
echT PressScience

Doi:10.32604/cmc.2025.063852

ARTICLE

SW-DDFT: Parallel Optimization of the Dynamical Density Functional Theory
Algorithm Based on Sunway Bluelight II Supercomputer

Xiaoguang Lv1,2 , Tao Liu1,2,*, Han Qin1,2 , Ying Guo1,2 , Jingshan Pan1,2 , Dawei Zhao1,2 ,
Xiaoming Wu1,2 and Meihong Yang1,2

1Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science
Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014,
China
2Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing, Shandong Fundamental Research
Center for Computer Science, Jinan, 250014, China
*Corresponding Author: Tao Liu. Email: liutao@sdas.org
Received: 25 January 2025; Accepted: 15 April 2025; Published: 09 June 2025

ABSTRACT: The Dynamical Density Functional Theory (DDFT) algorithm, derived by associating classical Density
Functional Theory (DFT) with the fundamental Smoluchowski dynamical equation, describes the evolution of inhomo-
geneous fluid density distributions over time. It plays a significant role in studying the evolution of density distributions
over time in inhomogeneous systems. The Sunway Bluelight II supercomputer, as a new generation of China’s developed
supercomputer, possesses powerful computational capabilities. Porting and optimizing industrial software on this
platform holds significant importance. For the optimization of the DDFT algorithm, based on the Sunway Bluelight II
supercomputer and the unique hardware architecture of the SW39000 processor, this work proposes three acceleration
strategies to enhance computational efficiency and performance, including direct parallel optimization, local-memory
constrained optimization for CPEs, and multi-core groups collaboration and communication optimization. This
method combines the characteristics of the program’s algorithm with the unique hardware architecture of the Sunway
Bluelight II supercomputer, optimizing the storage and transmission structures to achieve a closer integration of
software and hardware. For the first time, this paper presents Sunway-Dynamical Density Functional Theory (SW-
DDFT). Experimental results show that SW-DDFT achieves a speedup of 6.67 times within a single-core group
compared to the original DDFT implementation, with six core groups (a total of 384 CPEs), the maximum speedup
can reach 28.64 times, and parallel efficiency can reach 71%, demonstrating excellent acceleration performance.

KEYWORDS: Sunway supercomputer; high-performance computing; dynamical density functional theory; parallel
optimization

1 Introduction
The theoretical framework of this work mainly employs the first-order mean spherical approximation to

derive the direct correlation functions between nanoparticles and polymer moieties. By explicitly incorpo-
rating lattice orientation in crystalline structures, we construct an orientation-dependent direct correlation
function and integrate it into the free energy functional of the system. By combining the Dynamical Density
Functional Theory (DDFT) algorithm, we analyze the orientational interactions between structural units in
ordered structure and further investigate the crystal structure and crystallization dynamics of nanoparticles
and polymer molecules.

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.063852
https://www.techscience.com/doi/10.32604/cmc.2025.063852
mailto:liutao@sdas.org

1418 Comput Mater Contin. 2025;84(1)

The supporting part of this paper mainly leverages the architectural features and computational
capabilities of the Sunway Bluelight II supercomputer to port and optimize the DDFT program. The Sunway
Bluelight II offers powerful computational performance and larger node storage capacity, enabling the full
potential of the DDFT algorithm to be realized.

Main contributions of this paper:

• This paper proposes three optimization strategies using the Computation Processing Element array
(CPEs), including direct parallel optimization, local-memory constrained optimization for CPEs, and
multi-core groups collaboration and communication optimization. These optimization strategies fully
utilize the hardware resources of the Sunway Bluelight II supercomputer, improving computational
efficiency and data transmission performance.

• For the first time, the DDFT program has been successfully ported and optimized on the Sunway
Bluelight II supercomputer, expanding its application ecosystem. Compared to the original program,
this optimization achieves a speedup of up to 6.67 times within a single-core group, with six core groups
(a total of 384 CPEs), the maximum speedup can reach 28.64 times.

The structure of this paper is as follows: Section 2 introduces Dynamical Density Functional Theory and
the Sunway Bluelight II supercomputer; Section 3 analyzes the DDFT program and its algorithms; Section 4
presents three parallel optimization strategies for the program; Section 5 presents experimental results and
performance analysis; Section 6 discusses related work; Section 7 concludes the paper.

2 The Dynamical Density Functional Theory and the Sunway Bluelight II Supercomputer

2.1 Dynamical Density Functional Theory
In recent years, DDFT, derived from the Density Functional Theory (DFT), has been increasingly

applied to the study of crystallization dynamics mechanisms [1]. Polymer nanocomposites have garnered
significant attention in academia due to their exceptional mechanical properties and functional charac-
teristics [2]. With advancements in production technologies, there is a growing demand for improved
performance of polymer nanocomposites. Using the DDFT method to study the crystallization behavior of
polymer nanocomposite systems has become a key research direction.

However, due to the complexity of crystalline structures and the intensive large-scale Fast Fourier
Transform computations involved, solving such problems using supercomputers has become essential.
Porting and optimizing the DDFT algorithm on the new generation of the China’s Sunway supercomputer
to fully leverage its high-performance computing capabilities, which can maximize the algorithm’s compu-
tational efficiency. This not only advances materials research but also aids in the design and development of
novel materials.

2.2 Sunway Bluelight II Supercomputer
As a new generation of Sunway supercomputers, the core components of the Sunway Bluelight II, such

as processors and network chipsets, are entirely China’s developed. Its core architecture consists of one
cabinet and four computing super-nodes. Each super-node is composed of 64 computing blades, with each
blade containing two computing node boards. Each computing node board houses a single computing node,
meaning each super-node consists of 128 computing nodes. Each computing node includes two SW39000
processors, two Sunway message processing chips, and 192 GB of DDR4 memory. The entire system is
comprised of 512 computing nodes and 1024 SW39000 processors, delivering a total peak performance of
3.13 PFLOPS, with each node capable of achieving a computing performance of up to 6.12 TFLOPS.

Comput Mater Contin. 2025;84(1) 1419

The SW39000 processor consists of six Core Groups (CGs), each comprising one Management Process-
ing Element (MPE, also known as the master core) and a Computation Processing Element array (CPEs).
The CPEs is a 8 × 8 array of Computation Processing Element (CPE, also referred to as the slave core). Each
CG is equipped with an independent Memory Controller (MC), which connects to 16 GB of DDR4 memory
via Direct Memory Access (DMA) with a bandwidth of 51.2 GB/s. Data transfer between the CPE within
the same CPEs is achieved through Remote Memory Access (RMA). Each CPE is equipped with 256 KB of
fast Local Data Memory (LDM). The SW39000 processor consists of a total of 390 processing units. A single
processor delivers approximately 14 TB/s of floating-point performance and a memory bandwidth of about
307.2 GB/s. The hardware architecture of the SW39000 processor is illustrated in Fig. 1.

Network on Chip(NoC)Network
Interface

DDR4

MPE

CPE
Array

DDR4

MPE

CPE
Array

DDR4

MPE

CPE
Array

DDR4

MPE

CPE
Array

DDR4

MPE

CPE
Array

DDR4

MPE

CPE
Array

CPE Array
(8×8 CPEs)

CG0 CG1 CG2

CG3 CG4 CG5

Figure 1: Architecture of SW39000 processor

3 Analysis and Parallelization of Dynamical Density Functional Theory Algorithm

3.1 Analysis of Theoretical Algorithms
DDFT is developed from classical DFT. DFT was initially proposed by Thomas [3] and Fermi [4] based

on quantum mechanics to study electron cloud density and electronic ground state properties. In 1976,
building on previous research, Ebner and Saam [5] and Yang et al. [6] developed classical Density Functional
Theory to describe the structural and energetic characteristics of classical fluid systems.

The core of DFT is to establish the Helmholtz free energy functional F [ρ (r)] of the system, and further
get the grand potential Ω [ρ (r)] of the system. Both are functions of the density distribution ρ (r) of the
system. By finding the minimum value of the grand potential of the system, the corresponding density
distribution can be obtained, enabling the calculation of various thermodynamic properties of the system.
In DFT, the expression of the grand potential Ω [ρ (r)] of the system is given as follows:

Ω [ρ (r)] = F [ρ (r)] + ∫ [Vex t (r) − μb] ρ (r) dr (1)

In the DFT framework, F [ρ (r)] represents the Helmholtz free energy of the system, Vex t (r) is the
external potential energy, and μb is the chemical potential of the main fluid.

By combining classical DFT with the fundamental Smoluchowski dynamical equation, DDFT can be
obtained. DDFT can describe the evolution of heterogeneous fluid density distribution over time. Thus, the
density distribution and free energy functional of the system are related to the dynamic change of time.

1420 Comput Mater Contin. 2025;84(1)

The DDFT model was initially proposed by Evans [7] and Dieterich et al. [8]. It starts from the dynamical
equations, performs ensemble averaging on the noise term, and approximates the equilibrium density
distribution under a certain external field as the density distribution of the system at a certain time. Based
on this theory, the expression of DDFT is as follows:

kBT ∂ρ (r, t)
∂t

= D∇{ρ (r, t)∇δF [ρ (r, t)]
δρ (r, t) } (2)

kB is the Boltzmann constant.
T represents the system temperature.
ρ (r, t) is the density distribution at time t.
D is the effective molecular hard-sphere diameter.
δ is the Dirac delta function.
Vex t denotes the external potential energy.
r represents the distance in real space.
ρ is the density.
In this equation, t represents time, and F [ρ (r, t)] is a functional of the density distribution ρ (r, t) at

time t. This equation is typically solved using Fourier spectral method. For the classical DFT model based
on the RY- approximation, its dynamic form can be expressed as:

kBT ∂ρ (r, t)
∂t

= D {∇2ρ (r, t) + ∇[ρ (r, t)∇Vex t (r, t)] − ∇[ρ (r, t)∇∫ dr′ρ (r′) c(2) (∣r − r′∣; ρ)]} (3)

The establishment of DDFT has expanded the scope of research from equilibrium states to nonequilib-
rium processes, making it particularly significant for analyzing the evolution of density distributions over
time in inhomogeneous systems. Löwen employed DDFT to study the nucleation and growth processes of
simple crystals in both homogeneous and inhomogeneous systems [9], providing in-depth analyses of crystal
face adjustments and structural evolution during polycrystalline crystal growth.

However, up to now, research using DDFT in crystallization processes remains in its infancy and its
research objects mainly focus on spherical particles, colloidal particles, and small molecular crystal systems.
The research of polymer crystals with complex structures and long chain molecules and their crystallization
kinetics is still a blank field. This paper adopts DDFT as the primary research method, further extending
the existing theoretical framework to apply it to the study of the microscopic dynamical mechanisms of
crystallization behavior in various polymer nanocomposite systems.

3.2 Code Hotspot Analysis
The DDFT program implements a density evolution simulator based on the framework of DDFT,

describing the evolution of density distributions over time within a system. Its primary functions include:
Calculating the time evolution of density distributions; Analyzing the processes of crystal nucleation,
diffusion, and growth; Outputting density and related data for subsequent analysis. This simulator is broadly
applicable for studying crystal nucleation and growth in inhomogeneous systems, as well as particle density
diffusion and aggregation under the influence of external fields or free energy. The DDFT source code used
in this study is a self-developed program. Its core methodology can be found in Reference [1], including the
theoretical framework, implementation process.

Comput Mater Contin. 2025;84(1) 1421

The main workflow of the program is as follows: First, input external field conditions and construct the
computational grid. Next, initialize the density and compute the chemical potential under the hard-sphere
approximation. Then, sequentially perform a series of Fourier transform operations. Finally, output results
such as the density distribution and mean square displacement after each iteration.

To further improve program performance, we employed the Swprof hotspot analysis tool provided
by the Sunway supercomputer, along with manual piling timing method, to conduct a detailed analysis of
performance bottlenecks during execution.

According to the analysis results (as shown in Fig. 2), the main performance bottleneck lies in the Crystal
Structure Transformation function. This function is called multiple times during each iteration, and its high
frequency of calls significantly increases the overall runtime. As a result, our optimization efforts focused on
parallelizing this function. Taking into account the characteristics of the DDFT program and the hardware
architecture of the Sunway Bluelight II supercomputer, we identified and summarized several key challenges
encountered during the parallel optimization process.

5%
7%

18%

70%

Crystal Structure Transformation
Miuhsfft
Dfxdrou
Others

Figure 2: Hotspot analysis chart of DDFT

1. Loop Dependency Issues: When moving hotspot sections to CPEs for parallel optimization, some loops
exhibit data dependency relationships, preventing tasks from being directly assigned to CPEs, which
limits the efficiency of parallelization.

2. LDM Space of CPEs Constrained: Due to the architectural constraints of the Sunway chip, each LDM
space is small. When the MPE transfers data to the CPEs, LDM space may be insufficient. In such cases,
the CPEs have to fetch required variables by directly accessing main memory, leading to significant
time overhead.

3. Insufficient Computational Resources and Excessive Communication: When the program runs within
a single-core group, computational resources may become insufficient. Additionally, excessive commu-
nication among CPEs within a single-core group or across core groups can further affects the execution
efficiency of the program.

For the above challenges, this paper proposes three acceleration strategies based on the architecture
of the Sunway many-core processor, including direct parallel optimization, local-memory constrained
optimization for CPEs, and multi-core groups collaboration and communication optimization.

1422 Comput Mater Contin. 2025;84(1)

4 Optimization of the Dynamical Density Functional Theory program
This section focuses on three acceleration strategies, including direct parallel optimization, local-

memory constrained optimization for CPEs, and multi-core groups collaboration and communication
optimization. These methods not only significantly improve the performance of the DDFT algorithm but
also provide a certain reference value for parallelization implementations of other similar programs on the
Sunway supercomputer.

4.1 Direct Parallel Optimization
Direct parallel optimization is the basic strategy of thread-level parallel optimization. Based on the

preliminary hotspot test analysis, approximately 70% of the computation time is concentrated on crystal
structure transformation. To improve execution efficiency, first of all, this paper migrates the hotspot section
to the CPEs for parallel optimization. Then, other hotspot sections are migrated to the CPEs for optimization.

During data transfer, directly accessing the main memory, while straightforward, is inefficient. There-
fore, this paper adopts the following two optimized data transmission methods. The detailed process is
illustrated in Fig. 3.

MPE
extracts the
hotspot part

Whether the CPE LDM space
is sufficient

LDM(2
56KB)

Yes

No

CPEs get
calculation

data

CPEs get
data via

DMA

CPEs get data
via shared LDM

space DMA

Ring
Network

Ring
Network

Original
program

Figure 3: CPEs data acquisition method

1. CPEs obtain data from MPE through DMA. For computational tasks with small data volumes, the
private LDM space of CPEs can accommodate the required data. Therefore, CPEs can load the data
into its private LDM space by invoking the DMA transfer function, thereby improving the efficiency of
accessing the main memory.

2. CPEs obtain data from MPE through shared LDM space DMA. For computational tasks involving large
data volumes, the LDM space of CPEs may be insufficient to store all the required data. In such cases, a

Comput Mater Contin. 2025;84(1) 1423

shared LDM space can be utilized. Specifically, each CPE in the array provides a LDM space of the same
capacity, which is arranged in a contiguous address space. The CPEs then invoke the shared LDM space
DMA transfer function to load the data into the shared contiguous LDM space, thereby improving the
efficiency of accessing the main memory.

The specific operation process is as follows: First, for hotspot regions, the MPE initializes the CPEs
and loads loops with high iteration counts and no forward or backward dependencies to the CPEs. The
computational tasks are then distributed to each CPE, which retrieves data from the MPE using the
aforementioned methods to enable fast access and modification of the required data. After the complete
of computation, the results are transmitted back to the MPE via DMA or shared LDM space DMA.
Subsequently, this process is repeated for other hotspot regions to achieve optimization using the CPEs.

4.2 Local-Memory Constrained Optimization for CPEs
When the hotspot computing section of Crystal Structure Transformation is ported to CPEs for acceler-

ation, the whole task cannot be transferred to CPEs and assigned to each CPE directly due to the dependency
of variables in multiple triple loops. An example pseudocode snippet is shown in Algorithm 1. Such
dependencies require decentralized migration, increasing program runtime. In addition, loop-dependent
data is often bound to stride iterations, which can take up a lot of storage space if stored in arrays. Moreover,
the LDM capacity of CPEs is limited and cannot accommodate all the dependent data.

Although the LDM provides a contiguous shared space (where each CPE in the array offers the same
LDM capacity with continuous addressing), which alleviates memory constraints to some extent. However,
when the data size expands to the point where the array size becomes too large, transferring it directly to the
LDM of CPEs not only wastes storage space but also may cause storage overflow.

To solve the above problems, this paper proposes an innovative method, including the following two
optimization strategies:

Small-Scale Dependency Data Handling: When the dependency data occupies storage space less than
the maximum storage capacity of the shared LDM, the MPE precomputes the dependent portions of the loop
and stores the results in an array. The CPEs then fetch the dependency data from MPE via DMA or shared
LDM space DMA to complete the computation.

Large-Scale Dependency Data Handling: When the dependency data occupies storage space no less
than the maximum storage capacity of the shared LDM, a hash table is constructed in the MPE. The MPE
precomputes the dependent portions of the loop and stores the results in the hash table. The CPEs fetch the
hash table via DMA or shared LDM space DMA, and extract the required data according to the mapping
relationship for calculation.

Algorithm 1: The original triple loop dependency vs. Optimized triple loop dependency
The original triple loop dependency:

1: for i2 = 1→ ip2 step ip1 do
2: if should_process(i2, i2rev) //Avoid duplicate swapping of data pairs then
3: for i1 = i2→ i2 + ip1 − 2 step 2 do
4: for i3 = i1→ ip3 step ip2 do
5: i3rev = calculate_rev_index(i2rev , i3, i2) //Compute reversed index
6: Swap value
7: end for
8: end for

(Continued)

1424 Comput Mater Contin. 2025;84(1)

Algorithm 1 (continued)
9: end if

10: Initialize ibit //Initialize bitmask
11: while not converged(ibit, ip1, i2rev) do
12: i2rev = adjust_index(i2rev , ibit) //Adjust inverted index
13: Update ibit
14: end while
15: i2rev = finalize_index(i2rev , ibit) //Final adjustment of the inverted index
16: end for
Optimized triple loop dependency:

1: for i2 = 1→ ip2_temp step ip1_temp do
2: Initialize ibit //Initialize bitmask
3: while not converged(ibit, ip1_temp, i2rev_t) //Check if it has converged do
4: i2rev_t = adjust_index(i2rev_t, ibit) //Adjust inverted index
5: Update ibit
6: end while
7: i2rev_t = finalize_index(i2rev_t, ibit) //Final adjustment of the inverted index
8: store_rev_index(i2rev_temp, i2rev_i, i2rev_t) //Store the inverted index and update the counter
9: end for

10: int i2rev_ j = 64 ∗ idim; //idim is dimension index
11: for i2 = 0→ ip2 step ip1 do
12: if should_process(i2, i2rev) then
13: for i1 = i2→ i2 + ip1 − 2 step 2 do
14: if is_assigned_to_me(i1, CPEs) //Allocation from the CPEs then
15: for i3 = i1→ ip3 step ip2 do
16: i3rev = calculate_rev_index(i2rev , i3, i2) //Compute reversed index
17: Swap value
18: end for
19: end if
20: end for
21: end if
22: i2rev = get_next_rev_index(i2rev_temp, i2rev_ j) //Get the next inversion index
23: i2rev_ j = i2rev_ j + 1 //Update index counter
24: end for

This method enables the CPEs to efficiently access the necessary dependency data, reducing the fre-
quency of CPEs start-up and shut-down operations, while effectively solving the LDM memory constraints.
This significantly improves the program’s execution efficiency. The detailed workflow is illustrated in Fig. 4.

This method proposes an optimization strategy of constructing a hash table for cases where the
dependent data exceeds the maximum storage capacity of the shared LDM and the loops are stride iterations.
As shown in Fig. 5, the loop to be optimized exhibits significant stride iteration characteristics. If the loop and
its corresponding data are directly mapped to an array, it would not only occupy a large amount of storage
space, leading to space wastage, but also potentially fail to load due to exceeding the LDM capacity limitation
of the CPEs.

Comput Mater Contin. 2025;84(1) 1425

Original program dependent part

Dependency
extraction

MPE CPEs

Computing and
Storing

Less than
the maximum storage space of

the shared LDM

DMA/Shared LDM
space DMA acquisition

Building hash table
Assigning

dependencies to each
CPE

CPEs computing
based on private space

CPEs returning the
result of the

calculation to main
memory

Yes

No

Figure 4: Solution for the flowchart of data acquisition process limited by CPE LDM space

0 8192 16384 24576 32768 40960

The values of the step iteration correspond to the values of the
array subscripts, each value corresponds to a set of data

i3

0 1 2 3 4 5MPE hash_table

0 1 32 4 5CPE

CG

Figure 5: Corresponding diagram of stepwise iteration, hash table and CPEs

1426 Comput Mater Contin. 2025;84(1)

Therefore, by constructing a hash table, the stride iteration loop and its corresponding data are mapped
into the hash table. By leveraging the efficient indexing and storage mechanism of the hash table, the data
required for loop dependencies can be stored in a more compact manner, effectively reducing storage space
usage and solving the limitation of the LDM capacity of CPEs. At the same time, CPEs fetch the hash table via
DMA or shared LDM space DMA, enabling high-speed data transfer and efficient data utilization, further
improving computational efficiency and performance.

4.3 Multi-Core Groups Collaboration and Communication Optimization
When MPI is introduced into this program for process-level optimization, the acceleration effect of

multi-process running is not ideal because of the high communication time and the difficulty of decomposing
certain hotspots. Therefore, this paper proposes a solution that leverages multi-core groups for collaborative
computation. At the same time, data collection and transmission within and between core groups are
optimized, reducing the frequency of data transfers between the MPE and CPEs, thereby improving
execution efficiency and performance of the program.

When determining the number of core groups, it is generally necessary to analyze the iteration count
and computational complexity of the hotspot loops and estimate the required number of core groups. In
order to select the number of core groups more accurately, it is also necessary to run the program to test
the execution effect of different core group configurations and perform comparative verification. To simplify
this process, this paper introduces a machine learning model. By training a model to predict the optimal
number of core groups based on features such as loop iterations and computational complexity, the program
can automatically select the best configuration scheme. The process is illustrated in Fig. 6.

Collecting data
Training model

1 CG 2 CG 3 CG 6 CG

Loading model
Predicting quantity

CPEs
CG

CPEs
CG

CPEs
CG

Reduce and DMA

MPE conformity

Figure 6: Diagram of machine learning prediction for the number of core groups

Comput Mater Contin. 2025;84(1) 1427

In the cooperative optimization of multi-core groups, 2, 3, 4, 5, or 6 core groups can be selected for
collaborative computation. Taking the 2 core groups cooperative computation as an example, the thread
numbers range from 0 to 127, and the core group numbers range from 0 to 1, each thread corresponds to one
core group number. According to the characteristics of the program’s computational hotspots, the calculation
tasks are reasonably allocated to each CPE.

Each CPE obtains the required data from the MPE via DMA or direct memory access to the main
memory. Each CPE independently completes its assigned computational tasks, and computations of CPEs
across different core groups do not interfere with one another. Within each core group, after performing
operations such as reduction on the computation results, the final results are then sent back to the MPE.
This optimization method effectively utilizes multi-core resources, improving computational parallelism and
efficiency. The detailed process is illustrated in Fig. 7.

CG

DDFT start

Import field conditions

Initialize the density
and grid

Structural
transformation
computation

Update the calculated
density distribution

Output the density
distribution and mean

azimuth shift after
iterative calculation

Iteration completion

DDFT end

Athread_init_cgs

Athread_spawn_cgs

Athread_join_cgs

CG

No

Yes

MPE CPEs

Figure 7: Diagram of multi-core groups collaborative computation

In single-core group and multi-core groups optimizations, tasks often involve critical resources, and
multiple CPEs accessing the same memory area may lead to competition issues. To avoid data race errors,
it is necessary to allocate independent private LDM spaces for each CPE, allowing them to only operate
on and update private variables. After the completion of the task, each CPE needs to aggregate results and
send them back to the MPE for final computations. However, this approach introduces additional overhead
during aggregation and data transfer in a single-core group or multi-core groups environment. Therefore,
the aggregation and transfer processes need to be optimized. The pseudocode for the specific operation is
shown in Algorithm 2.

1428 Comput Mater Contin. 2025;84(1)

Algorithm 2: Multi-core groups communication optimization
Require: CPEs_sizes: number of CPEs;

CPEs_ID: the ID of CPE;
CGN_sizes: number of CGNs;
CGN_ID: ID of CGN;
RID: the row number of CPEs;
n: logical number;

1: Initialize tasks ← all tasks/CPEs_sizes
2: for i = 0, 1, . . . , tasks do
3: Calculate wr, wi, and conversion value
4: end for
5: Every CPE carries its assigned value
6: CPE confirms its logical number
7: if RID is even number then
8: if CPEs_ID is even number then
9: n ← 0

10: else
11: n ← 1
12: end if
13: else
14: if CPEs_ID is even number then
15: n ← 2
16: else
17: n ← 3
18: end if
19: end if
20: Assign shared LDM variable
21: if n is three-level summarizing CPE then
22: Gather shared LDM variable result
23: athread_rma_put(three-level summarizing CPE result, LDM variable result)
24: end if
25: if CPEs_ID is two-level summarizing CPE then
26: Gather LDM variable result
27: athread_rma_put(two-level summarizing CPE result, LDM variable result)
28: end if
29: if CPEs_ID is one-level summarizing CPE then
30: Gather CGN_id’s result
31: athread_dma_put(CPE, MPE)
32: end if

The following are the specific steps of multi-core groups collaborative optimization:
Divide CPE Groups: When executing tasks with multiple CPEs, the CPEs are divided into small groups,

with each group consisting of four CPEs, logically numbered as 0, 1, 2, and 3. Contiguous shared space of
LDM is allocated to each group. After computation, each CPE stores its results in this shared space.

Comput Mater Contin. 2025;84(1) 1429

Third-Level Aggregation: Designate the CPE with logical number 0 in each group as the “Third-Level
Aggregation CPE”. This CPE collects computation results of other CPEs directly from the shared LDM space
within the group, avoiding resource contention and reducing data transfer overhead.

Second-Level Aggregation: Within each core group, designate the CPE numbered 0 as the “Second-
Level Aggregation CPE”. This CPE gathers results from all third-level aggregation CPE within the same core
group. The specific operation involves third-level aggregation CPE sending their results to the second-level
aggregation CPE via RMA.

First-Level Aggregation: Designate the CPE numbered 0 of core group 0 as the “First-Level Aggregation
CPE.” This CPE collects results from all second-level aggregation CPE across different core groups and
performs the final aggregation.

Return Results to Main Memory: The first-level aggregation CPE sends the final aggregated results back
to main memory via DMA, achieving efficient storage of computational results.

In this process, each small group of CPEs utilizes shared LDM space, effectively avoiding excessive
RMA communications and thereby improving intra-group data transfer efficiency. Through the three-
level, two-level, and one-level aggregation mechanisms, data is progressively collected from local to global
levels, significantly reducing the frequency of direct transmissions to the MPE, Which in turn lowers
communication overhead and improves overall computational efficiency.

5 Performance Analysis

5.1 Configuration
Based on the Sunway Bluelight II supercomputer, this paper evaluates the optimization efficiency of

the SW-DDFT. Table 1 lists the specific configurations used for the evaluation. To assess the program’s
performance under different mesh points, the external field conditions are set to three initial states and
defined as three mesh points: small mesh point (16 × 16 × 16), medium mesh point (32 × 32 × 32), and
large mesh point (64 × 64 × 64). In the following experiments, the small, medium, and large mesh point
scales all follow the default mesh point scale. In the multi-core groups, the mesh point scales have been
redefined.

Table 1: Hardware and software configuration

Hardware Computer Sunway Bluelight II Supercomputer
Processor mode SW39000

Number of nodes 171
Number of cores 133,120 (2048 MPEs and 131,072 CPEs)

Memory 32,768 GB
Software System Sunway Linux 4.4.15

Compiler mpicc and sw9gcc

5.2 Performance Testing of Optimization
This section is divided into three parts. First, the program is tested with different numbers of CPEs, and

the specific number of CPEs to be used for subsequent optimization is determined. Then, tests the execution
times of three optimizing strategies on the Sunway Bluelight II supercomputer. Based on the test results, the
speedup of the parallelized program compared to the original implementation is calculated. The original
program here refers to the initial implementation of the SW-DDFT program, which performs calculations

1430 Comput Mater Contin. 2025;84(1)

only on the MPE. By comparing the speedup, the performance improvement of the parallel optimization
strategies can be directly reflected. Finally, the changes in hotspots before and after optimization are analyzed.

5.2.1 Analysis of Speedup with Different Number of CPEs
To perform the optimization of CPEs, first, it is necessary to determine the number of CPEs to be

used. Since all optimizations are improved on the basis of direct parallel optimization, we use direct parallel
optimization as a test method here. Then, runtime and speedup under different numbers of CPEs will be
compared and analyzed to determine the most suitable number of CPEs.

Experimental results at different mesh points are shown in Fig. 8. With the increase of the number of
CPEs, the running time of the program under the three mesh points is gradually shortened, and the speedup
is also continuously improved.

4CPEs 8CPEs 16CPEs 32CPEs 64CPEs
0

20

40

60

80

100

120

140

T
im

e(
s)

Number of CPEs

Small mesh point Medium mesh point
Large mesh point

4CPEs 8CPEs 16CPEs 32CPEs 64CPEs

1.0

1.5

2.0

2.5

S
pe

ed
up

Number of CPEs

Small mesh point Medium mesh point
Large mesh point

4CPEs 8CPEs 16CPEs 32CPEs 64CPEs
0

20

40

60

E
ffi

ci
en

cy
(%

)

Number of CPEs

Small mesh point Medium mesh point
Large mesh point

Figure 8: Running time, speedup and efficiency at different mesh points

At the same time, we conduct a weak scalability test, by using the parallel efficiency of 4 CPEs as the
baseline, the details are shown in Fig. 9. In the weak scalability test, since different numbers of CPEs require
testing mesh points of different scales, we set up the multiple simulation regions with N = 1, 2, 4, 8, 16 and
test three different mesh points. During the simulation, the number of mesh points executed for different
numbers of CPEs is the product of the mesh point scale and N.

Based on the experimental results, in order to balance the performance and resource utilization
efficiency, 64 CPEs are selected to accelerate the three optimization strategies, so as to obtain the best
computational efficiency.

5.2.2 Effect Analysis of Three Optimizing Strategies
Based on the analysis in the previous section, we conclude that the highest acceleration efficiency is

achieved by using 64 CPEs. Therefore, subsequent optimizations will be based on direct parallel optimization,
utilizing 64 CPEs for acceleration.

In the single-core group experiment, the first optimization strategy is direct parallel optimization,
defined as Level 1 optimization. The speedup can reach up to 2.23 times at different mesh points. The
second optimization strategy is local-memory constrained optimization for CPEs, superimposing the first
optimization strategy, defined as Level 2 optimization. Under different mesh points, the speedup can reach
up to 3.96 times. The third optimization strategy is multi-core groups collaboration and communication

Comput Mater Contin. 2025;84(1) 1431

optimization, superimposing the first and second strategies, defined as Level 3 optimization. Under different
mesh points, the speedup can reach up to 6.67 times.

4 8 16 32 64

20

40

60

80

100
w

ea
k

sc
al

ab
ili

ty
 e

ffi
ci

en
cy

(%
)

Number of CPEs

 Small mesh point Medium mesh point
 Large mesh point

Figure 9: Weak scalability testing at different mesh points

The corresponding relationship between each optimization level and the optimization strategy used is
shown in Table 2.

Table 2: The corresponding relationship between each optimization level and the optimization strategy used

Optimization levels Included strategies
Level 1 Direct parallel optimization
Level 2 Direct parallel optimization

+Local-memory constrained optimization for CPEs
Level 3 Direct parallel optimization

+Local-memory constrained optimization for CPEs
+Multi-core groups collaboration and communication optimization

At the three mesh points, the running time and speedup corresponding to different optimization
strategies are shown in Fig. 10. With the gradual superposition of the optimization strategies, the running
time of the program is significantly reduced at all mesh points. In small mesh point cases, due to the small
amount of calculation, the improvement of the speedup is relatively insignificant. With the increase of the
mesh points, the calculation amount increases, and the speedup increases more significantly.

In the multi-core groups experiment, we conduct tests on core groups of 1, 2, 3, 4, 5, and 6. We designate
the three grid sizes of 64 × 64 × 64, 128 × 128 × 128, and 256 × 256 × 256 as small mesh point, medium

1432 Comput Mater Contin. 2025;84(1)

mesh point, and large mesh point, respectively. The speedup and execution efficiency are evaluated across
different core groups and grid sizes. With six core groups (a total of 384 CPEs), the maximum speedup can
reach 28.64 times, and parallel efficiency can reach 71%. The details are shown in the Fig. 11.

Original
program

Level 1
optimization

Level 2
optimization

Level 3
optimization

0

20

40

60

80

100

120

140

160

180

200

T
im

e(
s)

Different optimization strategies

 Small mesh point Medium mesh point
 Large mesh point

Original
program

Level 1
optimization

Level 2
optimization

Level 3
optimization

1

2

3

4

5

6

7

S
pe

ed
up

Different optimization strategies

Small mesh point Medium mesh point
Large mesh point

Figure 10: Running time and speedup at different mesh points and 64 CPEs

64 128 192 256 320 384

5

10

15

20

25

30

S
pe

ed
up

Number of CPEs

 Small mesh point Medium mesh point
 Large mesh point

64 128 192 256 320 384
0

10

20

30

40

50

60

70

80

90

100

E
ffi

ci
en

cy
(%

)

Number of CPEs

 Small mesh point Medium mesh point
 Large mesh point

Figure 11: Speedup and execution efficiency in six core groups

From the above experimental results, it can be seen that under different mesh points, the three parallel
optimization strategies proposed in this paper can significantly improve the running efficiency of the
program. And with the increase of the mesh points, the acceleration effect becomes more obvious.

Comput Mater Contin. 2025;84(1) 1433

In the direct parallel optimization solution, CPEs access data from the main memory via DMA or shared
LDM space DMA, storing it in private LDM to improve access speed. Tasks are then distributed to the CPEs
for execution. In the solution of local-memory constrained optimization for CPEs, the loop dependency
issue is resolved, and a hash table is constructed to reduce memory usage, enabling better utilization of the
LDM space on CPEs, which significantly improves execution efficiency. In the solution of multi-core groups
collaboration and communication optimization, the use of more CPEs and the optimization of intra-core
and inter-core group communication further improve overall computational performance and efficiency.

5.2.3 Results of Parallel Optimization
With the optimization of the program, the hotspots of the program changed. We tested the execution

time of each part before and after optimization and obtained the change of the proportion of each part as
shown in Fig. 12:

70%

10%

18%
11%

7%
3%5%

76%

Before optimization After optimization

0

20

40

60

80

100

P
er

ce
nt

ag
e(

%
)

Crystal Structure Transformation
Miuhsfft
Dfxdrou
Others

Figure 12: Hotspot function change diagram

The percentages in the figure represent the proportional contribution of different functions to the total
program execution time, as measured through profiling. The percentage changes observed indicate that the
optimizations applied to the hotspot functions effectively reduce their relative computational weight in the
overall workload.

“Others” functions are the scattered functions with low computational complexity. This scattered piece
of code mainly iterates over all mesh points and performs a series of calculations for each mesh point.
Most of these functions have been optimized. However, some parts with low computational complexity
are not optimized, because the efficiency after optimization is not high. We port these parts into the
Sunway supercomputer, which requires migrating the computation code to CPEs and then fetching data and
allocating computation on the CPEs.

It can be seen from the test results that the acceleration effect of Crystal Structure Transformation
function is obvious, Miuhsfft, Dfxdrou also have a certain acceleration effect.

1434 Comput Mater Contin. 2025;84(1)

6 Related Work
For supercooled liquid crystallization, Ramakrishnan, Yussouff, Singh, Evans, Oxtoby, et al. and Löwen

developed a DFT model to describe the crystal-liquid phase interface. References [10,11] showcase recent
advances in DFT-related research, reference [10] uses DFT to calculate the electronic properties of molecules,
reference [11] employs DFT to evaluate the activity of three investigated molecules. This model uses a uniform
fluid as a reference and performs a perturbation expansion of the functional. In this theoretical model,
the crystal phase is considered as a perturbation to the liquid phase. By associating classical DFT with the
fundamental Smoluchowski dynamical equation, DDFT is obtained. DDFT can describe the evolution of
the inhomogeneous fluid density distribution over time, thereby linking the density distribution, free energy
functional, and time within the system.

The DDFT model was proposed by Evans [7] and Dieterich et al. [8], based on the dynamical equation.
By ensemble averaging the noise term, it approximates the equilibrium density distribution under a certain
external field as the density distribution at a certain time in the system. The establishment of DDFT extends
the research from equilibrium states to non-equilibrium processes, making it highly significant for studying
the evolution of density distributions over time in inhomogeneous systems. Löwen and others applied
DDFT to investigate the nucleation and growth processes of simple crystals in both homogeneous and
inhomogeneous systems [9].

Research based on the Sunway series supercomputers has achieved remarkable results in various fields
in recent years. Among these, three projects have won the Gordon Bell Prize. Reference [12] successfully
ported the full Community Atmosphere Model (CAM) to the “Sunway TaihuLight,” achieving a sustainable
double-precision performance of 3.3 PFLOPS using 10,075,000 cores, with the work expanding to over 10
million cores. Reference [13] implemented a highly scalable nonlinear earthquake simulation tool on the
“Sunway TaihuLight” supercomputer. Reference [14] realized a tensor-based random quantum simulation
circuit on the new generation Sunway supercomputer, completing the simulation sampling work in 304 s.

In addition, the Sunway series supercomputers have made significant contributions in other areas
[15–19]. Reference [15] developed brain simulation software SWsnn on the “Sunway TaihuLight”, successfully
achieving real-time biological simulation of a 104-neuron fully connected network. Reference [16] extended
TVM to the “Sunway TaihuLight.” Using the code generated by swTVM, an average performance improve-
ment of 1.79 times was achieved compared to the most advanced deep learning framework, swCaffe, on
the Sunway.

In summary, there are many projects based on the Sunway supercomputers, and there are also many
DDFT studies. However, research on the porting and optimization of DDFT on the Sunway Bluelight II
supercomputer remains relatively scarce. Therefore, conducting parallel optimization research on DDFT on
the Sunway Bluelight II supercomputer is of great significance. The SW-DDFT proposed in this paper not
only meets the requirements for numerical simulations on the Sunway supercomputer in terms of speed and
accuracy, but also enriches the application ecosystem of the Sunway supercomputer.

7 Conclusion
This paper implements a parallel optimization program called SW-DDFT based on the Sunway Bluelight

II supercomputer. For the parallel optimization of SW-DDFT, we propose three acceleration strategies:
direct parallel optimization, local-memory constrained optimization for CPEs, and multi-core groups
collaboration and communication optimization. Experimental results show that compared to the original
DDFT implementation, the SW-DDFT program achieves a speedup of 6.67 times within a single-core group,

Comput Mater Contin. 2025;84(1) 1435

with six core groups (a total of 384 CPEs), the maximum speedup can reach 28.64 times, and parallel
efficiency can reach 71%.

Acknowledgement: I express my sincere gratitude to all individuals who have contributed to this paper. Special thanks
to my advisor, Prof. Tao Liu, for his meticulous and patient guidance throughout the entire research process.

Funding Statement: This work is supported by National Key Research and Development Program of China under
Grant 2024YFE0210800, National Natural Science Foundation of China under Grant 62495062, and Beijing Natural
Science Foundation under Grant L242017.

Author Contributions: Write the main manuscript text and do most of the experiments, Xiaoguang Lv and Tao
Liu; Provide software and software compilation, Han Qin; Provide assistance with the use of the Sunway Bluelight II
supercomputer, Ying Guo and Jingshan Pan; supervision, Dawei Zhao, Xiaoming Wu and Meihong Yang. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data used to support the findings of this study are available from the
corresponding author upon request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Hou Y. Dynamic density functional theory study on the kinetics of lattice formation and growth in polymer

nanocomposite systems [dissertation]. Beijing, China: Beijing University of Chemical Technology; 2018. doi:10.
7666/d.Y3389850.

2. Gao K. Molecular dynamics simulation study on interface design of polymer nanocomposite mazterials [dis-
sertation]. Beijing, China: Beijing University of Chemical Technology; 2022. doi:10.26939/d.cnki.gbhgu.2022.
000117.

3. Thomas LH. The calculation of atomic fields. Math Proc Camb Philos Soc. 1927;23(5):542–8. doi:10.1017/
S0305004100011683.

4. Fermi E. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf
die Theorie des periodischen Systems der Elemente. Z Phys. 1928;48(1):73–9. doi:10.1007/BF01351576.

5. Ebner C, Saam WF. New phase-transition phenomena in thin argon films. Phys Rev Lett. 1977;38(25):1486–9.
doi:10.1103/PhysRevLett.38.1486.

6. Yang AJM, Fleming PD, Gibbs JH. Molecular theory of surface tension. J Chem Phys. 1976;64(9):3732–47. doi:10.
1063/1.432687.

7. Evans R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform,
classical fluids. Adv Phys. 1979;28(2):143–200. doi:10.1080/00018737900101365.

8. Dieterich W, Frisch HL, Majhofer A. Nonlinear diffusion and density functional theory. Z Phys B Condens Matter.
1990;78(2):317–23. doi:10.1007/BF01307852.

9. Löwen H. Melting, freezing and colloidal suspensions. Phys Rep. 1994;237(5):249–324. doi:10.1016/0370-
1573(94)90017-5.

10. Chaithra N, Swarup HA, Chandrasekhar S, Jayanna BK, Kumara K, Mantelingu K, et al. Regioselective benzylation
of imidazo [1, 5-a] pyridines and indoles via iodine catalyzed reaction using alcohols—an approach to crystal
structure prediction, DFT studies and Hirshfeld surface analysis. J Mol Struct. 2024;1295(1):136591. doi:10.1016/j.
molstruc.2023.136591.

11. Al Ati G, Chkirate K, El-Guourrami O, Chakchak H, Tüzün B, Mague JT, et al. Schiff base compounds constructed
from pyrazole-acetamide: synthesis, spectroscopic characterization, crystal structure, DFT, molecular docking and
antioxidant activity. J Mol Struct. 2024;1295(7):136637. doi:10.1016/j.molstruc.2023.136637.

https://doi.org/10.7666/d.Y3389850
https://doi.org/10.7666/d.Y3389850
https://doi.org/10.26939/d.cnki.gbhgu.2022.000117
https://doi.org/10.26939/d.cnki.gbhgu.2022.000117
https://doi.org/10.1017/S0305004100011683
https://doi.org/10.1017/S0305004100011683
https://doi.org/10.1007/BF01351576
https://doi.org/10.1103/PhysRevLett.38.1486
https://doi.org/10.1063/1.432687
https://doi.org/10.1063/1.432687
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1007/BF01307852
https://doi.org/10.1016/0370-1573(94)90017-5
https://doi.org/10.1016/0370-1573(94)90017-5
https://doi.org/10.1016/j.molstruc.2023.136591
https://doi.org/10.1016/j.molstruc.2023.136591
https://doi.org/10.1016/j.molstruc.2023.136637

1436 Comput Mater Contin. 2025;84(1)

12. Fu H, Liao J, Ding N, Duan X, Gan L, Liang Y, et al. Redesigning CAM-SE for peta-scale climate modeling
performance and ultra-high resolution on Sunway TaihuLight. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis; 2017; Denver, CO, USA. p. 1–12. doi:10.1145/
3126908.3126909.

13. Fu H, He C, Chen B, Yin Z, Zhang Z, Zhang W, et al. 18.9-Pflops nonlinear earthquake simulation on Sunway
TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis; 2017; Denver, CO, USA. p. 1–12. doi:10.1145/
3126908.3126910.

14. Lin H, Zhu X, Yu B, Tang X, Xue W, Chen W, et al. Shentu: processing multi-trillion edge graphs on millions of
cores in seconds. In: SC18: International Conference for High Performance Computing, Networking, Storage and
Analysis. Dallas, TX, USA: IEEE; 2018. p. 706–16. doi:10.1109/SC.2018.00059.

15. Li X, Zhu X, Wei Y, Feng S. Application of Sunway TaihuLight accelerated computing in brain neural network
simulation. Chin J Comput. 2020;43(6):1025. doi:10.11897/SP.J.1016.2020.01025.

16. Li M, Liu C, Liao J, Zheng X, Yang H, Sun R, et al. Towards optimized tensor code generation for deep learning on
Sunway many-core processor. Front Comput Sci. 2024;18(2):182101. doi:10.1007/s11704-022-2440-7.

17. Li F, Liu X, Liu Y, Zhao P, Yang Y, Shang H, et al. SW_Qsim: a minimize-memory quantum simulator with
high-performance on a new Sunway supercomputer. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis; 2021; St. Louis, MO, USA. p. 1–13. doi:10.1145/3458817.
3476161.

18. Hao X, Fang T, Chen J, Gu J, Feng J, An H, et al. Swmpas-a: scaling MPAS-A to 39 million heterogeneous cores on
the new generation Sunway supercomputer. IEEE Trans Parallel Distrib Syst. 2022;34(1):141–53. doi:10.1109/TPDS.
2022.3215002.

19. Ma Z, He J, Qiu J, Cao H, Wang Y, Sun Z, et al. BaGuaLu: targeting brain scale pretrained models with over
37 million cores. In: Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming; 2022; Seoul, Republic of Korea. p. 192–204. doi:10.1145/3503221.3508417.

https://doi.org/10.1145/3126908.3126909
https://doi.org/10.1145/3126908.3126909
https://doi.org/10.1145/3126908.3126910
https://doi.org/10.1145/3126908.3126910
https://doi.org/10.1109/SC.2018.00059
https://doi.org/10.11897/SP.J.1016.2020.01025
https://doi.org/10.1007/s11704-022-2440-7
https://doi.org/10.1145/3458817.3476161
https://doi.org/10.1145/3458817.3476161
https://doi.org/10.1109/TPDS.2022.3215002
https://doi.org/10.1109/TPDS.2022.3215002
https://doi.org/10.1145/3503221.3508417

	SW-DDFT: Parallel Optimization of the Dynamical Density Functional Theory Algorithm Based on Sunway Bluelight II Supercomputer
	1 Introduction
	2 The Dynamical Density Functional Theory and the Sunway Bluelight II Supercomputer
	3 Analysis and Parallelization of Dynamical Density Functional Theory Algorithm
	4 Optimization of the Dynamical Density Functional Theory program
	5 Performance Analysis
	6 Related Work
	7 Conclusion
	References

