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ABSTRACT: Large language models (LLMs) and natural language processing (NLP) have significant promise to
improve efficiency and refine healthcare decision-making and clinical results. Numerous domains, including healthcare,
are rapidly adopting LLMs for the classification of biomedical textual data in medical research. The LLM can derive
insights from intricate, extensive, unstructured training data. Variants need to be accurately identified and classified to
advance genetic research, provide individualized treatment, and assist physicians in making better choices. However, the
sophisticated and perplexing language of medical reports is often beyond the capabilities of the devices we now utilize.
Such an approach may result in incorrect diagnoses, which could affect a patient’s prognosis and course of therapy.
This study evaluated the efficacy of the proposed model by looking at publicly accessible textual clinical data. We have
cleaned the clinical textual data using various text preprocessing methods, including stemming, tokenization, and stop
word removal. The important features are extracted using Bag of Words (BoW) and Term Frequency-Inverse Document
Frequency (TFIDF) feature engineering methods. The important motive of this study is to predict the genetic variants
based on the clinical evidence using a novel method with minimal error. According to the experimental results, the
random forest model achieved 61% accuracy with 67% precision for class 9 using TFIDF features and 63% accuracy
and a 73% F1 score for class 9 using Bag of Words features. The accuracy of the proposed BERT (Bidirectional Encoder
Representations from Transformers) model was 70% with 5-fold cross-validation and 71% with 10-fold cross-validation.
The research results provide a comprehensive overview of current LLM methods in healthcare, benefiting academics as
well as professionals in the discipline.
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1 Introduction
The Large Language Model self-trains through self-supervised learning and accomplishes this by

employing neural networks with billions of parameters and vast amounts of unlabeled textual data. These
models are capable of identifying intricate patterns, subtle language differences, and clear logical connections
with ease, as evidenced by their extensive training on large internet datasets [1]. LLMs have still performed
satisfactorily on other language tasks that necessitate deep learning and extremely large datasets, including
translating, summarizing, and analyzing an individual’s emotions [2]. Additionally, the development of
these models for future responsibilities has shown significant potential and has yielded novel outcomes
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across various standards. LLMs have completely revolutionized the use of natural language by enabling the
acquisition, analysis, and retrieval of textual material with previously unseen capabilities. This research relies
heavily on the Transformer architecture, which Google first used in 2017 for machine translation tasks [3].
To better understand patient’s conditions, make more informed decisions, and streamline administrative
processes like scheduling and accounting, models trained on medical literature using NLP might be
useful [4,5]. The completely functional artificial language modules in large GPT-3 [6] and GPT-4 [7] models
allow them to produce cohesive, human-like material. These are able to comprehend and predict data
from various domains, including medical [8]. In addition to their acoustic validation, these models offer
novel healthcare uses. Researchers and medical professionals may learn more by applying LLMs to various
data sources, including imaging studies, laboratory results, and raw clinical samples [9]. Model validation
employing verified datasets, quality control, and descriptive metrics is vital for addressing these challenges
and providing dependable and effective application in clinical situations [10]. The LLM supports documented
efforts to enhance clinical procedures and treatment alternatives. By evaluating datasets that include genetic
and phenotypic variables, the LLM may help in anticipating the severity of diseases [11].

1.1 Motivation
The advancement of LLM presents promising employment prospects in the healthcare sector. This

methodology is particularly significant in medicine, as physicians, nurses, and healthcare practitioners
encounter substantial amounts of unstructured data daily, including prescriptions, hospital discharge
summaries, patient histories, and questionnaires. Historically, comprehending this data has been laborious
and susceptible to inaccuracies. LLM facilitates the documentation of these activities, addresses intricate
medical inquiries, and enables communication with patients. Also, NLP has enormous potential to transform
healthcare because of its capacity to evaluate and arrange the vast amounts of unstructured data that exist
in electronic health records, medical records, and other health documents. By extracting vital information,
NLP technologies may help physicians make accurate diagnoses and shed light on critical topics, including
the course of a disease, the effectiveness of therapy, and risk factors.

However, researchers are adopting novel approaches, including data augmentation and artificial intel-
ligence via the integration of algorithms with clinical data or training through supervised learning. Even
though these approaches have potential, they are not yet fully reliable, and further research is necessary to
ensure they can meet therapeutic needs globally. Models such as GPT (Generative Pre-Trained Transformer),
BERT, or BioBERT extract complex features from medical literature to enhance their ability to provide precise
and practical clinical advice. Preserving patient confidentiality, ensuring safety, and avoiding invasiveness
are crucial ethical considerations for the widespread use of these tools. It streamlines workflow, improves
decision-making, and enables personalized therapy. NLP systems briefly summarize patient histories,
treatment protocols, and test results to reduce doctor’s workloads and protect against missing information.

1.2 Contributions
The study makes the following contributions:

• The study presents a novel large language BERT-optimized model for the prediction of Genetic variants
using clinical textual data. It also proposed enhanced and adaptive solutions for healthcare settings by
fine-tuning the model on medical datasets, resulting in more dependable patient outcomes.

• Natural language processing feature engineering techniques (NLPFET) are used to extract relevant
numeric features from the textual data. It will mitigate the influence of less meaningful data and enhance
performance across many tasks for the foundation of the RF model.
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• To convert unstructured textual data into a structured and suitable form for the large language model,
this study used several preprocessing techniques and NLP for the automated extraction and classification
of personalized medicine data based on clinical evidence.

• The effect of each preprocessing step is determined and validated by K-fold cross-validation tests
utilizing important metrics.

2 Literature Review
The healthcare sector has gained greatly from LLMs, which enhance the analysis of patient records,

medical notes, and medical records. For activities including clinical decision assistance, patient interaction,
and health outcome prediction, these models are commonly used. The LLM is utilized in various applications,
including predictions, medical education, information extraction, medical documentation, and medical
chatbots. The study [12] presented an innovative modular LLM methodology for extracting conceptually
relevant characteristics from textual patient intake information. The pipeline excels in feature extraction by
meeting the standards for precision and accuracy. The approach reliably identified clinical characteristics
from textual data, proving its use across several LLMs. The use of LLM in healthcare has elicited both enthu-
siasm and concern among people. The use of advanced language models in healthcare might greatly enhance
the understanding of clinical terminology and its use in medicine [13]. The advent of transformer architecture
and the use of neural networks has radically transformed their understanding and generation of machine
language. This evaluation of research offers a thorough examination of LLMs, including their background,
development, training methodologies, and various enhancement initiatives. This research illustrates that
LLMs are shaping the future of AI and may possess the ability to address intricate problems [14].

Latif and Kim [15] in his work employed the CHARDAT dataset to examine the effectiveness of two
extensive language models in producing innovative terminology. The two models that are used are the
Bidirectional and Auto-Regressive Transformers (BART) and the Text-To-Text Transfer Transformer. They
utilized the ChatGPT technique to get further information from the dataset. ChatGPT could modify English
words, but it could not change medical terminology, since it discerned the meanings of words in the dataset
according to their context. While medical data may be presented as images, the authors [16] focus only on
text-based information. The authors [17] provided a methodology that employed LLM with human expertise
to swiftly produce ground truth labels for medical text annotation. Another work indicates that LLMs may
accelerate the implementation of tailored NLP solutions by aiding healthcare businesses in optimising the
use of unstructured clinical data. Large Language Models may surpass human performance by using several
input modalities, including multidimensional visual and numerical data [18].

Peng et al. [19] utilized GatorTronGPT, a generative clinical LLM, using approximately 2 million cases
and 277 billion words of clinical literature from 126 departments. The study’s findings about the merits
and drawbacks of LLMs may be beneficial for medical research and healthcare. The study [20] produced
an annotated dataset for German medical literature with little human intervention. The authors employed
GatorTron to conduct a systematic evaluation of five NLP tasks. Clinical idea extraction, medical relation
extraction, semantic textual similarity, and medical query answering comprise these tasks [21]. The authors
provided an explanation of the construction and deployment of LLM applications in the healthcare industry
by utilising examples such as ChatGPT. The objective of this article was to examine the potential advantages
and disadvantages of LLMs and their potential to enhance the efficacy and effectiveness of medical research,
clinical practice, and education. Although they were not consistently reliable, the results of the use of LLM
chatbots in the biological sciences were thrilling in the past [22].

The purpose of research [23] was to evaluate the performance of LLM in comparison to human clinical
experts in classifying mental health emergency department patients using terms extracted from a large
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electronic health record dataset. The primary focus of LLM for postoperative risk prediction using clinical
records [24]. Another work proposed by the authors was prediction models for prescription drugs using the
MIMIC-IV dataset to improve the analysis of electronic health records [25]. Without further fine-tuning,
open weight LLMs may successfully capture patient’s socioeconomic determinants of health, as discussed by
the authors of [26].

In the research [27], the authors employed BioBERT for electronic health records, utilized a limited
sample size for the tests, and integrated a BERT+BiLSTM+CRF model, which escalates the computational
expenses with a reduced number of samples, while also amalgamating several model variations. Additional
study [28] employed the pretrained Med-BERT model for the identification of medical records. They utilized
a named entity recognition dataset for the studies and did not investigate the preparation processes to
enhance performance. Another study [29] only utilized ChatGPT 4 prompts for inquiries regarding medical
information and the limits of the chatbot. They examined the advantages and potential impact of ChatGPT
in the study; however, no model was proposed. Problems with data consistency and quality could emerge
when automatically classifying medical records using LMM models that were built by experts. The practical
utility of these models depends on their ability to properly extract relevant clinical data while also being easy
to understand. Our model is better at continuous training, textual and variant data, and biomedical touch,
which improves the quality of biomedical data, even though other NLP preprocessing pipelines have made
important contributions to NLP in the biomedical field. The proposed model links genetic alterations to
clinical evidence, explicitly combining classification goals with accuracy.

The authors developed [30] a graph-attentive feature interaction model (CVDLLM) to improve the
accuracy of cardiovascular disease diagnoses, which was subsequently refined using the LLM. A novel
approach that comprehensively extracts characteristics from ECG(Electrocardiogram) data within its frame-
work was proposed. During the model’s learning phase, a GAT(Graph Attention Networks) subnet was
implemented to conduct a systematic analysis of the relationships between inter-lead features. A summary
of previous works, highlighting their limitations and research gaps, is shown in Table 1. To address the issues,
this study utilized comprehensive preprocessing steps, a natural language processing pipeline, and feature
extraction through bag of words and term frequency-inverse document frequency for the RF(Random
Forest) model and the proposed LLM model to predict genetic variants from unstructured text medical data,
employing various performance metrics.

Table 1: A summary of previous works, highlighting their limitations and research gaps

Authors Methodologies Limitations Gaps
[12] LLM LLM encounters many issues in

named entity identification
when it comes to extracting
valuable information from

medical texts.

Preprocessing procedures were
not appropriately followed, and

they were not assessed using
more crucial performance

indicators.
[15] BART, T5 More diverse datasets are

required for a better
comprehension of clinical text,

and the author’s use of
augmentation to enhance the

samples may result in biases in
the dataset.

This work lacks key aspects such
as accuracy, precision, recall, f1
score, AUC, and visualization.

(Continued)
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Table 1 (continued)

Authors Methodologies Limitations Gaps
[16] PaLM, Llama The study employed an

extremely small dataset for the
trials, which fails to encompass
the complete information from

the records. Additionally,
employed short learning with

constrained data.

The study did not utilize
cross-dataset tests, focused on

texturing data, and lacked
sufficient fine-tuning.

[17] LLM This experiment demonstrates a
deficiency in comprehending
the intricate, domain-specific

circumstances, resulting in
errors in labeling.

The integration of LLM and
human intervention may

produce label noise and does
not emphasize genetic variation

alongside medically accurate
communication.

[27] BioBERT The authors adopted BioBERT
for electronic health records,

applied a limited sample size for
the experiments, and integrated
a BERT+BiLSTM+CRF model.

This work worsens
computational costs with a

diminished sample size, while
also integrating multiple model

variations.
[28] Med-BERT They employed a named entity

recognition dataset for the
studies and did not examine the

preprocessing techniques to
improve performance.

Their proposed strategy shows
variability in performance

across different datasets and
techniques. Furthermore, it
lacks interpretability, posing

significant challenges for
professionals to comprehend.

[29] ChatGPT 4 This study exclusively employed
ChatGPT 4 prompts for

inquiries related to medical
information and the constraints

of the chatbot.

No model was suggested for the
prediction or classification of

medical text and gene variants.
They exclusively engaged in

question-answering prompts.

3 Materials and Methods
This section provides the details about the dataset, its preprocessing, and the proposed methodology,

as well as the natural language processing techniques. The entire workflow of the proposed study is shown
in Fig. 1.
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Figure 1: The proposed study workflow for the prediction of genetic variants using Large language BERT model and
NLP techniques

3.1 Dataset and Preprocessing Steps
The experiment’s dataset was obtained from the open Kaggle repository. The collection includes nine

classifications related to personalised medication for genetic mutations. Text presents the clinical proof,
whereas variants in the dataset provide information regarding genetic mutations. The collected data includes
unstructured and some useless information, which we need to remove from the textual data for improved
model prediction. In the context of data analysis applications, data preparation is of utmost importance
since it allows for the removal of unnecessary data, which in turn enhances the classification model learning
process and results in increased accuracy. Any data that does not considerably increase the accuracy of
the target class prediction is considered data that is considered to be worthless. However, the feature
vector decreases, which increases the amount of processing burden. In preparation for encoding, data is
cleaned up [31].

Statistical summary showing class distribution and the number of samples per category is shown
in Table 2. We randomly select only 3316 samples for the experiments and split them in an 80:20 ratio, with
80% allocated for training and the remaining 20% for testing the model’s performance. The data encompasses
descriptions of genetic mutations, shows ID rows, the genes harboring the mutations, variations, and the
associated gene classes. Textual data also encompasses ID and clinical evidence.
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Table 2: Statistical summary showing class distribution and the number of samples per category

Class 1 2 3 4 5 6 7 8 9
Training samples 453 361 71 549 194 218 761 15 30
Testing samples 113 91 18 137 48 55 191 4 7

Several steps are taken for preprocessing the unstructured text.

• Lowercase conversion: Lowercasing means changing all the letters in a text to lowercase. In this case,
we don’t want the computer to handle the same words in different situations in different ways.

• Punctuation removal: Remove all marks, like periods, commas, exclamation points, emojis, and more,
from the text so that it is easier to read and you can focus on the words.

• Stopwords removal: A stopword is a word that doesn’t belong in a phrase and leaving it out doesn’t
change what the phrase means. We can use the NLTK library’s stopwords to get rid of stopwords from
the text and get a list of word tokens.

• Tokenization: Word tokenisation breaks down a text into its individual words by using spaces, punc-
tuation, or other clues. To do most NLP work, one needs to use word-level tokenisation to process and
understand text [32].

• Stemming and lemmatization: Since this is a natural process, the stemmed words that come up may not
always be correct language. Lemmatisation is a more advanced method that breaks down a word into its
basic form (lemma) by looking at its part of speech and its context. It works better than stems most of
the time because it looks at both word meaning and grammar. Table 3 illustrates the preprocessed text
data using several techniques.

Table 3: Samples of preprocessed text data

Gene Variation Class Text Preprocessed text
FAM58A Truncating

mutations
1 Cyclin-dependent kinases

(CDKs) regulate a variety of
fundamental cellular processes.
CDK10 stands out as one of the
last orphan CDKs for which no

activating cyclin has been
identified and no kinase activity

revealed.

Cyclindepend kina cdk
regul varieti fundament

cellular process cdk stand
one last orphan cdk activ
cyclin identifi kina activ

reveal

CBL N454D 3 Recent evidence has
demonstrated that acquired

uniparental disomy (aUPD) is a
novel mechanism by which
pathogenetic mutations in
cancer may be reduced to

homozygosity. To help identify
novel mutations in

myeloproliferative neoplasms
(MPNs).

Recent evid demonstr
acquir uniparent disomi

aupd novel mechan
pathogenet mutat cancer

may reduc homozygos
help identifi novel mutat

myeloprolif neoplasm
mpn

(Continued)
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Table 3 (continued)

Gene Variation Class Text Preprocessed text
PTPRT D927G 4 Protein tyrosine phosphatase

(PTP) belongs to the classical
receptor type IIB family of

protein tyrosine phosphatase,
the most frequently mutated

tyrosine phosphatase in human
cancer.

Protein tyrosin
phosphatas ptp belong
classic receptor type iib
famili protein tyrosin
phosphatas frequent

mutat tyrosin phosphatas
human cancer

3.2 Feature Extraction
Feature extraction is a crucial component of NLP. Machine learning systems need this procedure to

convert textual input into numerical vectors for utilisation. Term frequency-inverse document frequency
(TF-IDF) and bag-of-words (BoW) are the two most recognised methods for vectorising textual data.

BoW technique is a well recognised and straightforward approach to vectorising text data. This entails
compiling a list of all distinct terms within a set and then determining the frequency of each word’s
occurrence in a text. The result is a vector representation of the text, with each unit denoting the word count
inside the text. BoW is a prevalent method for aggregating texts and an effective approach for initiating the
vectorisation of text data [33].

TF-IDF is a sophisticated method for vectorising text data since it assesses the significance of words
across documents and whole collections. TF-IDF assigns a weight to each word in a text according to
its frequency in the text and its rarity throughout the whole corpus. This might enhance the precision of
subsequent processes such as categorisation or retrieval by attributing more significance to terms that are
crucial for distinguishing texts [34].

3.3 Methodology
Natural language processing derives advantages from the use of large language models. LLM is a broad

designation for various types. The BERT deep learning language model aims to improve the effectiveness of
NLP tasks. One of its many remarkable features is its ability to examine word connections bidirectionally
inside a phrase to account for context. The abbreviation for this method is “Bidirectional Encoder Represen-
tations from Transformers.” Encoders, integral components of neural networks, facilitate the simplification
of incoming data for machine learning systems. Encoders provide a confidential state vector after processing
the provided text. Concealed state vectors are comparable to internal aggregates of values and parameters
that provide additional information. Thereafter, the transformer acquires this data payload. By using the
aforementioned data, the transformer may provide predictions and conclusions. The proposed large language
BERT optimized model is shown in Fig. 2.

A transformer is a deep learning architecture capable of transforming one input into another. Nearly
all apps use transformers to process real words. The encoder and decoder constitute the two essential
components of a transformer. However, BERT only utilizes components of the generator. The use of BERT
for pre-training in language processing is a common approach in the realm of artificial intelligence. A
possible use is to improve search engine results by ascertaining context. BERT is the optimal architecture for
a wide range of NLP tasks involving words and tokens. It is standard practice to include a [MASK] token
that substitutes the words in each word sequence before inputting it into BERT. Subsequently, the model
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attempts to ascertain the original value of the hidden words by examining the context of the secret terms. The
BERT method just assesses concealed value predictions during loss computation. Predicting non-masked
words is inconsequential. Thus, the model’s enhanced contextual awareness significantly compensates for its
prolonged settling time relative to directed models. BERT is undeniably transformative in the application of
machine learning to NLP.

Figure 2: Proposed large language BERT optimized model

Numerous models, such as the BERT model, which was developed to predict medical text and genetics
and served as a foundation for effective classification, were used to supplement this study. BERT is especially
helpful for tasks involving technical terms or unstructured data because of its capacity to interpret abstract
meanings and complex biomedical language contexts. Even with extremely complicated datasets, it can
achieve excellent accuracy because it has been pre-trained on large amounts of data, frequently surpassing
more conventional models like pattern recognition and classification. The BERT model does, however, have
weaknesses, including a high resource requirement and difficulty in interpretation, which may be detrimental
in therapeutic settings where comprehension of the model’s results is crucial. However, conventional machine
learning models like random forests, logistic regression, and decision tree models are simple and easy
to predict.

4 Results and Discussion
This section presents the large language BERT-optimised, fine-tuned model experiments using two

important NLP feature engineering techniques, such as bag of words and term frequency and inverse
document frequency, for the extraction of numeric features from the medical textual data. We conduct the
experiments using various performance metrics.
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4.1 Dataset Visualization
Predicting genetic polymorphisms and providing specific cancer treatments is personalized medicine. A

comma-separated text file (training_variants) describes the training genetic variations. The genetic mutation
consists of Identification (ID), Gene (the gene associated with the mutation), Variation (the mutation-
induced amino acid modification), and Class (1 to 9). Two methods segment the training_text file, which
contains genetic mutation classification text. The authors classify genetic mutations based on ID (clinical
evidence) and text. The file test_text contains clinical evidence for genetic mutation classification, separated
by double pipes. The genetic mutation database uses ID and text fields to provide clinical information for
mutation categorization. Fig. 3 represents the different visualizations of the medical data.

Figure 3: Dataset visualization where (a) presents the top gene counts appeared in the data, (b) presents the number
of classes in the data distribution, (c) presents the text length by number of words in the data and its frequency, (d)
presents the gene distribution for each class, (e) presents the bi-gram analysis of textual data, (f) presents the textual
data length for each class

NLP is a prominent application of WordCloud in the domain of artificial intelligence. We anticipate that
by emphasising the most often-used terms in the paragraph, website, social media platform, or discourse,
the principal subject of the content will be illuminated. Word clouds serve as a type of data visualisation
that illustrates textual information as shown in Fig. 4. The frequency or significance of each word within
the sentence determines its prominence in the word cloud. A word cloud allows the visualization of several
textual data points. A prevalent use of word clouds is in the analysis of data gathered from social media sites.



Comput Mater Contin. 2025;84(1) 1893

Figure 4: Best visualization of the wordclouds extracted from the data

4.2 Performance of the Proposed RF Model Using BoW and TFIDF Features
The selected five features are shown in Fig. 5a, which demonstrates the mean of BoW features along

with the classes. Different classes have various means, but Class 9 has the highest BoW mean for cell
features. Fig. 5b, which demonstrates the features along with the BoW score. The mutation feature has the
highest BoW score in the data. Fig. 5c, which demonstrates the class-wise features and average BoW counts.

Figure 5: Visualization of BoW features extracted from the dataset

The experimental findings of the proposed model using BoW features are shown in Table 4. Class 9
achieved the most precise findings compared to other classes. Class 2 attained 70% precision and 42% recall;
Class 4 earned 65% precision and a 67% F1 score; Class 3 recorded 43% precision and a 38% F1 score; Class
5 reached 40% recall; Class 6 obtained a 68% F1 score; Class 7 realised 64% precision; Class 8 had notably
poor performance. The features collected from the Bag of Words approach yielded superior outcomes.
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Table 4: Experimental results of the proposed RF model using BoW and TFIDF features

Bow features TFIDF features

Class Precision Recall F1 score AUC Precision Recall F1 score AUC
1 0.60 0.52 0.56 0.67 0.53 0.53 0.53 0.65
2 0.70 0.42 0.53 0.58 0.74 0.41 0.53 0.78
3 0.43 0.33 0.38 0.51 0.40 0.33 0.36 0.71
4 0.65 0.69 0.67 0.72 0.63 0.64 0.64 0.68
5 0.38 0.40 0.39 0.58 0.30 0.27 0.29 0.56
6 0.86 0.56 0.68 0.76 0.83 0.55 0.66 0.87
7 0.64 0.89 0.75 0.87 0.63 0.87 0.74 0.90
8 0.09 0.03 0.05 0.22 0.06 0.05 0.03 0.18
9 1.00 0.57 0.73 0.91 0.67 0.57 0.62 0.87

The experimental findings of the proposed model using TFIDF features are also shown in Table 4. Class
9 achieved the most precise findings compared to other classes. Class 2 attained 74% precision and 41% recall;
class 3 earned 40% precision and 36% F1 score; class 5 recorded 27% recall; class 6 reached an 66% F1 score;
class 7 obtained 63% precision; class 8 had very poor performance. The features retrieved using the TDIDF
approach yielded superior results.

Table 5 presents the experimental results of the proposed RF model using BoW and TFIDF vectorizer
with unified vocabulary. We set same frequency counts for both feature extraction techniques.

Table 5: Experimental results of the proposed RF model using a consistent vocabulary across both techniques

Bow features TFIDF features

Class Precision Recall F1 score AUC Precision Recall F1 score AUC
1 0.58 0.59 0.59 0.63 0.56 0.55 0.55 0.61
2 0.79 0.35 0.49 0.56 0.79 0.39 0.52 0.57
3 0.42 0.25 0.31 0.51 0.45 0.25 0.32 0.52
4 0.68 0.73 0.70 0.71 0.65 0.70 0.67 0.72
5 0.49 0.36 0.41 0.53 0.51 0.38 0.44 0.55
6 0.70 0.62 0.66 0.72 0.67 0.62 0.64 0.71
7 0.62 0.86 0.72 0.89 0.62 0.86 0.72 0.89
8 0.06 0.07 0.06 0.13 0.06 0.06 0.06 0.12
9 0.67 0.67 0.67 0.72 0.80 0.67 0.73 0.75

The five selected features are shown in Fig. 6a, displaying the mean of TFIDF features in relation to
the classes. Various classes have distinct means; however, class 5 has the greatest TFIDF mean for variant
traits. Fig. 6b illustrates the features besides the TFIDF score. The mutation feature has the greatest TFIDF
score in the data, related to BoW. Fig. 6c illustrates the class-specific traits and the average TFIDF numbers.
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Figure 6: Visualization of TFIDF features extracted from the dataset

4.3 Proposed Large Language BERT Model
The experimental findings of the proposed model are shown in Table 6. Class 9 achieved the most

precise findings compared to other classes. Class 2 attained 87% precision and 76% recall; Class 4 earned 72%
precision and a 70% F1 score; Class 3 recorded 69% precision and a 65% F1 score; Class 5 reached 67% recall;
Class 6 obtained a 79% F1 score; Class 7 realised 62% precision; Class 8 had notably poor performance. The
features collected from the Bag of Words approach yielded superior outcomes.

Table 6: Experimental results of the proposed model

Class Precision Recall F1 score AUC
1 0.87 0.76 0.81 0.88
2 0.72 0.69 0.70 0.79
3 0.69 0.62 0.65 0.75
4 0.87 0.74 0.80 0.91
5 0.75 0.67 0.71 0.76
6 0.89 0.71 0.79 0.92
7 0.62 0.69 0.65 0.73
8 0.14 0.23 0.17 0.34
9 0.93 0.88 0.90 0.93

4.4 Cross Validation Performance
Cross validation performance of the proposed model using 5Fold and 10Fold is presented in Table 7.

With cross-validation, the proposed model achieved 71% mean accuracy with 10-fold and 70% accuracy with
5-fold. Also, it achieved a 0.13 standard deviation using 10 folds and 0.16 with 5 folds.

Preprocessing steps affect model performance differently depending on their objective. Lower text
reduces contradictions and clarifies vocabulary. Eliminating stopwords keeps text clean, but predictive ana-
lytics may lose important data. Table 8 presents the impact of each preprocessing step on model performance.
The combination of lowercase and stopwords exerts a greater influence than mere lowercase conversion and
lemmatization. Lemmatization, stopwords, and numbers have achieved superior performance compared to
lowercase and lemmatized text.
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Table 7: Cross validation performance of the proposed model using 5Fold and 10Fold

Results
10Fold acc 0.71

STD 0.13
5Fold acc 0.70

STD 0.16

Table 8: Impact of each preprocessing step on model performance

Steps Accuracy Precision Recall F1 score
Lowercase only 0.68 0.68 0.66 0.67

Lowercase + Stopwords 0.70 0.69 0.66 0.67
Lowercase + Punctuation + Numbers 0.69 0.69 0.67 0.68

Lowercase + Stemming 0.69 0.70 0.67 0.68
Lowercase + Lemmatization 0.68 0.69 0.66 0.67

All steps 0.71 0.70 0.68 0.69

Even though the proposed method performs well technically, a thorough assessment of its therapeutic
value and real-world implementation in clinical settings would still be beneficial for this study. This technol-
ogy reduces manual labor and enhances decision-making by assisting physicians in automatically extracting
valuable information from unstructured data, including genetic information, medical presentations, and
research publications. They assist in identifying high-risk individuals, developing individualized treatment
plans, and matching the right drugs to genetic diseases when integrated with systems like electronic health
records. Validating model interpretation, which is crucial in clinical contexts, and managing noisy or missing
data are two difficulties that arise during real-world deployment. By concentrating on these areas, the
research’s scientific impact will be increased and the gap between AI (artificial intelligence) development and
clinical application will be closed. The error analysis per class is shown in Fig. 7. Class 9 has fewer errors, and
class 8 has more false positives.

Figure 7: Error analysis made by the proposed model

5 Conclusion
LLMs attract the interest of many fields as they might revolutionize artificial intelligence capabilities.

Training LLMs from genesis using medical datasets or fine-tuning them with generic LLMs could improve
their usage in healthcare. The effectiveness of LLM was assessed in this research by examining textual clinical
data that was sourced openly. We have used a range of text preparation techniques to clean the clinical textual
data. Two feature engineering techniques are BoW and TFIDF, which are used to extract significant features
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or convert features into numerical formats. The main results show that the RF model reached 63% accuracy
and a 73% F1 score for class 9 using Bag of Words features, and 61% accuracy with 67% precision for class 9
using TFIDF features.

The proposed BERT model got 71% accuracy with 10-fold cross-validation and 70% with 5-fold cross-
validation. The suggested BERT model achieved 71% accuracy with 10-fold cross-validation and 70% with
5-fold cross-validation. The proposed approach enhances the two-dimensional comprehension of variant
sequences, reduces the error rate in predicting genomic variations, and captures intricate impacts that
conventional models may ignore. This trend aligns with advancements in NLP, wherein LLMs have surpassed
state-of-the-art models in tasks like gene localization and variant prediction. Through extensive pre-training
on substantial genomic datasets, our model rapidly acquires the capability to delineate feature sets, hence
enhancing its predictive accuracy of behavioral traits relative to current methodologies.

The present research has limitations, since the findings of the proposed model are inadequate, demon-
strating poor performance and subpar feature extraction efficacy. Furthermore, this study has limited data
that results in less accurate predictions, and there were imbalance issues in the obtained data that caused
overfitting. In the future, we will implement efficient feature extraction and selection algorithms to improve
accuracy. To address the imbalance issues, we will employ sampling and advanced generative adversarial
networks to balance the data and enhance the results. Additionally, we may include more advanced LLM
models like ChatGPT-3 and Transformers.
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