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ABSTRACT: The rising prevalence of diabetes in modern society underscores the urgent need for precise and efficient
diagnostic tools to support early intervention and treatment. However, the inherent limitations of existing datasets,
including significant class imbalances and inadequate sample diversity, pose challenges to the accurate prediction and
classification of diabetes. Addressing these issues, this study proposes an innovative diabetes prediction framework
that integrates a hybrid Convolutional Neural Network-Bidirectional Gated Recurrent Unit (CNN-BiGRU) model for
classification with Adaptive Synthetic Sampling (ADASYN) for data augmentation. ADASYN was employed to generate
synthetic yet representative data samples, effectively mitigating class imbalance and enhancing the diversity and
representativeness of the dataset. This augmentation process is critical for ensuring the robustness and generalizability
of the predictive model, particularly in scenarios where minority class samples are underrepresented. The CNN-
BiGRU architecture was designed to leverage the complementary strengths of CNN in extracting spatial features and
BiGRU in capturing sequential dependencies, making it well-suited for the complex patterns inherent in medical data.
The proposed framework demonstrated exceptional performance, achieving a training accuracy of 98.74% and a test
accuracy of 97.78% on the augmented dataset. These results validate the efficacy of the integrated approach in addressing
the challenges of class imbalance and dataset heterogeneity, while significantly enhancing the diagnostic precision for
diabetes prediction. This study provides a scalable and reliable methodology with promising implications for advancing
diagnostic accuracy in medical applications, particularly in resource-constrained and data-limited environments.

KEYWORDS: Convolutional neural network; bidirectional gated recurrent unit; adaptive synthetic sampling; hybrid
deep learning; diabetes prediction

1 Introduction
Over the past decade, the literature on diabetes has expanded substantially, reflecting the growing

recognition of diabetes as a critical public health issue. An initial exploration by highlights the alarming rise
in diabetes prevalence, particularly in low- and middle-income countries, attributing this increase to urban
migration, unhealthy diets, and the erosion of traditional family support systems. The authors emphasize
the urgent need for improved patient self-management and enhanced social support mechanisms to address
the growing healthcare burden posed by diabetes. On 7 April 2016, World Health Day, which was devoted
to diabetes, the first WHO Global Report on Diabetes was released. Although diabetes is acknowledged as
a serious ailment and has been mentioned in ancient texts, doctors and healers do not seem to have met it
often. Over the past few decades, the growing number of persons with this ailment has had an increasing
impact on human health and development.
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Diabetes is a chronic medical disorder marked by high blood glucose levels and abnormal protein and
fat metabolism [1]. When the pancreas is unable to create enough insulin or the cells are unable to utilize the
insulin that is produced efficiently, blood glucose levels rise because the glucose cannot be digested in the
cells [2]. Type 1 diabetes is characterized by the pancreas’s inability to produce insulin [3]; type 2 diabetes
is characterized by body cells’ resistance to the action of insulin, which causes the production of insulin to
decline over time gradually; and gestational diabetes, which develops during pregnancy and can result in
complications during pregnancy and at birth, as well as an increased risk of type 2 diabetes in the mother
and obesity in the offspring.

Deep learning is helpful in the research and treatment of diabetes [4] and can analyze complex
genetic [5], lifestyle, and medical data, uncover subtle patterns and enhance risk assessment, personalized
treatment recommendations, and early diagnosis. Algorithms for deep learning attempt to replicate the
way the human brain learns and thinks. One benefit is that deep learning algorithms have several built-
in features, such as the ability to extract and select features [6]. Furthermore, it aids in the evaluation of
medical pictures, such as retinal scans that reveal diabetic retinopathy, and the extraction of data from textual
materials, including electronic health records [7]. Deep learning algorithms look at a variety of traits, such as
genetics, lifestyle decisions, and medical history, to generate prediction models [8]. With enough precision,
these models can forecast an individual’s chance of developing diabetes, enabling early intervention, tailored
treatment plans, and proactive management strategies to lower risks and improve patient outcomes.

The study is conducted to enhance diabetes prediction by leveraging machine learning and ensemble
learning techniques [9]. It explores various models, including Logistic Regression, SVM, Naïve Bayes,
and Random Forest, alongside advanced ensemble methods such as XGBoost, LightGBM, CatBoost, and
Adaboost. The proposed approach aims to improve predictive accuracy and robustness, addressing the
challenges of early diagnosis and effective disease management through data-driven methodologies. By using
a patient’s past data to forecast future blood glucose levels, the study seeks to address diabetes management. It
offers a thorough analysis of current blood glucose level prediction research, classifying studies according to
input characteristics, clinical applications, and modeling methodologies, such as physiological, data-driven,
and hybrid methods. It also identifies important research issues and potential paths forward, making it a
useful tool for creating data-driven models for the management and prediction of diabetes [10].

Another study has been conducted to enhance diabetes prediction by addressing accuracy and data
imbalance challenges in existing machine learning models. The research introduces a novel deep learning
mechanism, the Convolutional Gated Recurrent Unit (CGRU), which integrates spatial and temporal feature
extraction to improve classification efficiency. The proposed framework involves data preparation, model
training, and evaluation, utilizing the BRFSS dataset for diabetes prediction. By leveraging clustering
algorithms for severity classification, the study demonstrates the superiority of CGRU over conventional
models, highlighting its potential for early diabetes detection and improved healthcare outcomes [11].

Moreover, a study has been conducted to explore quantum information processing for diabetes clas-
sification using variational quantum classifiers (VQC). The research analyzes the impact of qubit count,
feature maps, optimizers, circuit layers, and learnable parameters on VQC performance. A total of 76 VQC
variants are evaluated using the PIMA Indian Diabetes Dataset and compared with six classical machine
learning models. The study finds that a VQC model with a ZZ feature map, COBYLA optimizer, and six-layer
architecture achieves optimal accuracy, outperforming traditional models like SVM, Random Forest, and
Decision Tree in diabetes prediction [12]. Continuous glucose monitoring (CGM) has been used in another
study to enhance long-term blood glucose prediction for middle-aged and older people. Conventional
approaches use patient-reported activities, which are subject to inaccuracy. The study looks into a number
of prediction models to handle this, such as Support Vector Machine (SVM), Binary Decision Tree (BDT),
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Linear Regression (LR), and Artificial Neural Networks (ANN). The outcomes show the potential of CGM-
based machine learning models for autonomous and precise glucose level prediction, highlighting the
efficacy of BDT and Boosting Regression Tree Ensemble (BRTE) in reaching high classification accuracy [13].

A recent study highlighted the application of the Generalized Boosting Regression classifier, achieving
a 90.91% accuracy rate for Type 2 diabetes detection. Using k-fold cross-validation, another study reported
that Linear Regression achieved 77% accuracy on the PI dataset [14]. Another research effort, published in
July 2021, emphasized advancements in healthcare through IoT and AI. Weighted Voting LRRFs achieved the
highest accuracy of 88% using the ELSA dataset [15]. Research conducted in the USA, using data from over
700 healthcare facilities spanning 2007–2020, focused on identifying complications among Type 2 diabetes
patients. Algorithms such as XGB and RF were employed, achieving comparable results [16]. Another study,
published on 12 January 2023, analyzed data from 9000 adults to explore the association between Type 2
diabetes and complications such as cancer and vascular diseases. The Balanced Focused (BF) model achieved
the highest accuracy of 83% [17]. A study conducted in Saudi Arabia employed a cross-sectional approach and
a questionnaire to assess diabetes risk factors. Using a Decision Tree classifier, the study achieved an accuracy
rate of 82% [2]. This study proposes a diabetes prediction model combining BiGRU with GAN-based data
augmentation, enhancing dataset quality and training robustness. The model achieves a validation accuracy
of 96.74% and a test accuracy of 97.62%, demonstrating superior performance in diabetes prediction [18].

To outperform earlier models, we have improved the deep-learning model in this study. Because
there aren’t enough datasets available, we’ve used Adaptive Synthetic Sampling (ADASYN) to balance the
imbalance class of the original dataset by creating artificial samples to improve our prediction model’s
training. We enhanced the Bidirectional Gated Recurrent Unit (BiGRU) by adding the Convolutional
Neural Networks (CNNs) layer and trained the enhanced model CNN-BiGRU for prediction purposes,
concentrating on binary classification for diabetes (0 for negative instances, 1 for positive ones). Comparing
our study to previous studies, we have found considerable advances.

2 Method Improvement

2.1 Problem Statements
1. Imbalanced Diabetes Dataset: Chinese Diabetes Dataset with 18 features composed of Participants in

the 1304 samples of individuals who tested positive for diabetes ranging in age from 21 to 99. The class
distribution of the original dataset for class 0: 1489 and for class 1: 662. Therefore, the imbalanced classes
affect the accuracy of the prediction model. It can cause biased prediction.

2. Prediction Model Problem: Predicting diabetes using machine learning or deep learning techniques still
presents significant hurdles. It is essential to make sure the model can correctly categorize invisible data
from various demographics. It is difficult to find pertinent characteristics from a big pool, which could
have impacted the model’s performance.

2.2 Improvement Strategies
2.2.1 Data Augmentation Strategy with Adaptive Synthetic Sampling (ADASYN)

The Adaptive Synthetic Sampling (ADASYN) technique was chosen for data augmentation due to its
targeted approach to addressing class imbalance. Unlike SMOTE, which applies uniform oversampling,
ADASYN focuses on generating synthetic samples for hard-to-classify minority instances near decision
boundaries. This dynamic sampling strategy enhances the model’s ability to classify challenging cases more
accurately. Additionally, ADASYN preserves the overall data distribution while ensuring a balanced dataset,
which is crucial for improving model robustness and generalizability during training. The mathematical
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formulation of Adaptive Synthetic Sampling (ADAYSN), see Eq. (1):

G = (Nma j − Nmin) × β, (1)

where β ∈ [0, 1] is a user-defined parameter controlling the level of oversampling.
The Difficulty Coefficient, see Eq. (2):

ri =
kma j

k
, (2)

where for each minority sample xi : The k − nearest Neighbors (KNN) is using a distance metric (e.g.,
Euclidean) to compute. kma j in the number of neighbors belonging to the majority class, ri is the difficulty
coefficient for each minority sample.

To generate synthetic samples, it linearly interpolates between a minority sample xi and one of its
k − nearest Neighbors, see Eq. (3):

Gi = ri ×G . (3)

For each sample xi generated Gi by using the Eq. (4):

xnew = xi + λ × (xnn − xi) (4)

where xnn is a randomly selected neighbor from the k − nearest Neighbors, λ is a random number in the
range [0, 1].

Weighted Sampling, Gi controls the number of samples generated for each minority instance,
emphasizing those near challenging decision boundaries.

2.2.2 Enhancing Prediction Model Strategy with CNN-BiGRU
CNNs consist of convolutional and pooling layers, where convolutional layers extract nonlinear local

features from power load data, and pooling layers compress these features to enhance generalization. This
structure improves the model’s ability to capture important information and generalize effectively. Bidirec-
tional Gated Recurrent Units (BiGRU) are an advanced variant of GRUs, designed to process sequential
data in both forward and backward directions. They represent significant advancements in Recurrent Neural
Networks (RNNs), enhancing their applicability across various domains.

In this research, we developed a hybrid model by integrating Convolutional Neural Network (CNN) and
Bidirectional Gated Recurrent Unit (BiGRU) components, referred to as the CNN-BiGRU model. The input
data is first processed by the CNN layers, which then extract pertinent spatial characteristics. These features
are then combined and reduced to a lower-dimensional representation. The BiGRU layer receives this
condensed representation as input and uses its capacity to capture sequential dependencies in both forward
and backward directions to enhance the retrieved features. In order to maintain the semantic links between
data pieces, the features are normalized and converted into numerical embeddings during preprocessing.
These embeddings are then used as input to the CNN-BiGRU architecture, which improves the prediction
performance for diabetes categorization by using the CNN component to identify intricate spatial patterns
and the BiGRU component to improve the model’s recognition of sequential trends. See Fig. 1 below.

Fig. 1 depicts the CNN-BiGRU architecture for diabetes prediction, consisting of sequential convolu-
tional layers, a BiGRU layer for temporal feature extraction, and a fully connected layer with dropout to
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prevent overfitting. The model outputs a probabilistic classification of “Diabetes” or “No Diabetes” using a
sigmoid-activated layer.

Figure 1: A structure of CNN-BiGRU

Convolutional neural networks (CNN) and bidirectional gated recurrent units (BiGRU) are used in the
CNN-BiGRU model to handle the input diabetes dataset for binary classification. Each step’s mathematical
formulation is as follows:

(1) Input Layer: Let the input diabetes dataset be represented as a matrix X ∈ Rn∗d , where n is the number
of samples, and d is the number of features.

(2) Convolutional Layers: Two 1D convolutional layers are applied sequentially to extract spatial features
from the input. For first Convolutional layer, Input: ; X and the convolution, see Eq. (5):

H(1) = ReLU (X ∗W1 + b1) (5)

where W1 ∈ Rk1∗d is the kernel of size k1, b1 is the bias, and ∗ denotes the convolutional operation. The
Output: H(1) ∈ Rn−k1+1∗ f1 , where f1 is the number of filter (32). For the second convolutional layer, the Input:
H(1) and the convolution, see Eq. (6):

H(2) = ReLU (H(1) ∗W2 + b2) , (6)

where W2 ∈ Rk2∗ f2 and b2 are the kernel and bias respectively. The Output: H(2) ∈ Rn−k1−k2+2∗ f2 , where f2 is
the number of filter (64).

Each convolutional layer output undergoes batch normalization to stabilize training, see Eq. (7):

H(l)
BN = γ H(l) − μ

σ
+ β, (7)

where μ are σ the mean and standard deviation of the batch, γ and β are learnable scaling parameters.
Bidirectional GRU Layer: The output from the convolutional layers, H(2)BN is fed into a Bidirectional GRU.

In the Forward pass for the time step t, see Eq. (8):
→

h t = GRUforward (ht−1 , xt) , (8)

where GRUforward uses gating mechanisms to update the hidden state. In the Backward Pass for the time step
t, see Eq. (9):
←

h t = GRUbackward (ht+1 , xt) . (9)
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The Bidirectional Output combined hidden state is given as:

ht = [
→

h t ;
←

h t] , (10)

where [;] denotes concatenation. The Output is HBiGRU ∈ Rn∗2h , where h is the number of hidden units.

(3) Fully Connected Layer: The output from the BiGRU layer is flattened, see Eq. (11):

Hflat = Fl atten (HBiGRU) , (11)

Then a fully connected layer maps the features to higher-dimensional space, see Eq. (12):

Z = ReLU (H f l at ⋅W f c + b f c) , (12)

where W f c ∈ Rd∗64 and b f c are the weights and biases. The Dropout (p = 0.5) is applied to prevent
overfitting, see Eq. (13):

Zdrop = Dropout (Z) . (13)

Then in the last fully connected layer outputs a single unit, see Eq. (14):

y = Sigmoid (Zdrop ⋅Wout + bout) , (14)

where Wout ∈ R64∗1.

(4) Output Layer: The sigmoid activation outputs a probability y ∈ [0, 1]which is classified into “Diabetes”
or “No Diabetes” using a threshold τ, see Eq. (15):

Class = { Diabetes, y ≥ τ
NoDiabetes, y < τ . (15)

For multiclass extensions, a Softmax activation could replace the sigmoid function, see Eq. (16):

y = So f tmax (Zdrop ⋅Wout + bout) . (16)

High prediction accuracy for diabetes classification is achieved by this architecture’s efficient combina-
tion of CNN’s spatial feature extraction, BiGRU’s temporal dependencies, and fully linked layers’ resilient
classification. The pseudocode for the CNN-BiGRU implementation is provided for further reference, see
Algorithm 1.

Algorithm 1: Pseudo-code for the CNN-BiGRU model
CNN-BiGRU Model
Input: Diabetes dataset with features and labels
Output: Binary classification indicating “Diabetes” or “No Diabetes”
Step 1: Data Preprocessing
Normalise the feature values of the dataset.
Split the dataset into training, validation, and testing sets.
Step 2: Model Initialization
Define the architecture of the CNN-BiGRU model:

(Continued)
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Algorithm 1 (continued)
Input Layer: Insert raw data.
Convolutional Layer: For feature extraction using 32 filters and a kernel size of 3.
ReLU Activation: To introduce non-linearity.
Max Pooling: For downsampling.
Bidirectional GRU Layer: To capture temporal dependencies.
Step 3: Model Training
Define the loss function: Binary Cross-Entropy.

L = −(y ⋅ log (p) + (1 − y) ⋅ log (1 − p))
Use the Adam optimizer for gradient updates.
Train the model using the training dataset.
Validate the model on the validation dataset after each epoch.
Step 4: Model Evaluation
Evaluate the trained model on the test dataset.
Compute performance metrics: Accuracy, Precision, Recall, and F1-Score.
Step 5: Classification Decision
Apply a decision threshold (e.g., 0.5) to the model’s output:
If output ≥ 0.5: Classify as “Diabetes”
Else: Classify as “No Diabetes”
Step 6: Output Results
Generate the final classification results and evaluate the model’s performance.

3 Experiments and Result Analysis

3.1 Experimental Data Set Description
All the work in this research is based on the publicly available “Diabetes_Dataset_With_18_Features”

(https://www.kaggle.com/datasets/pkdarabi/diabetes-dataset-with-18-features (accessed on 1 January
2025)). The dataset originates from a Chinese research study conducted in 2016 and comprises 1304 samples
of individuals diagnosed with diabetes. The participants’ ages range from 21 to 99 years. Collected in
adherence to the indicators and standards established by the World Health Organization (WHO), this dataset
serves as a reliable foundation for developing models aimed at diagnosing diabetes. It provides valuable
data for researchers and healthcare professionals to train and evaluate machine learning models for diabetes
prediction and diagnosis. Table 1 shows the details of all the features in the Chinese Diabetes Dataset.

Table 1: Features of the dataset

Features Description Data type Min. Val. Max. Val.
Age Age Int64 22.0 93.0

Gender Gender Int64 – –
BMI Body mass index Float64 15.6 45.8
SBP Systolic blood pressure Int64 72.0 200
DBP Diastolic blood pressure Int64 45.0 134.0
FPG Fasting plasma glucose Float64 1.78 6.99
Chol Cholesterol Float64 1.65 11.65
Tri Triglyceride Float64 0.0 32.64

HDL High-density lipoprotein level Float64 0.0 4.86073

(Continued)

https://www.kaggle.com/datasets/pkdarabi/diabetes-dataset-with-18-features
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Table 1 (continued)

Features Description Data type Min. Val. Max. Val.
LDL Low-density lipoprotein Float64 0.54 6.27
ALT Alanine aminotransferase Float64 4.5 436.2
BUN Blood urea nitrogen Float64 1.38 17.78
CCR Creatinine clearance Integer 4.860753 307.0
FFPG Final fasting plasma glucose Float64 3.2 29.7

Smoking Patient smokes or not? Float64 1.0 4.86075
Drinking Patient drinks or not? Float64 1.0 4.86075

Family history Anyone in the family was
diabetic or not

Int64 0.0 1.0

Diabetes Results if the person is diabetic
or not

Int64 0.0 1.0

3.2 Experimental Environment
This study implemented the experimental environment using Python and Google Colab, utilizing

libraries such as NumPy, PyTorch, and ADASYN for data processing, augmentation, and model training. The
model, a hybrid CNN-BiGRU architecture, was trained with GPU acceleration, and k-fold cross-validation,
and evaluated using metrics like accuracy, precision, and recall.

3.3 Deep Learning Network Structure and Parameter Settings
This study’s deep learning model is a hybrid CNN-BiGRU architecture, which combines bidirectional

gated recurrent units (BiGRU) with convolutional neural networks (CNNs). Two convolutional layers make
up the CNN component. The first layer employs 32 filters with a kernel size of 3 and padding, while the
second layer utilizes 64 filters. The kernel size was optimized through hyperparameter tuning, where multiple
values (3, 5, and 7) were tested. A kernel size of 3 was selected based on its superior performance in validation
accuracy and its ability to effectively capture local dependencies. The incoming data is transformed into a
1D sequence format for further processing, and these layers seek to extract spatial information from it. In
order for the model to comprehend both past and future contextual information, the output of the second
convolutional layer is sent through a bidirectional GRU layer, which extracts temporal relationships from
the sequence data. The sequence may be processed in both ways thanks to the bidirectional nature of the 128
units that make up the GRU layer. After passing through fully connected layers, the output from the GRU
layer is transmitted via a sigmoid activation function for binary classification as the last layer.

With a learning rate of 0.001 and L2 regularization (weight decay set to 1 × 10−4) to avoid overfitting, the
model was trained using the Adam optimizer. Because the task is binary classification (predicting diabetes
or not), binary cross-entropy (BCELoss) was the loss function utilized for training. The training was carried
out using a batch size of 64 across 100 epochs. In order to avoid needless computation and overfitting,
early stopping was included with a 20-epoch patience to terminate training when validation loss no longer
improves. K-fold cross-validation (5 folds) was used to assess the model’s generalizability and make sure that
its performance is consistent across various training data subsets. Accuracy was used to test the model, and
each fold’s findings were kept. To further reduce overfitting, dropout (set to 0.5) was used after the completely
linked layers.
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3.4 Analysis of Experimental Results
The Chinese Diabetes dataset comprises 18 features. To address this issue of class imbalance, the

ADASYN algorithm was employed to balance the dataset. Following data preprocessing, the ADASYN
algorithm was applied to the training subset of the dataset to generate synthetic samples for the minority
class, effectively mitigating the class imbalance and enhancing the dataset’s suitability for model training.
The result of the ADASYN, the class distribution can be seen in Fig. 2.

Figure 2: Class Distribution before and after applying ADASYN. (a) class distribution before applying ADASYN; (b)
class distribution after applying ADASYN

Fig. 2a depicts the dataset’s initial class imbalance, with the majority class (label 0) containing approxi-
mately 1400 samples and the minority class (label 1) having fewer than 800 samples. After applying Adaptive
Synthetic Sampling (ADASYN), Fig. 2b shows a balanced class distribution, with the minority class matching
the majority. This demonstrates ADASYN’s effectiveness in addressing class imbalance, a critical step for
mitigating biased predictions and enhancing machine learning model performance.

To show the effectiveness of the ADASYN data augmentation technique the Correlation Matrix of the
Original and Augmented dataset with all 18 features because they all contribute meaningful information that
is required for diabetes prediction, is given in Fig. 3. The correlation coefficients are calculated using Pearson’s
correlation equation, which evaluates the linear relationship between two variables, as in Eq. (17):

r =
∑(Xi − X) (Yi − Y)

√
∑(Xi − X)2 ⋅

√
∑(Yi − Y)2

, (17)

where r is the correlation coefficient, X and Y are the feature values and their respective means are X and
Y . A value close to +1 or −1 is indicating a strong relationship, while a value near 0 is suggesting weak or
no correlation.

Fig. 3a shows the confusion matrix’s correlation with original dataset features and Fig. 3b shows the
confusion matrix’s correlation of Augmented dataset. It concurrently calculates the output result for outlier
rejection values and fills in missing data. Using a box plot to summarize statistical data, the +e correlation
attribute with the target variable shows that the correlation coefficient has significantly improved.
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Figure 3: Features correlation matrix of original and augmented dataset. (a) correlation matrix of original dataset; (b)
correlation matrix of augmented dataset

The enhanced CNN-BiGRU model was trained using the augmented training set, validated using
k-fold cross-validation, and tested on unseen data for binary classification of classes “0” (negative) and “1”
(positive). Fluctuations in accuracy were observed during cross-validation, with an average training accuracy
of 98.74%. We chose all 18 features of the original dataset as input for the CNN-BiGRU model because they
all contribute meaningful clinical, biochemical, and lifestyle-related information that is required for diabetes
prediction. The final evaluation of the test dataset ensured the model’s generalizability and helped assess
overfitting, a critical consideration in health sciences for reliable performance on new data.

To understand the behavior of the model by showing the number of correct and incorrect predictions
for each class we visualized the confusion matrix, shown in Fig. 4. The confusion matrix is a foundational tool
for calculating various evaluation metrics such as: Accuracy, Precision, Recall and F1-score. The structure of
the confusion matrix is given in Table 2.

Figure 4: Confusion matrices of validation and test set. (a) validation confusion matrix; (b) test confusion matrix

In Table 3, the definitions of the terms are following:
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Table 2: Structure of a confusion matrix

Actual/Predicted Predicted: Positive (1) Predicted: Negative (0)
Actual: Positive (1) True Positive (TP) False Negative (FN)

Actual: Negative (0) False Positive (FP) True Negative (TN)

(1) True Positive (TP): The model correctly predicted the positive class.
(2) False Positive (FP): The model incorrectly predicted the positive class (Type I error).
(3) True Negative (TN): The model correctly predicted the negative class.
(4) False Negative (FN): The model incorrectly predicted the negative class (Type II error).

Table 3: CNN-BiGRU model vs. Existing machine learning techniques

Algorithms Accuracy Accuracy
improve-

ment

Precision Precision
improvement

Recall Recall
improve-

ment

F1-Score F1-Score
improve-

ment
Our model 97.78% – 98.65% – 96.13% – 97.45% –

Random
forest

95.12% +2.8% 97.40% +1.3% 86.19% +11.5% 91.45% +6.6%

Decision tree 94.89% +3.0% 93.57% +5.4% 89.26% +7.7% 91.36% +6.7%
KNN 76.61% +27.7% 65.40% +50.9% 58.34% +64.8% 55.59% +75.3%

Naive bayes 94.81% +3.1% 92.63% +6.5% 90.03% +6.8% 91.31% +6.7%
Logistic

regression
94.05% +4.0% 96.39% +2.3% 85.93% +11.9% 91.30% +6.7%

Gradient
boosting

94.43% +3.5% 94.79% +4.1% 84.39% +13.9% 89.29% +9.1%

SVM 94.31% +3.7% 96.08% +2.7% 82.70% +16.1% 88.89% +9.6%
Neural

network
94.49% +3.5% 91.15% +8.2% 96.55% −0.4% 90.12% +8.1%

XGBoost 95.00% +2.9% 95.19% +3.6% 89.38% +7.6% 92.57% +5.3%
CatBoost 95.78% +2.1% 97.56% +1.1% 88.90% +8.1% 92.31% +5.6%

ELM 94.08% +3.9% 94.71% +4.2% 83.12% +15.6% 88.54% +10.1%
LSTM 91.99% +6.3% 94.68% +4.2% 75.11% +28.0% 83.76% +16.3%
GRU 92.10% +6.2% 93.33% +5.7% 76.79% +25.2% 84.26% +15.6%
TCN 90.94% +7.5% 92.06% +7.2% 73.42% +31.0% 81.69% +19.3%

BiLSTM 92.57% +5.6% 93.47% +5.5% 78.48% +22.5% 85.32% +14.2%
BiGRU 92.22% +6.0% 97.75% +0.9% 73.42% +31.0% 83.86% +16.2%

Fig. 4a presents the confusion matrix for the validation dataset, with 290 true negatives, 307 true
positives, 8 false positives, and 16 false negatives, indicating strong predictive accuracy. Fig. 4b shows the
test dataset results, achieving 598 true negatives, 214 true positives, 24 false positives, and 25 false negatives,
indicating strong predictive performance. The model demonstrates balanced performance across both
datasets, with a slight drop on the test set suggesting minimal overfitting. These results highlight the model’s
robustness and generalizability to unseen data.

To ensure transparency and reproducibility, the evaluation metrics used in this study are calculated as
follows:
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(1) Accuracy measures the overall correctness of the model, as Eq. (18):

Accuracy = TP + TN
TP + TN + FP + FN

, (18)

(2) Precision reflects how many of the predicted diabetic cases were actually correct, as Eq. (19):

Precision = TP
TP + FP

, (19)

(3) Recall or Sensitivity indicates how well the model identifies actual diabetic cases, as Eq. (20):

Recall = TP
TP + FN

, (20)

(4) F1-score provides a balance between precision and recall, as Eq. (21):

F1 − Score = 2 ⋅ precision × recal l
precision + recal l

. (21)

Furthermore, by using the above equation we calculated the accuracy, precision, recall and f1 scores
and compared the results of our model with those of various machine learning algorithms to evaluate its
performance. The comparison our proposed model with existing machine learning techniques along with
the calculated relative improvement is presented in Table 3. We calculate the relative improvement of our
model over each baseline model using the Eq. (22):

Relative Improvement (%) = Our Model Value − Baseline Model Value
Baseline Model Value

× 100. (22)

Table 3 shows a comparative analysis of the proposed CNN-BiGRU model against various machine
learning algorithms. The findings show that our model outperforms all baseline approaches in important
assessment criteria, such as precision (98.65%), recall (96.13%), and F1-score (97.45%), and obtains the best
accuracy (97.78%). Furthermore, the table shows the relative improvement (%) of our methodology over
each baseline technique, allowing for a quantitative assessment of its effectiveness. The findings show that
the CNN-BiGRU architecture efficiently integrates spatial feature extraction (CNN) and sequential learning
(BiGRU), leading to significant performance advantages over traditional machine learning models and
alternative deep learning architectures.

Table 4 notably shows, without ADASYN data augmentation, the CNN-BiGRU model demonstrates
comparatively reduced recall and F1-score, indicating the adverse effects of class imbalance. By employing
ADASYN to synthesize new minority-class samples, our approach ensures a more balanced dataset and
substantially improves the model’s overall predictive performance.

Table 4: Proposed model with and without ADASYN-based data augmentation

Proposed model Accuracy Precision Recall F1-Score
With ADASYN 97.78% 98.65% 96.13% 97.45%

Without ADASYN 93.96% 92.03% 89.44% 90.71%
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The hybrid CNN-BiGRU architecture, which successfully blends CNN’s capacity to extract spatial
features with BiGRU’s prowess in identifying sequential dependencies, is responsible for this better perfor-
mance. The CNN-BiGRU model combines spatial and sequential learning, which helps it better capture
intricate patterns in medical data than traditional deep learning models like LSTM (91.99% accuracy) and
GRU (92.10% accuracy), which mainly concentrate on temporal correlations.

The ROC AUC curve is displayed in the Fig. 5, to assess a classification model’s effectiveness by
displaying the trade-off between the true positive rate (sensitivity) and the false positive rate across different
thresholds in Fig. 6. The ROC curve is defined by two key components mathematically:

(1) True Positive Rate (TRP) or Sensitivity as Eq. (23):

TPR = TP
TP + FN

, (23)

where TP represents true positives and FN represents false negatives
(2) False Positive Rate (FPR) or 1-Specificity as Eq. (24):

FPR = FP
FP + TN

, (24)

where FP represents false positives and TN represents true negatives.

Figure 5: ROC AUC curve of the model

The AUC score is the area under the ROC curve, which can be calculated by Eq. (25):

AUC = ∫
1

0
TPR (FPR) dFPR, (25)

Fig. 6 plots the true positive rate against the false positive rate, the ROC curve shows how well the model
performs. Excellent discriminatory capacity is indicated by the high AUC value of 0.98%, which validates
the model’s efficacy in differentiating between positive and negative classes.

To assess the training stability and generalization ability of the proposed CNN-BiGRU model, a
convergence analysis is performed by plotting the training loss and validation loss over multiple epochs.
Shown in Fig. 6.
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Figure 6: Convergence curve over the epochs of proposed model

Fig. 6 illustrates the loss behavior during the training process. As the model gradually picks up
significant patterns from the training data, the training loss (purple) gradually drops. As the model optimizes
its weights, it is typical for the validation loss (green) to fluctuate at first before stabilizing. The rapid drop in
validation loss after the initial epochs suggests successful training, while its eventual stabilization indicates
convergence. The model’s robust generalization and avoidance of overfitting are confirmed by the close
overlap of training and validation losses in subsequent epochs.

4 Discussions and Limitations
The proposed CNN-BiGRU model shows strong performance in predicting diabetes, but several

limitations exist. The dataset used is small, which may limit the model’s applicability to bigger, more
diverse populations. Future research could assess the model using larger datasets with diverse demographics.
Although ADASYN was utilized for data augmentation, managing highly unbalanced datasets with complex
patterns remains difficult. Future work could include more complex techniques for synthetic data generation,
such as GANs. The model’s usefulness in real-time clinical settings was not explored, and future studies
should study its incorporation into clinical workflows for real-time monitoring. Furthermore, improving
model interpretability using strategies such as attention processes or SHAP values may increase its medical
usefulness. Finally, developing the model to accommodate multi-class classification or regression tasks.

Finally, developing the model to deal with multi-class classification or regression tasks would provide
insights into disease progression and risk stratification, broadening its potential use in healthcare.

5 Conclusion
This study presents an innovative and effective approach for diabetes prediction by integrating a CNN-

BiGRU hybrid architecture with ADASYN-based data augmentation, addressing the critical challenge of
class imbalance in medical datasets. ADASYN significantly enriched the dataset by generating synthetic yet
representative samples, thereby improving model generalizability and ensuring a balanced representation of
minority classes. The proposed CNN-BiGRU framework demonstrated exceptional predictive performance,
achieving a training accuracy of 98.74% and a test accuracy of 97.78%, by leveraging the complementary
strengths of CNNs in feature extraction and BiGRUs in capturing sequential dependencies.
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These results underscore the model’s robustness and effectiveness in overcoming the inherent limita-
tions of unbalanced medical datasets, marking a substantial advancement in the accuracy and reliability
of diabetes prediction. Furthermore, this work emphasizes the pivotal role of integrating advanced data
augmentation techniques with cutting-edge hybrid architectures to enhance diagnostic precision in medical
applications. By establishing a scalable and reliable methodology, this study not only addresses pressing
challenges in diabetes diagnostics but also lays a solid foundation for future research aimed at improving
predictive capabilities in other medical domains.
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