we introduced labels and considered the impact of frequent
substrings. To enhance the training set, we selected the Rockyou and Tianya datasets, which contain many
weak passwords and have been extensively used in password research. To optimize model performance,
we conducted multiple experiments with different parameter configurations for frequent substrings. The
final parameter configuration set the frequent substrings thresholds at T1 = 400 and T2 = 30, with frequent
substrings lengths ranging from 3 to 8. The frequent substrings dictionary consisted of the top hundred
frequent substrings. However, the currently set parameters may not be optimal, and adjustments may be
necessary for different datasets. The implementation of the F tag will be further explored in future studies.

5 Experiment

5.1 Experimental Design
In online password guessing with TarGuess-I, resource limitations are primarily reflected in the number

of allowed guesses rather than in computational power or bandwidth. This experiment aims to evaluate the
success rate of the password-guessing model within a limited number of guesses.

The experimental design follows three core rules:
(1) Ensure separation between the training set and the test set;
(2) Ensure that comparative experiments are based on the same dataset to maintain consistency in

experimental conditions;
(3) Use as large a dataset as possible to improve the model’s generalizability.
To this end, we selected the QQ and 12306 datasets, each containing 105 data points, as the training

set. This setup ensures that this data was not used for testing in compliance with the aforementioned rules.
Given the high heterogeneity of passwords in these datasets, we employed the Monte Carlo method to
stochastically produce ten test sets, each with 103 data points, to minimize the impact of heterogeneity on
the experimental results.

Table 5 displays the four-dimensional variables of the experimental setup. In the study of the TarGuess-I
password guessing model, nine different models were constructed to explore methods for improving pass-
word guessing efficiency based on the following three methods, either singly or in combination: (1) Adding
popular password tags P; (2) Incorporating frequent substring tags F; (3) Further refining personal infor-
mation tags. Four models using the improvement tags independently (TGI-F, TGI-R, TGI-P, and TGI-P′)
were used to assess the individual effects of each tag. Moreover, two scenarios were defined to enhance the
realism of the experiment: the ideal scenario (P tag) and the realistic scenario (P′ tag). In the P tag scenario,
it is assumed that the attacker can obtain the top 300 popular passwords from the target website, while in
the P′ tag scenario, it is assumed that the attacker only has access to a list of the top 300 passwords from a
website similar to the target site. Additionally, we established four combined tag models (TGI-FP, TGI-PR,
TGI-FR, TGI-FP′R, and TGI-FPR) to further explore their impact on efficiency. Ten repeated experiments
were conducted across 80 different attack scenarios to verify the effectiveness of each model.

Fig. 9 shows the average number of guesses, n, and the cracking success rates for nine models trained
on two websites and tested on four websites. As shown, when the models are compared based solely on
the number of guesses, the differences in cracking success rates are not pronounced. To facilitate a clearer
analysis of the experimental results, we calculated the relative values, Rn , for each model at guess number n
relative to the original TGI model, as follows:

Rn =Mean
⎛
⎝

rTG+i
n − rTGi

n

rTGi
n

⎞
⎠
× 100% (2)
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In this context, rTG+i
n is the success proportion of the improved model on the ith test set at n guesses,

while rTGi
n is the success rate of the original TGI under the same conditions.

Table 5: Training and testing settings for each attack scenario across 9 models

Password guessing model TGI∗, TGI-F, TGI-P, TGI-P′, TGI-R, TGI-FP′, TGI-P′R,
TGI-FR, TGI-FPR, TGI-FP′R

Training sets QQ,12306
Testing sets Duowan, Weibo, 7k7k, Dodonew, Twitter, Linkedin

P′ tag with top-300 7k7k’s QQ’s QQ’s 7K7K’s
P tag with top-300 Duowan’s Weibo’s 7K7K’s Dodonew’s

Note: *TGI: TarGuess-I. Each model’s right-side notation indicates the improvement marker included in
that model. #P′ tag represents ideal conditions, meaning the attacker has obtained the list of the top 300
popular passwords of the target website. In contrast, the P tag represents normal conditions, meaning the
attacker only has the list of the top 300 passwords from a website similar to the target site.

Figure 9: Average prediction success rates of nine models

5.2 Experiment 1: Validating the Effectiveness of Improved Models
In this work, we compare the performance of four single-tag modification models

(TGI-F, TGI-R, TGI-P, and TGI-P′) with the baseline model TGI. Analysis of the cracking success rates
provided by Fig. 10 and Table 6 shows that, with the exception of the TGI-P′ model—which slightly
underperformed TGI on the QQ dataset by an average success rate of 0.05%—the other three single-tag
modification models exceeded the baseline model TGI in average success rates within 100 guesses, improving
by 0.20% to 0.72% over TGI. These results clearly demonstrate the advantages of the three modification
methods in enhancing cracking success rates.
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Figure 10: Experimental results of four single-tag modification models. Panels (a) to (d) display the Rn of the four
single-tag modification models. The 0% dashed line on the y-axis signifies our TGI cracking success rate as the reference
baseline
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Table 6: Average Rn statistics for Fig. 10

Training
set

Improved
model

Guess number range

10−102 102−103 103−104

QQ

TGI-F 0.76% ∼ −0.24% 0.26% 0.73% ∼ −0.07% 0.49% 1.12% ∼ 0.67% 0.99%
TGI-R 1.77% ∼ −1.69% 0.25% 1.84% ∼ 0.73% 1.43% 2.63% ∼ 1.97% 2.34%
TGI-P’ 0.73% ∼ −1.07% −0.05% 0.92% ∼ 0.23% 0.71% 0.33% ∼ −0.94% −0.52%
TGI-P 2.02% ∼ −0.47% 0.58% 2.67% ∼ 0.42% 1.82% 1.63% ∼ 0.12% 0.66%

12306

TGI-F 0.67% ∼ −0.42% 0.20% 0.77% ∼ 0.32% 0.67% 1.17% ∼ 0.83% 1.01%
TGI-R 1.56% ∼ −0.37% 0.37% 1.73% ∼ 0.54% 1.41% 2.15% ∼ 1.39% 1.71%
TGI-P’ 1.03% ∼ −0.97% 0.33% 1.82% ∼ 0.73% 1.21% 0.53% ∼ −0.77% −0.29%
TGI-P 1.82% ∼ −0.33% 0.72% 2.86% ∼ 1.36% 2.18% 1.95% ∼ 0.14% 0.83%

Fig. 10a,b illustrates the performance of models TGI, TGI-F, and TGI-R from 10 to 104 guesses. The
results indicate that within the 10 to 102 guess range, the improved models TGI-F and TGI-R did not
outperform TGI and, in some cases, performed even worse. Specifically, when TGI-R was evaluated using the
Duowan test dataset with the 12306 and QQ training data, it performed 2.78% worse than TGI at 50 guesses
(using 12306 training data) and 3.62% worse at 40 guesses (using QQ training data). This underperformance
partly stems from the scarcity of F tags or detailed personal information tags in passwords, which primarily
affect lower-ranked candidate passwords. Furthermore, TGI-R’s performance was impacted by the finely
divided personal information tags, which failed to capture the vulnerable behaviors of users in password
creation, leading to higher-ranked candidate passwords that hindered its early guessing performance.
However, as the number of guesses increased, TGI-F and TGI-R showed slight improvement between 102

and 103 guesses and significantly outperformed TGI between 103 and 104 guesses. Notably, at 104 guesses,
the TGI-F and TGI-R perform better than TGI with improvements of 1.29% and 3.37% in terms of cracking
success rates. The study indicates that TGI-F and TGI-R models excel in trawling scenarios with over 102

guesses, where they significantly enhance the cracking success rates.
However, when using English datasets like Twitter and LinkedIn for testing, the TGI-R model per-

formed poorly. This could be attributed to the cultural differences between Chinese and English-speaking
users, which lead to different structures in how personal information is categorized. The training datasets
were based on the personal information structure of Chinese users, which may not align well with the way
English-speaking users structure their personal information, thus resulting in suboptimal performance when
tested on English datasets.

As shown in Fig. 10c and d, models with the P tag outperformed m the TGI model within the range
of 102 to 103 guesses. Specifically, the TGI-P′ model achieved maximum increases in cracking success rates
of 2.67% and 2.46% using the 12306 and QQ training datasets, respectively, compared to the TGI model.
However, the TGI-P model’s highest cracking success rates using 12306 and QQ training data exceeded those
of the TGI model by 4.46% and 4.18%, respectively. This difference can be attributed to several key factors.
Firstly, the popular password tag P1 ranks highly within the syntax GII , showing its advantage in cracking
attempts. Secondly, even though compound popular passwords are present in the top 300 password list,
most are ranked in the lower half, which reduces cracking efficiency. Furthermore, this compound form
of passwords caused the TGI model to generate many ineffective outputs, further reducing the success rate
of cracking.
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When comparing the TGI-P′ and TGI models, we found that TGI-P′ had a lower success rate than
TGI in 102 attempts. Analysis shows that the P′ tag in the TGI-P′ model, which includes the top 300
popular passwords, does not match the password database of the testing site. This inconsistency led to several
ineffective outputs among the first 100 candidate passwords in the TGI-P model. In contrast, the TGI-P
model, unaffected by such issues, demonstrated improved performance under identical testing conditions.

In Fig. 10b–d, some curves show significant deviations from the average Rn values, exhibiting an
anomaly curve phenomenon. Performance comparisons reveal that the TGI-R model achieves a 2.73%
higher guess success rate on the Dodonew test data than the TGI model and an average of 0.89% higher
on other datasets. In contrast, the TGI-P model (trained on QQ data) shows a 4.75% lower guess success
rate on the Duowan test data and underperforms by 1.73% lower on other test datasets compared to
TGI. These differences may stem from the distribution differences among the password datasets. Par-
ticularly, the Duowan dataset includes some “uncleaned” password data, such as the frequently used
“e10adc3949ba59abbe56e057f20f883e,” which ranks 32nd among the top 300. Insufficient cleaning likely
contributed to the reduced success rate of the model on this dataset.

5.3 Experiment 2: Comparison and Evaluation of Improved Models
We evaluated each combined tag modification model to determine the ideal solution. Table 7 lists the

average Rn for each modification model compared to TGI. The results show that our three incremental tag
modification models, TGI-FPR, improved best (see Fig. 11f).

Table 7: Graph’s Rn statistical data

Training
set

Improved
model

Guess number range

10−102 102−103 103−104

QQ

TGI-FP 0.85% ∼ −0.75% 0.03% 1.10% ∼ 0.22% 0.68% 0.29% ∼ −0.69% −0.41%
TGI-PR 1.33% ∼ −1.95% −0.01% 2.62% ∼ 1.71% 2.19% 2.28% ∼ 1.40% 1.86%
TGI-FR 2.15% ∼ −1.58% 0.46% 2.29% ∼ 1.20% 1.79% 3.71% ∼ 2.48% 3.19%

TGI-FP′R 1.57% ∼ −1.82% 0.04% 2.70% ∼ 1.78% 2.21% 2.29% ∼ 1.48% 1.79%
TGI-FPR 1.88% ∼ −1.15% 0.55% 4.43% ∼ 2.01% 3.12% 3.80% ∼ 2.60% 3.02%

12306

TGI-FP 1.12% ∼ −0.90% 0.32% 1.78% ∼ 0.79% 1.08% 0.49% ∼ −0.59% −0.23%
TGI-PR 2.60% ∼ −0.98% 0.60% 3.44% ∼ 1.25% 2.68% 2.58% ∼ 1.03% 1.61%
TGI-FR 2.08% ∼ −0.72% 0.49% 2.21% ∼ 0.94% 1.92% 3.05% ∼ 2.29% 2.71%

TGI-FP′R 2.52% ∼ −0.99% 0.63% 3.36% ∼ 1.21% 2.73% 2.61% ∼ 1.19% 1.58%
TGI-FPR 2.25% ∼ −0.51% 1.06% 4.71% ∼ 1.39% 3.64% 3.73% ∼ 2.66% 2.78%

Fig. 11f shows that increasing the number of tags enhances the performance of models such as TGI-F,
TGI-R, and TGI-FR. Meanwhile, models like TGI-P′, TGI-P′R, TGI-FP′, and TGI-FP′R also show similar
improvements. However, the improvement effect correlation between models combining the P tag and those
containing only F or R tags is insignificant. Further analysis indicates that popular passwords (P tag) occupy
a larger proportion of the overall password distribution. In contrast, passwords with frequent substrings or
more detailed personal information structures (F and R tags) are relatively uncommon. Therefore, adding
the P tag has a more significant impact on guessing success rates than the F or R tags.
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Figure 11: (Continued)
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(e) TGI-FPR
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Figure 11: Experimental results for five combined tag modification models, compared across nine modification models.
Panels (a–e) display the Rn values of 5 combined tag modification models; (f) compare the Rn values of 10 modification
models. The dashed line on the y-axis is positioned at 0%, representing our reference baseline (i.e., the cracking success
rate of TGI)

In this study, we propose the TGI-FPR model, an improvement upon the TarGuess-I model, enabling the
model to capture a wider variety of password structures and thus enhance the accuracy of password guessing.
Specifically, the TarGuess-I model generates password candidates based on users’ personal information (PII)
and the PCFG algorithm. However, it is relatively limited in capturing password structures, particularly by
not considering common password construction techniques such as popular passwords and high-frequency
substrings. By incorporating the popular password label (P), the model is able to identify commonly used
password structures that are prevalent across multiple websites, thereby improving the prediction accuracy
for these passwords. The high-frequency substring (F) label further expands the scope of password structures
by identifying more granular password patterns, such as “love.” Additionally, the more detailed personal
information label (R) captures finer personal information structures (e.g., variations of birthdays), which
may not directly appear in the user’s personal information but hold special significance for the user, thereby
increasing the likelihood of successful guesses.

Through the introduction of these incremental labels, the TGI-FPR model is capable of identifying and
generating a broader range of password structures, which were not captured by the traditional TarGuess-I
model. As a result, the model can generate more password candidates that incorporate these incremental
labels, significantly enhancing the guess accuracy. As shown in the results of Table 8, TGI-FPR generated
nearly 11% more password candidates with incremental labels compared to TG-I, directly leading to an
improvement in password guessing accuracy. This improvement is particularly evident when the model
encounters passwords with similar structures, where its performance is notably superior.
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Table 8: Top ten basic structures of candidate passwords

QQ 12306

Rank TGI TGI-FPR TGI TGI-FPR
1 D8 6.431% P1 6.864% D6 4.861% P1 7.146%
2 D6 5.364% D6 5.732% D7 3.367% D6 6.273%
3 D7 2.864% D8 4.344% N2D6 2.271% D8 5.318%
4 N2D6 2.634% U1 2.331% U1 1.996% N1D1 4.532%
5 E1 1.927% E1 2.121% D8 1.874% U3 2.354%
6 U1 1.769% B1 1.971% E1 1.742% U1 2.121%
7 U3 1.634% D7 1.763% N2D7 1.724% N2D7 1.971%
8 D5 1.431% U3 1.583% U2D7 1.534% D7 1.734%
9 U2D6 1.372% F 1

6 1.334% U3 1.434% N1D3 1.591%
10 U1D7 1.334% N2D6 1.121% N1D3 1.342% F6 1.361%
%* 58.642% 67.834% 52.372% 62.482%

Note: *Proportion of candidate passwords’ basic structures containing incremental tags.

Table 9 evaluates the TGI-FPR’s guessing performance on each test dataset. The experimental results
indicate that in most cases, the TGI-FPR outperforms TGI. Specifically, on the QQ training dataset, TGI-FPR
achieved success rate improvements from 0.02% to 2.15%, while on the 12306 training dataset, its success
rates increased by 0.75% to 2.65%. However, TGI-FPR underperformed on the Duowan dataset, a result
discussed in detail previously in the analysis of TGI-P′.

Table 9: Statistical results of the TGI-FPR model experiment

Training set Training set Guess number Rn

10 102 103 104 10−102 102
−103 103

−104 Avg

QQ

Duowan 0.078 0.151 0.209 0.261 −0.78% 0.49% 3.41% 1.44%
Dodonew 0.124 0.207 0.272 0.325 2.15% 5.75% 4.59% 4.56%

7K7K 0.104 0.188 0.259 0.310 0.02% 3.63% 2.09% 2.30%
Weibo 0.128 0.198 0.239 0.303 0.88% 2.83% 1.90% 2.06%
Twitter 0.126 0.216 0.261 0.331 2.16% 5.78% 4.62% 4.58%

Linkedin 0.124 0.214 0.269 0.329 2.19% 5.78% 4.63% 4.58%

12306

Duowan 0.080 0.156 0.218 0.272 −0.63% 0.95% 2.95% 1.43%
Dodonew 0.128 0.211 0.273 0.335 2.65% 6.08% 4.01% 4.53%

7K7K 0.112 0.198 0.262 0.323 0.75% 4.28% 2.13% 2.69%
Weibo 0.128 0.201 0.250 0.318 1.55% 3.49% 1.93% 2.48%
Twitter 0.078 0.158 0.221 0.278 0.16% 0.96% 3.01% 1.45%

Linkedin 0.113 0.214 0.275 0.332 0.81% 4.31% 2.23% 2.71%

This study validated the effectiveness and feasibility of the proposed improvement methods. The
research also found a tendency among users to use popular passwords, frequent substrings, and personal
information, which increases the risk of cracked passwords. As attackers acquire more personal information,
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the risk of targeted password guessing rises significantly. Therefore, multi-factor authentication schemes are
necessary for critical applications to enhance overall account security [33–35].

6 Conclusion and Future Work
The TarGuess-I algorithm demonstrates superior password-guessing performance and has attracted

significant attention in password security research. We conducted an in-depth analysis of users’ vulnerable
password behaviors and targeted password guessing patterns, with three feature parameters missing in the
TarGuess-I algorithm. Based on these findings, we developed an improved password-guessing algorithm,
TGI-FPR, which effectively recognizes popular passwords, frequent substrings, and more refined PII
structures. Extensive experiments show that TGI-FPR achieves a 2.65% higher guessing success rate than
TarGuess-I within 100 attempts. This study emphasizes the security risks of targeted password guessing. Our
innovative approach to frequent substrings introduces new perspectives for password-guessing strategies,
though further optimization of these methods is needed. Future work will continue to explore this direction,
including experiments on how the success rate improvement varies across different attack scenarios, such as
cracking common passwords, long passwords, and passwords from security-conscious users. Additionally,
we plan to extend our work by integrating and comparing our proposed model with recent developments,
such as PassGAN, DeepCode, and other state-of-the-art password guessing models that utilize different data-
driven approaches. This will help us refine our approach, identify the most effective strategies, and provide
more targeted improvements to password-guessing techniques.
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