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ABSTRACT: The integration of IoT and Deep Learning (DL) has significantly advanced real-time health monitoring
and predictive maintenance in prognostic and health management (PHM). Electrocardiograms (ECGs) are widely used
for cardiovascular disease (CVD) diagnosis, but fluctuating signal patterns make classification challenging. Computer-
assisted automated diagnostic tools that enhance ECG signal categorization using sophisticated algorithms and machine
learning are helping healthcare practitioners manage greater patient populations. With this motivation, the study
proposes a DL framework leveraging the PTB-XL ECG dataset to improve CVD diagnosis. Deep Transfer Learning
(DTL) techniques extract features, followed by feature fusion to eliminate redundancy and retain the most informative
features. Utilizing the African Vulture Optimization Algorithm (AVOA) for feature selection is more effective than
the standard methods, as it offers an ideal balance between exploration and exploitation that results in an optimal
set of features, improving classification performance while reducing redundancy. Various machine learning classifiers,
including Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), and
Extreme Learning Machine (ELM), are used for further classification. Additionally, an ensemble model is developed to
further improve accuracy. Experimental results demonstrate that the proposed model achieves the highest accuracy of
96.31%, highlighting its effectiveness in enhancing CVD diagnosis.

KEYWORDS: Prognostics and health management (PHM); cardiovascular disease (CVD); electrocardiograms
(ECGs); deep transfer learning (DTL); African vulture optimization algorithm (AVOA)

1 Introduction
AI, IoT, and mobile technologies have caused a major shift in the delivery and practice of medicine.

The advent of wearable technology, sensor networks for mobile communications, and other mobile tech-
nologies have transformed the model of healthcare delivery from a hospital-focused to a patient-centric
paradigm [1,2]. These improvements allow for early diagnosis, better accessibility, and less cost. Leading
causes of mortality, CVDs, are the burden of modern society [3]. Healthcare systems globally have a huge
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financial burden with CVDs like coronary artery disease, heart failure, arrhythmias, and strokes [4,5]. These
diseases need to be detected and monitored before and after positive health outcomes are achieved to ensure
the reversal of the illness [6].

The WHO has already identified CVDs as a health threat for all people that cuts across boundaries,
which demonstrates the urgent need for efficient monitoring techniques as well as their anticipated real-
time preventive measures [7]. ECGs offer non-invasive, fast, and dependable information on cardiac activity,
making them useful in diagnosing CVD. Nonetheless, conventional ECGs must be interpreted by specialists,
which is always manual, expert-based, and, therefore, slow, expensive, and often impossible in areas with
poor physician access [8]. IoT-enabled ECG devices powered by mobile and wireless networks and edge
microprocessors are scalable solutions for cardiac health monitoring at a distance or inside the patient’s home,
even in low-resource settings [9,10].

Deep learning (DL) has developed as a promising approach for analyzing sophisticated biological data,
from which the ECG signals and the accompanying complex tendencies are processed. Federated learning is
also used to detect abnormal heart sound detection [11]. Significant achievements related to transfer learning
and using pre-trained models like VGG16, ResNet, Inception, and EfficientNet have been reported for feature
extraction from ECG spectrograms and other large dimensional data [12]. These models are mainly known
for their fine-tuning and ability to be used as “feature extractors” for most patients, which solve the problems
associated with the variability of ECG signals over time and from person to person [13,14]. The complexity
and variability of signals still pose difficulties in feature extraction, selection, and classification accuracy, even
with automated ECG classification. An IoT and DL framework is proposed in this study to improve accuracy
and scalability in ECG-based CVD diagnoses.

1.1 Motivation and Objective
This research aims to develop a transfer learning-based model for extracting the features from the ECG

dataset and to combine the extracted features from different DTL phases. Various machine learning (ML)
classifiers are applied to the combined features to make the initial prediction. Then, the various ensemble-
based classifiers are applied for the final prediction. The objectives of the current work can be summarized
as follows:

• To design and develop a DTL-based model using EfficientNet and DesnseNet to extract the features from
the ECG signals.

• To implement a feature fusion method, Weighted Feature Averaging Fusion and Variance Thresholding,
to combine the features extracted from both DTL models.

• To optimize the feature selection process by applying the African Vulture Optimization algorithm
(AVOA) as a feature selection algorithm to select features from the combined features.

• To develop and evaluate ML classification algorithms and ensemble models for the classification phase.

1.2 Research Questions
This study seeks to improve CVD diagnostics with DTL, feature selection using the AVOA, and

ensemble classification using a systemic approach. The following research questions are devised to steer the
study in the right direction.

RQ1: How can DTL models improve feature extraction from ECG signals for more accurate CVD
diagnosis?

RQ2: How does the AVOA contribute to selecting the most relevant ECG signal features for effective
classification?
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RQ3: Can an ensemble-based ML approach enhance the accuracy and robustness of ECG signal
classification?

RQ4: How effectively is an IoT-integrated DL framework enabling real-time and scalable ECG-based
CVD diagnosis?

2 Literature Survey
Recent studies have highlighted the growing significance of physiological and cardiovascular markers

in understanding disease progression and treatment outcomes [15–17], further emphasizing the need
for advanced, data-driven approaches in cardiovascular disease diagnosis. Cardiovascular diseases, also
known as CVDs, have recently been of interest among medical professionals and researchers for their
diagnosis. The tremendous advancements in DL and ML techniques aimed at exploiting valuable data from
electrocardiograms, more commonly called ECG data, are of great interest in cardiovascular health. Recent
advances in both ML techniques and DL techniques show a lot of promise towards significantly improving
the accuracy with which heart disease can be diagnosed, and this mainly occurs through the detailed analysis
of ECG data.

Prabhakararao and Dandapt [18] proposed an innovative ensemble of attention-based temporal convo-
lutional neural network (ATCNN) models. Medical professionals may be able to use these attention weights
to make better, more timely treatment decisions for their patients. The need to find and implement novel
solutions to enhance diagnostic precision and patient outcomes is growing in response to the rising incidence
of cardiac illnesses. Bakar et al. [19] have also pointed out that ML and DL technologies play a vital role
in predicting and detecting heart diseases, although there is considerable variation with regard to accuracy
among various algorithms that are being developed in this particular area of research. Overall, according to
their research findings, DL models showed a persistent dominance over classical ML models, with precision
ratings up to 84% and as high as 99%. Thus, this critical point indicates the considerable potential for
developing this technology further, as this can make tremendous differences within the national health sector
through proper, early diagnosis based on the usage of higher technology and techniques. The presence of
several CVDs in one patient with complex ECG signals adds significant challenges to accurate classification.
Kolhar and Rajeh [20] present a new approach using a 2D Squeeze-and-Excitation ResNet (SEResNet)
architecture combined with an attention mechanism for reduced lead ECG multi-label classification. The
model achieved high accuracy and F1 scores when evaluated on a dataset of more than 88,000 ECG records.
The model significantly boosts its ability to generalize between contexts by thoughtfully incorporating
various demographic features into its framework. This makes it a very promising tool for practical, real-world
applications where there may be a need to work with limited lead configurations. Although there has been
a lot of progress in DL, particularly in ECG analysis, there remain a few challenges, especially those related
to the interpretability of complex models. Sheikh et al. [21] take a proactive approach by using explainable
AI (XAI) methods that provide valuable insights into the underlying behavior of the model, thereby leading
to a better understanding of how it works. Their exhaustive and detailed study forms a solid foundation for
a sound set of sanity checks that successfully establish saliency as a valid and credible attribution method.
Their groundbreaking work aligns the behavior demonstrated in the model with decision rules in place
by cardiologists and significantly enhances the overall transparency of DL models in support of clinical
decision-making processes, as well as the discovery of knowledge within the field itself, for example, to
identify subtypes of myocardial infarction. Additionally, Tao et al. [22] also echo and underscore the critical
need for interpretive models in ECG analysis when they present an innovative, interpretable multi-lead ECG
detection framework to augment the understanding and clarity in the study area. Their novel approach uses
an advanced double-kernel residual block, which is devised to extract inter-lead and intra-lead features. In
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addition, it employs a visualization technique based on gradient-weighted class activation mapping, which
offers deeper insights into how the model makes decisions. Hence, the model has excellent performance
metrics in achieving an AUC macro score of 0.929 when tested against the PTB-XL dataset.

Hossain et al. [23] have reviewed several ML algorithms in detail; more precisely, the main approaches,
such as Support Vector Machine and Logistic Regression, were reviewed. The experiment was performed
on a dataset consisting of 1190 individual records. The dataset was taken from the UCI repository. It is
a well-known repository that maintains a long list of datasets suitable for empirical research. The results
showed that the accuracy rate achieved using the Support Vector Machine algorithm is as high as 85.49%.
An excellent result of this sort indicates the enormous possibility of using ML technologies within this
crucial domain of high-risk patient identification, thereby allowing early diagnosis to be performed with
timeliness and effectiveness. Wagner et al. [24] moved significantly toward addressing this issue. They
utilized state-of-the-art XAI methodologies to conduct a thorough analysis of the complex model behavior of
cardiologists’ decision-making processes. Extensive detailed analysis was performed successfully to establish
a concrete set of sanity checks that reliably identified saliency as a trustworthy and reliable means of
attribution. This present study offers compelling quantitative evidence to demonstrate in great detail a strong
correspondence between model predictions and clinical expertise. Besides this, Wen et al. [25] made a great
contribution in this regard by proposing a novel architecture called Branched Convolution and Channel
Fusion Network, which was specifically tailored for the complex task of multi-label diagnosis of ECG signals.
BCCF-Net proved to be outstandingly capable of identifying multiple cardiac conditions simultaneously
and thus became practical in clinical settings for refined and precise diagnosis of different kinds of cardiac
arrhythmias. Different studies conducted in the area bring out vividly the remarkable and transformational
potential approaches to DL and ML with regard to the diagnosis of heart disease, especially through ECG
data. Khanna et al. [26] proposed a model based on a hybrid DL framework that incorporates CNNs and
LSTM networks for severe arrhythmia classification from single-lead ECG signals. The model increased
accuracy by adequately exploiting the spatial and temporal characteristics of the problem, which resulted in
the ability to generalize in the presence of different ECG morphologies for different patients. Duan et al. [27]
state the importance of adopting different types of data to improve the stability of diagnostic models. Their
extensive literature review lists different types of DL-based fusion techniques, which can be helpful for
researchers looking to develop better methods of ECG classification. By using multimodal data, researchers
can overcome the challenges that come with studying single-modal data. This may improve classification
accuracy and, as a result, aid in better clinical decision-making. Additionally, Rueda et al. [28] have defined
a few simple clinical classifiers to diagnose Bundle Branch Blocks based on markers derived from the
FMM ECG delineator. Their research demonstrates that the best performance in electrodes’ diagnostic tools
can be achieved, irrespective of the ECG signals’ complexity. This perspective is particularly important for
researchers in the clinical engineering field who try to design effective and practical diagnostic tools under
the challenging ECG data environment. All of these works provide important algorithms and methods for
the next steps in DL-based ECG classification that can be performed satisfactorily, though perhaps not at the
93% threshold. Table 1 shows the summary of the considered literature.
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Table 1: Summary of existing literature considered for the current work

Study Key contribution Methodology Limitations
Prabhakararao

et al. [18]
ATCNN for ECG analysis

with an attention
mechanism

Attention-based
Temporal CNN

Lack of interpretability in
attention weights; no

comparison with other
DL models

Bakar et al. [19] ML and DL in heart
disease prediction

Comparison of ML & DL
models

Variation in accuracy;
lack of generalizability
across diverse datasets

Kolhar &
Rajeh [20]

2D SEResnet with
attention to multi-label

ECG classification

SEResnet with an
attention mechanism

Limited real-world
testing; possible

overfitting due to dataset
size

Sheikh
et al. [21]

XAI techniques for
model interpretability

Explainable AI (XAI)
applied to ECG models

Model complexity
remains high; XAI

techniques still require
validation in clinical

settings
Tao et al. [22] Multi-lead ECG

detection framework
with visual explanations

Double-kernel residual
block, Grad-CAM

Grad-CAM might not
fully explain decisions;

dataset limitations
Hossain

et al. [23]
ML models (SVM,

Logistic Regression) for
ECG classification

SVM & Logistic
Regression

Small dataset; imbalance
in class distribution; lack

of DL comparison;
limited real-world testing

Wagner
et al. [24]

XAI for cardiologist
decision modeling

Saliency-based
explainability techniques

Saliency maps might not
capture all clinical

decision factors
Wen et al. [25] BCCF-Net for multi-label

ECG diagnosis
Branched Convolution

and Channel Fusion
Network (BCCF-Net)

Computationally
expensive; not validated

on larger datasets
Khanna

et al. [26]
CNN-LSTM for

arrhythmia classification
from single-lead ECG

Hybrid CNN-LSTM
model

Single-lead limitation
might not generalize to

multi-lead settings
Duan et al. [27] Fusion-based DL models

for ECG classification
Multi-modal DL fusion

techniques
The challenge in

integrating
heterogeneous data

sources
Rueda et al. [28] Clinical classifiers using

FMMecg delineator for
Bundle Branch Block

detection

Traditional clinical
classifiers

Lack of validation with
large-scale datasets; basic

classifiers may lack
robustness
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2.1 Research Gap
Although DL and ML for ECG classification have made great progress, numerous important issues

remain unresolved. Currently, research is conducted mostly on standard CNN architectures. Research
on DTL using sophisticated architectures, including EfficientNet and DenseNet, for strong ECG feature
extraction is lacking. Although several fusion methods have been applied in ECG classification, most fail to
efficiently combine Weighted Feature Averaging Fusion and Variance Thresholding to improve the quality
of obtained features. A hybrid fusion approach has not yet been developed to balance feature relevance
and variability. In ECG classification, high-dimensional feature spaces can cause overfitting and more
computational difficulty. Current feature selection techniques might not be able to efficiently maintain the
most pertinent characteristics while removing duplicate ones, therefore affecting the classification perfor-
mance. Although DL and ML models have shown encouraging outcomes, highly accurate, interpretable,
and generalizable models that perform well across several ECG datasets and clinical circumstances are still
lacking development.

2.2 Research Motivation
Although IoT-based ECG classification and DL have been widely investigated, there is a clear void

in addressing why ensemble models outperform solo classifiers in ECG classification. Although current
studies mostly investigate individual designs such as ATCNN, SEResnet, and CNN-LSTM, as well as
conventional models like SVM and Logistic Regression, they lack a comparison of ensemble approaches.
By lowering overfitting, ensemble models often attain higher generalization and are more resilient to
noise and changes in ECG data. They use the advantages of many models, including LSTMs for temporal
dependencies and CNNs for spatial feature extraction, thereby producing enhanced accuracy and stability.
Furthermore, computationally costly DL models such as BCCF-Net may be averaged across many models to
reduce instability. Furthermore, while explainability methods such as XAI have been investigated, ensemble
approaches might improve interpretability by lowering individual model biases and raising confidence in
clinical decision-making. To close this discrepancy, future research should look at the relative efficiency of
ensemble models vs. single DL classifiers in ECG analysis, especially in real-world clinical environments.

Through the research, there will be an increased accuracy in the cardiology diagnosis and outcomes of
the patients because researchers are designing algorithms in more advanced ways that consider interpretabil-
ity and multi-label classification challenges. In other words, applying DL techniques to ML algorithms about
ECG is one major development in diagnosing heart diseases. The PTBXL dataset becomes an essential
and precious source for researchers in the healthcare and medical technology domains, allowing advanced
models to be developed to achieve high accuracy and critical interpretability in the decision-making process.
Further research should be focused on addressing the vast challenges that the applicability of real-world data
poses and also working toward improving transparency within these models to foster and build confidence
among healthcare professionals who utilize these tools to treat patients. Contributions by the current work
in the field pave the way toward even more effective and accessible means for diagnosing cardiovascular
diseases and, hence, better patient care.

3 Materials and Methods
The proposed model includes EfficientNet and DenseNet, which serve as feature extractors due to

their deep structures, which effectively extract intricate features from ECG signals. For Weighted Feature
Averaging Fusion and Variance Thresholding Fusion, the features to be fused are first extracted from different
sources to keep redundancy at an acceptable level and compact the information. The chosen features are then
tuned using the AVOA. For the first prediction, support vector machine (SVM), eXtreme gradient boosting
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(XGBoost), adaptive boosting (AdaBoost), and extreme learning machine (ELM) are used. These classifiers
assist in producing varied and robust outcomes during the classification. To achieve better overall prediction
accuracy and reliability, ensemble classifiers, such as hard voting, soft voting, and weighted averaging, are
incorporated, which combine the outputs of several individual classifiers to provide a singular, more accurate
cardiac illness diagnosis.

3.1 EfficientNet
EfficientNet is a family of convolutional neural networks that exhibits unparalleled optimizations and

increases in computational efficiency regarding the task of image classification. The network’s depth, breadth
relative to its efficiency, and feature resolution are all scaled uniformly using a new compound scaling
approach [29]. It starts with a standard 3 × 3 convolutional layer for basic feature extraction and then goes
to many optimized MBConv blocks for mobile and low-resource devices. They are depth-wise separable
convolutions with linear bottlenecks. The MBConv blocks, such as MBConv1 and MBConv6, enable the
network and its feature representation to have alternative kernel sizes (3 × 3 and 5 × 5) and expansion ratios.
It has been possible to successfully capture the hierarchical features by gradually growing the number of
channels and reducing the spatial sizes over the network’s progression. Each segment in the network employs
SE modules on channel-wise attention while repeating MBConv layers to improve the feature extraction rate.
The network runs a 1 × 1 convolution, global average pooling, and a fully connected (FC) layer to generate
a concise feature map that is good for classification tasks. With fewer parameters and lower computing
costs, EfficientNet outperforms bigger models due to its well-balanced architecture. EfficientNet is selected
as the transfer learning technique due to its superior efficiency in balancing accuracy and computational
complexity. It presents a compound scaling approach that consistently scales depth, breadth, and network
resolution, thereby optimizing performance without a parameter increase that is too strong. The EfficientNet
model especially achieves state-of-the-art accuracy with far fewer parameters than conventional architec-
tures like ResNet and VGG. This qualifies well for ECG classification jobs where computing performance is
vital, particularly for implementation in real-time or resource-limited contexts. Fig. 1 shows the architecture
of the adopted EfficientNet in the reported work.

Figure 1: Architecture of EfficientNet

3.2 DenseNet
DenseNet-201 is a deep convolutional neural network architecture that connects the layers in dense

blocks so that the flow of information is maximized while redundancy is minimized [30]. To begin with the
architecture, there is an Initial Convolution layer that utilizes a 7 × 7 kernel with a stride of 2. Afterward, a
max-pooling operation had the same diagonal stride to shrink the spatial dimensions while simple features
were being extracted. There are four Dense Blocks: the uppermost one possesses six layers, the second one has
twelve layers, the third dense block has forty-eight layers, and the final one has thirty-two layers, and they all
incorporate a growth rate of k = 32. Each block contains a specific number of layers that are interconnected
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to all the layers in that block, so the feature maps of an earlier layer are used in a later layer by every layer. The
parameters are greatly minimized due to the introduction of high feature propagation. In between the dense
blocks are Transition Layers, which take advantage of a 1 × 1 DENSE layer to reduce the dimensions of the
feature maps and utilize 2 × 2 average pooling to shrink the spatial dimensions. These controls of transitions
help in model complexity, preventing overfitting. DenseNet-201 embodies an improved construction that
includes in its last piece a 1× 1 overlay to amalgamate the features, a Fully Connected Layer with global average
pooling, which aids in decreasing the spatial data. A Global Average Pooling layer takes in the feature vector
while a Fully Connected layer outputs the predictions. DenseNet is a preferred transfer learning technique
due to its densely connected architecture. This architecture guarantees improved feature propagation, reduces
the vanishing gradient issue, and advances parameter efficiency. DenseNet is very helpful for ECG signal
classification, where minute morphological changes in waveforms are crucial as it uses fewer parameters by
reusing features across layers while obtaining competitive performance. Its feature concatenation method
also improves gradient flow, enhancing generalization and learning efficiency. Fig. 2 shows the architecture
of the adopted DenseNet for extracting the features from the input images.

Figure 2: Architecture of DenseNet

3.3 Feature Fusion
Weighted Feature Averaging Fusion and Variance Thresholding is an approach for feature fusion

combining DenseNet and EfficientNet models that can be used, for instance, in ECG signal classification.
In weighted feature averaged fusion, feature vectors from the DenseNet and EfficientNet are fused using a
weighted average method using Eq. (1), with w1 and w2 as the weight factors associated with feature extracted
using EfficientNet (FE) and feature extracted using DenseNet (FD). Feature f used is the final fused features
received from the feature fusion process.

Feature f used = w1 .FE +w2.FD (1)
w1 +w2 = 1 (2)

Eq. (2) originates from the convex combination principle in ML. The idea is that when combining the
features from different transfer learning techniques, their contribution towards the final feature set should
be 1 to maintain interpretability and consistency. The weights in Eq. (2) can be adjusted by using Adaptive
Weighting, Softmax-based automatic weight assignment, or the Data-Driven Feature Ration approach. For
the current work, equal priority has been given to EfficientNet and DenseNet. Hence, the w1 and w2 are set
to 0.5 each for Eq. (2).
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In order to refine the extracted feature vectors, Variance Thresholding is applied to eliminate the redun-
dant features or low-variance features from Feature f used . The variance of each feature from Feature f used
can be defined using Eq. (3).

Var (Fj) =
1
n

n
∑
i=1
(Fi j − μ j)2 (3)

where Fij is the value of jth features of ith sample of Feature f used , n is the total number of samples present
in Feature f used , and μ is the mean of the jth feature, which can be calculated using Eq. (4).

μ j =
1
n

n
∑
i=1

Fi j (4)

Based on their respective contribution to classification, Weighted Feature Averaging Fusion is used
to allocate the best significance to the feature maps obtained by EfficientNet and DenseNet. A basic con-
catenation might cause duplication or an imbalance in feature relevance when both networks learn distinct
facets of the ECG data. Using weighted averaging guarantees that, in proportionate terms, the most relevant
characteristics from both models contribute to the final representation, therefore improving classification
accuracy. Then, a feature selection method, variance thresholding, removes low-variance elements that little
affect model prediction. Variance Thresholding guarantees that only the most discriminative and high-
variance characteristics are kept, as feature fusion might add redundant or less informative elements. This
stage reduces dimensionality, optimizing computer efficiency while preserving necessary information for
strong classification.

3.4 African Vulture Optimization Algorithm
The AVOA takes into consideration African vultures. These magnificent birds are known to possess

special social and behavioral patterns and sharing of skills that help in the locating and utilization of food
in difficult places. According to this algorithm, their capabilities in searching for food include soaring and
soaring in circles. This algorithm cites their skills of long-range soaring and circular movements in searching
for food as their strengths. South African vultures adopt a two-pronged approach: They scout a region to find
food and then converge on those targets or newly scouted areas to maximize their use. These characteristics
fit perfectly into optimization issues where there is a need to search previously unexplored areas (exploration)
and enhance the precision of those areas (exploitation). AVOA has emerged as an efficient, robust, and
adaptable optimization algorithm because of a specific niche in complex and multifaceted high-dimensional
problems. Inspired by the collaborative decision-making and precision of the African vultures, AVOA, like
bio-inspired computing, offers the chance to solve real-world engineering, optimization, and ML problems
natively. Furthermore, it suggests that natural phenomena can be studied in parallel to constructing effective
computational methods [31–33].

Initialize the population of the vultures (V) within the defined search space. Each vulture present in the
population presents a potential solution. Eq. (5) shows the potential solution of each vulture.

V t
i = Vmin + r ∗ (Vmax − Vmin) (5)

where r is the random number between [0, 1], Vmin and Vmax are the lower and upper bounds of the search
space, respectively. The fitness of each vulture V is defined by using the objective function f (V) using Eq. (6).

Fi = f (V t
i ) (6)
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In the vulture group, the leader vulture (VLeader) is defined using Eq. (7). The leader vulture guides the
rest of the vultures present in the group, with VLeader as the leader vulture position and agrmin is a function
to calculate the min fitness function.

VLead er = agrmin(Fi) (7)

In the AVOA, the exploration and exploitation strategies focus on ensuring that global search (the
ability to explore a new region of the search space) and local search (improving on the best-known solution)
are balanced. A dynamic control mechanism that utilizes variables such as the number of iterations or a
probability threshold is incorporated into the algorithm for successful switching between these two phases.
The most common strategy is to use a control parameter (α) to dynamically switch between the exploration
and exploitation phases. In the exploration phase, vultures search the search space globally, away from their
current positions, to discover new regions. In the exploitation phase, the vultures focus on the VLeader and
refine their positions to obtain the best solution. The balance factor (α) is typically preferred as a higher
value which can be defined by using Eq. (8) to support the exploration phase and gradually decreases as the
algorithm progresses to favour exploitation.

∝=∝0 ∗(1 −
IT

MaxIT
) (8)

where ∝0 is the starting value (0.5), IT is the current iteration, and MaxIT is the maximum number of
iterations. During the exploration stage, the position of the vulture can be updated using Eq. (9), with r1

being the random number between [0, 1].

V IT+1
i = V IT

i + r1 ∗ (VLead er − V IT
i ) (9)

For the exploitation phase, the vulture position can be updated using Eq. (10) with r2 as the ran-
dom number between [0, 1]. The control parameter α balances between the exploration and exploitation
using Eq. (11).

V IT+1
i = VLead er + r2 ∗ (V IT

i − VLead er) (10)

V IT+1
i =

⎧⎪⎪⎨⎪⎪⎩

V IT
i + r1 ∗ (VLead er − V IT

i ), r1 < α
VLead er + r2 ∗ (V IT

i − VLead er), r2 ≥ α
(11)

The spiral pattern flight of the vulture is controlled by using Eq. (12). The objective of controlling the
spiral pattern flight is to enhance the degree of exploration.

V IT+1
i = VLead er + A∗ eb∗θ ∗ cos(θ) (12)

where A is the constant between [1, 2] defining the spiral size, b is the constant between [−1, 1] for shaping
the spiral, and θ is the random angle. A and b can be defined using Eqs. (13) and (14), respectively, with A0
as the starting value (1.5) and b0 as the starting value (0.5).

A = A0 ∗ (1 −
IT

MAXIT
) (13)

b = b0 ∗ (1 −
IT

MAXIT
) (14)
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Eq. (15) introduces the random perturbations to escape the local optima to obtain the best optimal
solution with β as the small random factor and Vrand as the random position of the vulture in the search
space. The β can be defined using Eq. (16).

V IT+1
i = V IT+1

i + β ∗ (Vrand − V IT
i ) (15)

β = β0 ∗ (1 −
IT

MAXIT
) (16)

β0 as the initial value (0.9). To balance the exploration and exploitation, the high β is considered in
the early iterations to encourage exploration by allowing the larger movements, and β is kept low in later
iterations to focus on the exploitation stage for convergence. To ensure the solution always remains in the
boundary of the search space, Eq. (17) is defined.

V IT+1
i =

⎧⎪⎪⎨⎪⎪⎩

Vmax, i f V IT+1
i > Vmax

Vmin, i f V IT+1
i < Vmin

(17)

Strong exploration-exploitation balance, flexible search strategy, and better convergence properties
define the AVOA for feature selection above existing metaheuristic algorithms. Unlike conventional meta-
heuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), or Ant Colony
Optimization (ACO), which may suffer from premature convergence or slow optimization speed, AVOA
mimics the scavenging behavior of African vultures, dynamically switching between exploration (searching
for diverse feature subsets) and exploitation (refining the best-selected features). This balance guarantees
the choice of the most relevant and non-redundant characteristics, avoiding local optima and ensuring
the improvement of classification performance. AVOA also uses sophisticated leader-following systems
and adaptive weight management to negotiate high-dimensional feature spaces effectively. This makes
AVOA especially fit for ECG signal classification, where improving model performance while lowering
computational cost depends on choosing the most discriminative characteristics.

3.5 Machine Learning Classifiers
The reported model employs four strong classifiers known as SVM, XGBoost, AdaBoost, and ELM. The

basic idea of SVM is more applicable for data with high dimensions since it facilitates the identification of
the ideal hyperplane for separating the classes with the maximum margin. XGB is best utilized on complex
datasets such as the one above, where it uses gradient boosting to build numerous decision trees, where
each subsequent tree improves the errors of its predecessor, leading to highly accurate predictions. AdaBoost
enhances the accuracy of a classifier by merging several weaker classifiers and giving emphasis on the greater
number of errors, which replaces the normal sample weights with more robust weights that are needed to
alleviate bias and variance in a classification process. Because of its reduced training time and complexity,
ELM is also appended to the model. It involves a single-layer feed-forward neural network in which the
hidden neurons’ weights are assigned randomly while the output weights’ estimators are obtained through
a closed form, which provides faster and better learning. Incorporating these different classifier models,
the reported model enables the boosting of each nature’s strengths, thus providing models that are strong,
accurate, and highly efficient for a wide variety of tasks throughout the entire process [34].

3.6 Ensemble Machine Learning
Hard voting, soft voting, and weighted averaging are ensemble methods intended to aggregate the

predictions of multiple classifiers in order to produce a more accurate classification than any one classifier
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alone. In hard voting, all classifiers are plugged in to make a class prediction, where the class with the
most votes wins. In soft voting, the predicted probabilities from all classifiers are taken for averaging class
prediction, depending on the maximum probability. In simplified terms, weighted averaging is almost the
same as soft voting, but it makes use of the probability assigned to each classifier based on its relevance or
result for a better prediction. These techniques increase prediction accuracy by combining the outputs from
several classifiers.

Hard voting (HV) is an ensemble-based ML model where each base classifier votes for a particular
class, and the class having majority votes is selected as the final prediction. The final prediction (FP) can be
represented using Eq. (18), where the mode selects the most frequently predicted class.

FP =mode(P1 , P2, . . . , Pn) (18)

where P1 , P2, . . . , Pn are the initial predictions made by different base classifiers, and mode is used to select
the frequently predicted class.

Soft voting (SV) is one of the al-flag models that omits votes for the probability scores assigned by specific
classifiers instead of the class output. For the case of linguistic ensembles, every classifier gives a probability
distribution across the classes, and then the probabilities are simply averaged, and the appropriate class is
concluded. The final prediction FP can be represented using Eq. (19), with argmax as the method to select
the class with the highest probability and m number of total classes present in the dataset.

FP = argmax
⎛
⎝

1
m

m
∑
j=1

Pj
⎞
⎠

(19)

Weighted Averaging (WA) is the weighted version of the SV where every classifier’s prediction is
weighted based on the performance. Using the argmax, the class with the highest probability is selected as
the final prediction, which can be defined using Eq. (20).

FP = argmax
⎛
⎝

1
m

m
∑
j=1

w j∗Pj
⎞
⎠

(20)

3.7 Image Preprocessing
Image pre-processing serves the purpose of increasing the quality of the ECG data, which is significant

while dealing with the PTB-XL ECG dataset, as it helps in converting raw signals into more meaningful
and organized formats that can be used with ML models. Due to the raw ECG signals being noisy and
complicated, the first step taken to maximize the quality of the signals while retaining important features and
minimizing irrelevant noise is filtering, normalizing, and transforming the signal into frequency domain
representations using spectrograms or wavelets. This results in a more accurate and robust classification and
prediction performance in the diagnosis of heart diseases, as features that have been extracted using these
pre-processed images and filtering are more precise [35].

Wavelet Transform is a more efficient technique for analyzing ECG signals, particularly with extensive
datasets such as the PTB-XL. This is different from the Short-Time Fourier Transform (STFT) method, which
remains less flexible as it only allows the use of pseudo-frequency bins. For a multi-scale analysis to be
deployed, Wavelet Transforms allows the use of Wavelets of varying sizes, thereby making it more suitable
for nonstationary ECG Signals. The continuous wavelet transform (CWT) of a signal X(t) at a scale ρ and



Comput Mater Contin. 2025;84(1) 1645

shift s can be defined using Eq. (21).

W (ρ, s) = ∫
∞

−∞
X (t) ∗ φ( t − s

ρ
) dt (21)

where φ is a wavelet function, that is typically selected to have good time-frequency localization properties.
The wavelet function is defined using Eq. (22).

φ (t) = π−1/4 ∗ ekw0 t ∗ e−
t2
2 (22)

where k is the imaginary unit, j =
√
−1, which is used to present the complex number required to capture

oscillatory behavior in the wavelet, w0 is the central angular frequency, which is initialized as 5.5, and
t represents the time.

3.8 Dataset Description
The PTB-XL ECG dataset is a vast database of electrocardiogram (ECG) recordings available for free

and can be utilized for heart disease classification and detection. It has 21,837 12 lead ECG signals with
a frequency of 1 kHz recorded from 2109 patients. There are 12 different labels in the dataset for various
types of heart disease diagnoses, including normal and arrhythmic diseases, which can aid in multi-class
classification problems. With each ECG signal, the dataset contains additional patient data such as age,
gender, and diagnosis. The dataset is represented in 12 ECG signal leads, each a separate channel for recording
different aspects of the heart. The PTB-XL dataset is further enabled with features containing long-term and
short-term ECG data classification [36]. The dataset contains five different diagnosis labels, and Fig. 3 shows
the class distribution of the PTB-XL dataset.

Figure 3: Class Distribution of PTB-XL dataset

4 Workflow of the Proposed Model
With DL in mind, the algorithm processes the dataset in several stages to classify the signals and

predictive cardiac events from the ECG data. First, the samples of the ECG signals undergo pre-processing
using wavelet transform. This method splits each ECG signal into parts by the frequency components,
which helps improve the signal of interest while also capturing information on the time frame as well as
the frequency. It also performs noise-cancelling processes, making the signals more adequate for feature
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extraction. This step makes it possible to construct a set of wavelet-transformed samples that capture the
basic characteristics of the original ECG signals.

After performing pre-processing techniques, feature extraction uses two DL models: EfficientNet and
DenseNet. EfficientNet is known to have higher accuracy without raising the parameters, and DenseNet
is known for connectivity, as it connects each layer to every other layer. Both models are implemented
on wavelet-transformed ECG signals. Furthermore, the extracted features underwent segregation and
storage for each model. These feature sets encapsulate differing attributes of the signals, thereby providing
supplementary information.

Once the features have been diligently extracted, they are averaged and fused. In this stage, the
EfficientNet and DenseNet features are weighted differently to reflect their importance to the classification.
Furthermore, variance thresholding is conducted post-fusion to remove almost everything that added little
value to the classification task. The few remaining features will be used in the algorithm. Using the AVOA,
feature selection is now conducted. As scavenging vultures do, AVOA is a probabilistic technique where a
set of selected features is optimized iteratively. For every iteration, sets are measured with a fitness function,
Balanced Accuracy. After all iterations are performed, the best one is kept. It is ensured that the best features
are converged towards. After completing all iterations, the best feature set is ready for classification. Equipped
with selected features, the algorithm now creates and trains several classifiers—SVM, XGBoost, AdaBoost,
and ELM. The ensemble model is created from three approaches: Hard Voting, Soft Voting, and Weighted
Averaging. Algorithm 1 and Fig. 4 represent the working of the proposed model for CVD diagnosis.

Algorithm 1: Algorithm for proposed model
1: Input: PTB-XL Dataset
2: Output: Performance Metric of the ensemble model
3: Load the PTB-XL dataset
4: D←Load_PTLB_XL ()
5: Image preprocessing using wavelet transform
6: WT_D ← {}
7: for i ← 1 to length(D) do:
8: WT_Sample←WaveletTransform (D[i])
9: Append WT_Sample to WT_D
10: end for
11: Feature Extraction using EfficientNet and DenseNet
12: Feature_Efficient ← ExtractFeatures (EfficientNet, WT_D)
13: Feature_Dense ← ExtractFeatures (DenseNet, WT_D)
14: Feature Fusion using Weighted Feature Averaging Fusion and Variance Thresholding
15: Combined_Features ←WeightedAvegrage (Feature_Efficient, Feature_Dense)
16: Feature_Fused ← VarianceThresholding (Combined_Features, Threshold (η))
17: Apply AVOA (African Vulture Optimization Algorithm)
18: Initialize Population (V)← RandomGenerate (initial_population)
19: Best_Solution ← None
20: MaxIT ← 100
21: IT ← 0
22: while IT <MaxIT do
23: for i ← 1 to Length (V), do:
24: Fit [Vi]← BalancedAccuracy (SVM_Classifier, V[i])

(Continued)
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Algorithm 1 (continued)
25: if Fit [Vi] > Best_Fitness, then
26: Best_Fitness ← Fit [Vi]
27: Best_Solution ← V[i]
28: end if
29: end for
30: for i ← 1 to Length (V) do
31: Update the position of the vulture using Eqs. (11) and (12)
32: end for
33: IT ← IT + 1
34: end while
35: Selected Features ← Best_Solution
36: Train and Test Classifiers (SVM, AdaBoost, XGBoost, ELM)
37: Train_Set, Test_Set ← SplitDataset (Selected_Features, Train_ratio = 0.8)
38: Classifiers ← {SVM, AdaBoost, XGBoost, ELM}
39: Classifier_Pred ← {}
40: for i ← 1 to 4 do
41: Train Classifier[i] on Train_Set
42: Prediction ← Predict (Classifier[i], Test_set)
43: Append Prediction to Classifier_Pred
44: end for
45: Apply Hard Voting, Soft Voting, and Weighted Averaging
46: Evaluate the performance of the developed ensemble model

Figure 4: Workflow of the proposed model
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5 Result and Discussion
Experiments are conducted on a high-performance PC comprising of an intel core i7 CPU operating

at 4.6 GHz, 16 GB of Random Access Memory, and a 1 TB SSD, alongside a 1 TB HDD, while running
Windows 11. These results have been systematically captured and reported in four distinct phases which
provides an in-depth review of the methods and the efficacy of the methodologies and their execution. The
first phase evaluates the performance of the features obtained through the EfficientNet model together with
various classifiers. In phase two, an assessment of DenseNet’s performance as a feature extractor with various
classifiers is investigated. The third phase works on the combined features of EfficientNet and DenseNet
to use multiple classifiers to strengthen the collective efficiency of the two models. The last phase instead
provides an in-depth analysis of the ensemble techniques of hard voting, soft voting, and weighted averaging
but instead applies to the combined features obtained from EfficientNet and DenseNet. This approach of
progressive evaluation draws attention to the changes in performance within the phases, making it easier to
understand how the models functioned. The performance is evaluated over several parameters, including
accuracy (AY ), precision (PN), recall (RL), specificity (SY ), F-1 Score (F1 S), F-2 Score (F2 S), False Negative
Rate (FNR), False Positive Rate (FPR) and the Mathews Correlation Coefficient (MCC). These parameters can
be defined using Eqs. (23)–(31) with t11, t12 as true positive and true negative, and f 11, f 12 as false positive
and false negative, respectively.

AY =
t11 + t12

t11 + f11 + t12 + f12
(23)

PN =
t11

t11 + f11
(24)

RL =
t11

t11 + f12
(25)

SY =
t12

t11 + f12
(26)

F1S =
2 ∗ t11

t11 + f11
∗ t11

t11 + f12
t11

t11 + f11
+ t11

t11 + f12

(27)

F2S =
5 ∗ t11

t11 + f11
∗ t11

t11 + f12

(4 ∗ t11

t11 + f11
) + t11

t11 + f12

(28)

FN R =
f12

t11 + f12
(29)

FPR =
f11

f11 + t12
(30)

MCC =
(t11 .t12) − ( f11 . f12)√

(t11 + f11)(t11 + f12)(t12 + f11)(t12 + f12)
(31)
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5.1 Phase-I Evaluation
• As for the SVM classifier, it achieved an accuracy of 80.75% in data classification, which is satisfactory.

The classifier is quite dependable, with its precision at 78.91% predicting the negative class. The recall
for the positive cases is at 81.95%, so it captures a good part of the actual positive cases. The F1 score is
80.40%, demonstrating the modest level of precision and recall balance achieved. On the other hand,
there is a false-negative rate of 18.05%, which shows a reasonable number of positive cases missed, as
well as a false-positive rate of 20.37%. The predicted value correlates fairly well with the actual value, as
indicated by Matthews’ correlation coefficient, which is 61.54%.

• Noting that AdaBoost has a slightly better accuracy of 82.21% compared to SVM, its robust classification
strength is clearly demonstrated. Its precision for the negative class is 83.12%, which is also a highly
precise measurement for negative instances. The positive recall is at an average of 81.74%, meaning that
most positive cases are detected. AdaBoost has F1 and F2 scores of 82.42 and 82.01 percent, respectively,
which indicates that while AdaBoost does not score extremely well in precision, he most certainly scores
high in recall. The rate of false negatives is 18.26%, while the rate of false positives is 17.30%. Both are at
relatively lower rates. Marked improvement was categorical and quantifiable by the Matthews correlation
coefficient of 64.43%, meaning the classifier performed well overall.

• Maintaining parallel accuracy with XGBoost, which achieved a score of 82.37%, is AdaBoost’s achieve-
ment as well. Reaching a high-flying F1 score of 82.52%, he has maintained 82.75% normal precision
alongside an 82.30% positive class recall. These high benchmarks have awarded him the explosive
F2 score of 82.39%. A strong focus on the proper detection of positive cases reflects this high F2
score, too. Detecting positive instances at an 82.45% sensitivity makes the model efficient. With false
negatives at 17.70% and false positives at 17.55%, both rates can be deemed tremendously low. A
reasonable correlation between predicted and actual labels suggests with deep confidence that XGBoost
is performing incredibly well at 64.74%, bearing the Matthews correlation coefficient.

• ELM scores an accuracy of 80.22%, which is lower than both AdaBoost and XGBoost. The model has a
precision of 81.24% for the negative class predictions and a recall of 79.86% for the positives. This yields
an F1 score of 80.54%, reflecting an acceptable tradeoff between precision and recall. The estimate for F2
shows an even smaller score at 80.13%, meaning that the model may indeed care elaborately for recall,
but most importantly, it cares for precision the most. ELM’s sensitivity of 80.60% indicates a fairly good
performance on positive case captures. The false negative rate is at 20.14%, which is higher in comparison
to the other models. Hence, more positive values have been missed. The Matthews correlation coefficient
is at 60.44%, which indicates a relatively lesser degree of correlation between the predicted values and
actual values. Table 2 shows the performance analysis of EfficientNet with different classifiers. Fig. 5
shows the ROC analysis of different classifiers with EfficientNet as the feature extractor.

Table 2: Performance analysis of EfficientNet with different classifiers

Methodology Classifier AY PN RL F1S F2S SY F N R F PR MCC

Phase-I

SVM 80.75 78.91 81.95 80.40 81.32 79.63 18.05 20.37 61.54
AdaBoost 82.21 83.12 81.74 82.42 82.01 82.70 18.26 17.30 64.43
XGBoost 82.37 82.75 82.30 82.52 82.39 82.45 17.70 17.55 64.74

ELM 80.22 81.24 79.86 80.54 80.13 80.60 20.14 19.40 60.44
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Figure 5: ROC analysis of EfficientNet with different classifiers

5.2 Phase-II Evaluation
• The performance within classification tasks was characterized as dependable for the SVM classifier,

achieving an accuracy of 79.81%. This was showcased with a precision of 79.68% for negative cases
and a slightly superior 80.41% for recall on positive cases, leading the model to achieve an F1 score
of 80.05%, signifying a balance between precision and recall. There is a 19.59% false negative rate for
the model, showing moderate amounts of undetected positive cases, with a 20.80% false positive rate,
indicating other cases of negative misclassification. The SVM makes predictions with moderate positive
associations towards actual outcomes, as shown by its 59.61% Matthews correlation coefficient.

• In contrast to SVM, AdaBoost achieves a lower accuracy, at 79.67%. The model shows a recall of 79.65%
for positives and a lower precision of 78.76%, leading to an F1 score of 79.20%. The slightly higher F2
score of 79.47% emphasizes the focus on recall rather than precision. Furthermore, SVM false negative
rates of 20.35% and false positive rates of 20.31% are significantly higher. The model was able to make
predictions with moderate sufficiency, as displayed with a Matthews correlation coefficient of 59.32%,
which is slightly less than the SVM.

• XGBoost outperforms the other models with the utmost accuracy of 80.70%. The classifier displays an
impressive precision of 80.92% for negative predictions and a recall of 80.37% for positive ones. The
F1 score is 80.64% and indicates a good balance between positive factors and negative ones. The F2
score is more positive and indicates the ability of the XGBoost classifier to predict cases of positive class,
confirming its value at 80.48%. With rates of 19.63% false negatives and 18.96% false positives, XGBoost
indeed makes fewer errors than the rest. The Matthews correlation coefficient of 61.40% indicates that
the classification effectiveness of XGBoost gives better results for the Matthews correlation.

• Coming close to XGBoost is the ELM classifier that does not fall behind in performance and obtains an
accuracy score of 80.59%. Negative prediction precision is at 80.51% while recall is at 80.29%, and positive
recognition gives results of 80.40% F1 Score, indicating a balance between compromise of precision and
recall. The F2 score also goes down to 80.33%, which means there is a shift in focus towards poor recall
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rates. The increase of 19.71% and 19.12% for false negatives and positives, respectively, means the ELM
model is a bit less efficient than the XGBoost. There is a strong alignment between predictions and actual
values, making the Matthews correlation coefficient of 61.17% performance near the XGBoost model.

• Table 3 shows the performance analysis of Phase-II. Fig. 6 shows the ROC analysis of different classifiers
of Phase-II of the evaluation.

Table 3: Performance analysis of DenseNet with different classifiers

Methodology Classifier AY PN RL F1S F2S SY F N R F PR MCC

Phase-II

SVM 79.81 79.68 80.41 80.05 80.26 79.20 19.59 20.80 59.61
AdaBoost 79.67 78.76 79.65 79.20 79.47 79.69 20.35 20.31 59.32
XGBoost 80.70 80.92 80.37 80.64 80.48 81.04 19.63 18.96 61.40

ELM 80.59 80.51 80.29 80.40 80.33 80.88 19.71 19.12 61.17

Figure 6: ROC analysis of dense with different classifiers

5.3 Phase-III Evaluation
The performance of various classifiers highlighted in Phase-III is more advanced than that of previous

phases. Table 4 shows the performance analysis in Phase-III.

• SVM classifier prediction is confirmed by the accuracy of 84.64%. In negative cases where the model
predicts SVM was 85.04 percent precision. Its recall for positive cases is lower at 83.82 percent.
Here, indeed, an F1 actuator’s metered effectiveness value is at an accuracy of 84.43. In addition, the
determination met the F2 Score value of 84.07, bringing into the measure strengthens the validation.
16.18% false negative rate, and The Matthews Correlation Coefficient, 69.28%, tries to indicate high
negative figures the classifier is achieving experience alongside an alarming 14.56% false positive rate.
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• AdaBoost classifier training exceeds SVM’s limits with an accuracy of 86.52%. This is an illustration
of improvement along the measuring, and so the communication increases. It achieves 87.00% of the
predicted negative precision domain and 85.67% of the positive recall proposition. That balance gives
way to an F1 result of 86.33 while an F2 rewarding 85.94 explanation due to ensuring his focus on the
recall paradigm. This model has lower error rates where false negative is 14.33% and 12.65% for false
positive. Further, a Matthews correlation coefficient of 73.04% confirms that it has indeed passed the test.

• XGBoost remains the best-performing classifier with an impressive rate of 12.69% false negatives and
11.88% false positives and accuracy at 87.71%. Furthermore, XGBoost’s strongest attribute is the F2 score,
which stands at 87.51%, emphasizing the classifier’s precision and minimization of positive case misses.
The Matthews accuracy correlation of 75.42% shows the classifier’s superiority in aligning predicted
outcomes alongside actual ones. In contrast, the negative precision and positive recall stand at 88.31%
and 87.31%, respectively, with an F1 score of 87.80%.

• ELM scores relatively competitive yet lower with a cumulative score of 72.66%, landing effectiveness
slightly behind XGBoost and AdaBoost. Its competing accuracy is measured at 86.31%, making it stand
slightly below XGBoost and AdaBoost. The F1 score, 86.27%, is also led by overall negative precision
at 87.56% and positive recall at 85.02%. ELM maintains balancing negative approximation and positive
recall, as its F2 score is marked at 85.52%. The classifier also records a significantly higher false negative
rate than positive, measured at 14.98%, while only having 12.37% false positivity. Fig. 7 shows the ROC
analysis of Phase-III evaluation.

Table 4: Performance analysis of model with EfficientNet and DenseNet combined features with different classifier

Methodology Classifier AY PN RL F1S F2S SY F N R F PR MCC

Phase-III

SVM 84.64 85.04 83.82 84.43 84.07 85.44 16.18 14.56 69.28
AdaBoost 86.52 87.00 85.67 86.33 85.94 87.35 14.33 12.65 73.04
XGBoost 87.71 88.31 87.31 87.80 87.51 88.12 12.69 11.88 75.42

ELM 86.31 87.56 85.02 86.27 85.52 87.63 14.98 12.37 72.66

Figure 7: ROC analysis of EfficientNet and DenseNet combined features with different classifiers
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5.4 Phase-IV Evaluation
Contrary to the previous phases, the results in phase four seem to bolster all classifiers towards better

performance on a remarkable scale. Table 5 shows the performance analysis of the proposed model.

Table 5: Performance analysis of proposed model

Methodology Classifier AY PN RL F1S F2S SY F N R F PR MCC

Phase-IV
HV 96.31 96.38 95.97 96.17 96.05 96.64 4.03 3.36 92.62
SV 95.65 95.65 95.29 95.47 95.36 95.99 4.71 4.01 91.29
WA 95.72 95.90 95.50 95.70 95.58 95.93 4.50 4.07 91.44

Hard Voting (HV) outperforms all other classifiers with an impressive 96.31% accuracy, which repre-
sents a 19.89% improvement over the best Phase-II accuracy (80.70%) and a 9.83% increase over Phase-III’s
best performance (87.71%). While maintaining a precision of 96.38% for negative predictions, HV recalls
95.97% of the positive cases. The F1 score of 96.17% and F2 F0.5 score of 96.05% reveal a remarkable balance
between precision and recall. A negative 4.03% and 3.36% false rate of WH said have very low levels, and
the Matthews correlation coefficient of 92.62% illustrates the remarkable correlation between expectations
and results.

Soft Voting (SV) achieved a lesser but still high accuracy score of 95.65%, representing an 18.52%
improvement from Phase-II and a 9.08% improvement from Phase-III. CU claimed that with SV, precision,
and recall are both expected to average out to the same number. The precision score of 95.65% beats Soft
Votes F1 score of 95.47%. The false negative and positive rates of 4.71% and 4.01%, respectively, are not of
concern, and Matthews’ correlation coefficient of 91.29% demonstrates a reliable predictor.

• Weighted Averaging (WA) yields highly competitive results with overall accuracy rates of 95.72%. This
result is 18.62% better than in Phase-II and 9.12% better than in Phase-III. It also achieved a precision
of 95.90% and a recall of 95.50%, leading to F1 and F2 scores of 95.70% and 95.58%, respectively. Now,
the Matthews correlation coefficient (91.44%) confirms the high correlation predictive ability of the
model. Fig. 8 shows the performance analysis of the proposed model.

• The ROC analysis shows that the HV obtains an AUC value of 0.972, SV shows an AUC value of 0.933,
and WA shows an AUC value of 0.969. Fig. 9 shows the ROC analysis of the proposed model.

Figure 8: Performance evaluation of proposed model
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Figure 9: ROC analysis of the proposed ensembled model with the combined feature set

5.5 Critical Analysis
The proposed model has enhanced ECG signal classification accuracy tremendously compared to

the existing methods in the literature. In comparison to the developed model, Prabahakararao et al. [20]
diagnosed with an accuracy of 88.05%, which is 9.36 lower than the developing model. In a similar fashion,
when comparing results with Tao et al. [24], an accuracy of 89.2 was demonstrated, which obliged a
7.97 improvement in the presented approach. Wager et al. [26] reported an accuracy of 75%, whereas
the developed model achieved an enhancement of 28.41%, illustrating its robustness and diathesis. When
analyzing their results with Ksanna et al. [28], who demonstrated a high accuracy of 93.452% (good result),
the Prabakararao model exceeded it by 2.85%. This illustrates the great efficacy of feature extraction and
classification optimization. All these affirm the evidence of the framework being far superior when address-
ing ECG signal variability and, indeed, outperforming the established methods in enhancing cardiovascular
disease diagnostics. Fig. 10 shows the comparative analysis of the proposed model with some existing works
of literature.

Figure 10: Comparative analysis of the proposed model with existing works of literature [18,22,24,26]
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6 Conclusion
The proposed model aims to provide a DL-based model for effective CVD diagnosis using the PTB-XL

ECG dataset. Multiple DTL techniques are applied for feature extraction, which is further optimized with a
feature fusion strategy for efficiency and to achieve robust, non-redundant compact feature sets. To improve
the separation of the features, scarcer feature sets are employed, tuning the features utilizing the AVOA.
This is done to provide improved classification accuracy. The signals, categorized as ECG, are automatically
classified with a variety of ML classifiers such as SVM, XGBoost, AdaBoost, and ELM. The best result was
shown by the ensemble Hard Voting Classifier, with a 96.31% accuracy concerning the classification of the
signals. The use of DL supple with feature optimization techniques within a CVD diagnostic framework
overcomes issues like the growing variances of the ECG signals and the increasing number of patients.

The fencing of class imbalance in the PTB-XL dataset using algorithms such as SMOTE can increase
the robustness and variability of the methods used to create the framework. A notable limitation stems
from the substantial computational resource requirements associated with the integration of deep transfer
learning (DTL) models, feature fusion techniques, and optimization algorithms. The adoption of model
quantization and pruning strategies offers a viable pathway to enhance computational efficiency while
preserving classification accuracy. Additionally, exploring emerging deep learning (DL) architectures holds
the potential for further improvements in the efficacy of the classification framework. These features will be
covered together with possible future improvements to the current work.
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