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ABSTRACT: Dealing with data scarcity is the biggest challenge faced by Artificial Intelligence (AI), and it will be
interesting to see how we overcome this obstacle in the future, but for now, “THE SHOW MUST GO ON!!!” As AI
spreads and transforms more industries, the lack of data is a significant obstacle: the best methods for teaching machines
how real-world processes work. This paper explores the considerable implications of data scarcity for the AI industry,
which threatens to restrict its growth and potential, and proposes plausible solutions and perspectives. In addition, this
article focuses highly on different ethical considerations: privacy, consent, and non-discrimination principles during
AI model developments under limited conditions. Besides, innovative technologies are investigated through the paper
in aspects that need implementation by incorporating transfer learning, few-shot learning, and data augmentation
to adapt models so they could fit effective use processes in low-resource settings. This thus emphasizes the need for
collaborative frameworks and sound methodologies that ensure applicability and fairness, tackling the technical and
ethical challenges associated with data scarcity in AI. This article also discusses prospective approaches to dealing
with data scarcity, emphasizing the blend of synthetic data and traditional models and the use of advanced machine
learning techniques such as transfer learning and few-shot learning. These techniques aim to enhance the flexibility
and effectiveness of AI systems across various industries while ensuring sustainable AI technology development amid
ongoing data scarcity.

KEYWORDS: Data scarcity; artificial intelligence; application of artificial intelligence; ethical considerations; artificial
general intelligence; synthetic data

1 Introduction
With the advancement of AI, many sectors have progressed to a new, innovative future, including

healthcare, finance, and other sectors. However, with continued advancements in AI, a basic limiting factor
has slowly come to light, which may reshape the evolution of this technology: not enough high-quality, real-
world data is available. Here is the fundamental concept of how this works—Data→ AI Engine→ Learning,
Adapting, and Decision Making. However, the need for data is growing faster than authentic and varied
sources can provide. The lack of naturally occurring data, i.e., unadulterated natural information based upon
direct human interactions and experiences as they occur in the world, is putting AI development at serious
risk [1–5].
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The consequences of less data are monumental, including ethical questions and the efficacy and accuracy
of AI models. To truly grasp the severity of this matter, it is essential to think about how AI categorizes
things not as mere numbers or letters but as patterns formed by behaviors learned from enormous data
[6–10]. However, when inputting datasets are restricted, is the AI we rely on left to function with insufficient
information or underwhelming accuracy? Data scarcity is an existential problem for AI in all sectors
[11–14], though it does not exist technically. Nonetheless, it significantly affects the marginal AI systems that
businesses use to enhance performance [15–19].

With data learning being a dilemma, the future of AI is at a critical juncture. Given that AI systems
become progressively dependent on enormous amounts of data to acquire knowledge and produce pre-
dictions, this restriction in the form of insufficient data can considerably impact their effectiveness and
applicability in different domains. This issue is especially pronounced in disciplines like healthcare, where
the precision and reliability of AI-powered solutions are critical. For example, we used relatively small
datasets for many of the AI applications in healthcare, which have yielded accuracies below those seen in
clinical settings [18]; this makes the AI models less robust and generalized, which calls for developing novel
methodologies to deal with limited data situations.

In addition, the ethical consequences of AI creation in the setting of a lack of data are significant and
must not be ignored. Data reliance and the need for extensive datasets in machine learning [16] have made
questions of privacy, consent, and bias in AI algorithms to reproduce existing inequalities theoretically even
more pertinent [1]. Hence, organizations are required to overcome such socio-technical issues, which will,
in turn, facilitate a robust and moral AI system [18]. This joint effort was necessary with many stakeholders
of different sectors to create ethical standards and regulatory frameworks to rule the responsible generation
and implementation of AI technologies [4].

Beyond ethical considerations, the future of AI depends on advances in data engineering practices and
AI model lifecycle management, given the scarcity of data. Organizations must develop the capabilities to
update their AI systems as the data evolves to make their prediction relevant and effective over time [9].
Additionally, the convergence of AI with other technologies (like machine learning and intelligence aug-
mentation) can help in better utilization of data as well as in improving AI productivity [2]. However, by
encouraging the cross-fertilization of ideas between different fields of science, stakeholders can counteract
the negative consequences of data shortages and facilitate the realization of AI’s potential in a range of
sectors [16].

As AI increasingly matters across domains, this article discusses data scarcity (See
Appendix A, Table A1) as a key obstacle to AI progress. Section 2 delves into the impact of data scarcity,
emphasizing its role in limiting AI’s ability to generalize, adapt, and perform effectively in real-world
applications. Section 3 discusses some of the ethical implications of limited data, including bias, privacy,
and fairness risks, and calls for responsible AI development.

Section 4 explores technological innovations such as synthetic data generation, transfer learning, and
short learning as potential paths toward overcoming the problem of data scarcity. Section 5 provides a case
study that illustrates how the generation of synthetic data can be used to augment the training dataset
using SMOTE (See Appendix A, Table A1) in the case of a very imbalanced dataset, which improves model
performance in terms of generalization. These experimental results confirm the essential role of synthetic
data in tackling data scarcity [20,21].

Ultimately, the conclusion argues for a hybrid approach, whereby synthetic data is integrated into
existing paradigms, underpinned by ethical frameworks and cross-indexing across all sectors, to empower AI



Comput Mater Contin. 2025;84(1) 1075

systems to succeed in low-resource settings. This in-depth survey sheds light on addressing data challenges
and scaling AI responsibly.

2 Literature Review
Table 1 summarizes information about data scarcity across various fields of AI and draws from multiple

references throughout the document to highlight ongoing research and methods to address this challenge,
as shown in Table 1.

Table 1: Literature review

References Key points Findings
[17,18] Focused on evaluating various machine

learning data augmentation techniques
to address data scarcity.

Emphasized the need for more
sophisticated methods that can simulate

real-world variability effectively.
[22] Explored strategies including

collaborative filtering and content-based
methods to enhance recommendation

systems in the face of data scarcity.

Highlighted the critical impact of these
strategies on improving user engagement

and recommendation diversity.

[23] Utilized transfer learning and synthetic
data generation to adapt technical

systems to operate under conditions of
data scarcity.

Detailed the development of
methodologies robust enough to handle

diverse conditions of data scarcity.

[24] Discussed the implementation of
rejection mechanisms in ML (Machine

Learning) deployments to improve
decision reliability in low-resource

settings.

Argued for the necessity of such
mechanisms to ensure reliability in

critical AI applications.

[25] Reviewed data-centric approaches,
contrasting them with traditional

model-centric methods, to address data
scarcity in AI.

Identified key aspects where data-centric
innovations are crucial for the

advancement of AI.

[26] Proposed the creation of a low-cost
mirror environment to simulate

real-world conditions for AI training and
development.

Demonstrated that such environments
can significantly enhance AI system

reliability and performance.

[27,28] Implemented AI-based methods to
integrate diverse data sources for

improved pharmacovigilance.

Identified challenges in drug safety
monitoring due to sparse data and

proposed solutions.
[29] Developed a novel algorithm to generate

synthetic data for training machine
learning models, specifically in medical

imaging.

Demonstrated an increase in training
data availability and improved accuracy

in medical diagnostics.

[30] Utilized deep generative models for the
private data synthesis, addressing both

privacy concerns and data scarcity.

Indicated that these models could
effectively tackle privacy and scarcity

issues in AI.

(Continued)
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Table 1 (continued)

References Key points Findings
[31,32] Discussed deep generative models for

private data synthesis, focusing on
improving classifier performance under

privacy constraints.

Found that these models could enhance
classifier performance by generating
diverse and privacy-compliant data.

[33] Employed the BERT (Bidirectional
Encoder Representations from

Transformers) model to generate text
data based on topic relevance, aiming to
enrich data availability for ML training.

Demonstrated an enhancement in data
availability and relevance, improving

overall model performance.

[34] Explored data augmentation techniques
to enhance the training and performance

of large language models.

Found that these techniques significantly
mitigate data scarcity impacts on model

training.
[35] Conducted a comprehensive review of

deep learning tools designed to handle
data scarcity, examining various
strategies and their applications.

Provided an overview of tools’
capabilities and effectiveness in

addressing scarce data challenges.

[36] Addressed the issue of data scarcity in
the context of political communication

research, proposing methodological
adaptations.

Detailed adaptations in research
methodology but specific findings were

not provided.

[37] Proposed the creation of synthetic
profiles using AI to enrich data

availability for various applications.

Demonstrated the potential of synthetic
data to enhance availability across

diverse AI applications.
[38] Discussion on the global impact of data

scarcity on AI development, focusing on
challenges developers face.

Highlighted the pervasive nature of data
scarcity and its global impact on AI

development.
[39] Proposed heuristic training methods as

part of Resource Constrained Training
(RCT) to optimize training under

resource limitations.

Showcased the effectiveness of RCT
methods in enhancing training efficiency

in resource-poor environments.

[8] The importance of data sharing was
emphasized, particularly in the context of

medical AI development.

Stressed that enhancing data sharing
practices is crucial for advancing AI in

medicine.

3 Navigating Data Challenges in AI Development

3.1 The Critical Role of Natural Data in AI Development
Training AI models to function properly in unpredictable environments requires natural data, also

called raw or unprocessed real-world scenario data [2,6]. The flaws, assumptions, and nuances in this data
are perfect for AI to predict and adapt well to a massive range of unique scenarios. Synthetic data, on the
other hand, is loosely defined as artificially generated to imitate real-world data and often does not have the
authenticity or richness necessary for creating robust and reliable AI.
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What sits behind natural data is the truth in how humans interact, speak, and behave. For example,
the subtleties of language (i.e., slang in different regions, typos, and differences between syntaxes) are only
learned through immersion in linguistic diversity [39]. As a result, models trained only on synthetic data may
not generalize well to other demographics and contexts, which could produce biased or incorrect results.
Thus, having natural data is crucial in constructing AI systems capable of interacting and servicing a wide
range of user bases, addressing the fundamental challenge of responsible progress on AI.

Workflow of processing natural data for AI development:

• Start: Initiation of data collection.
• Activities:

– Collect Natural Data: Gathering data from various sources.
– Clean Data: Removing irrelevant or erroneous data.
– Analyze Data: Understanding patterns and anomalies.
– Train AI Model: Using the processed data to train the model.
– Evaluate Model: Testing the model against a validation dataset.

• Decisions: Based on the outcome of the model evaluation, decide whether to retrain the model or
proceed to deployment.

• End: Conclude the process if the model meets the desired metrics.

In the modern age of digitalization, data and artificial intelligence (AI) are playing a central role in
ushering innovation across industries, as shown in Fig. 1. As the quantity of information keeps increasing
due to digital devices and online platforms, along with rapid AI progression, our days are getting used to
seeing eye-popping improvements.

• Unpacking the Synergy of Data and AI:

The Data Deluge: In today’s world, a vast amount of data is being produced by devices and connectivity.
It comes with a volume that is difficult to manage; otherwise, AI can process and unearth insights at an
unimaginable scale.

The AI Revolution: What was once a concept is more of a reality, as AI now has become the feature
that lifts our world. It covers doings/moves such as machine learning and natural language processing, which
refers to the capability of machines to learn with data execution tasks requiring human-level cognition. AI
and data are related to each other by:

• Data Feeds AI: High-quality data trains AI models to recognize patterns and make informed decisions.
• AI Enhances Data: AI processes data faster than humanly possible, organizing and extracting

key insights.

Table 2 illustrates how the use of natural data in AI development is influenced by trends towards open-
source, the high computational and environmental costs of training models, the financial focus on generative
AI technologies, and growing concerns about AI ethics and fairness. These elements highlight the ongoing
evolution and challenges of using natural data for AI advancements.
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Figure 1: The critical roles of data and AI

Table 2: The key data points on the critical role of natural data in AI development for 2023

Category Value Description References
Foundation models

released
149 Number of foundation models released in 2023 [40]

Generative AI
investment (Billion)

22.4% Investment in generative AI in 2023 (in billions) [41]

Environmental
impact

41 yrs Years of power for an average American home
provided by the energy used to train GPT-3

(General Pre-trained Transformer-3)

[40]

AI ethics submissions
increase

10 Tenfold increase in submissions to AI ethics
conferences since 2018

[42]

3.2 The Growing Demand for Data in AI
Now that AI has become associated with everything from personalized product recommendations to

medical diagnostics, there is a demand for enormous stores of diverse data. Large models (like, for instance,
GPT-4) [15,43] need the order of billions of words and images to operate at their best levels in terms of both
accuracy and reliability. The burgeoning number of applications in different domains further expedites this
demand. It is no secret that industries, be it finance, healthcare, or e-commerce, rely heavily on AI-powered
analytics for better insights, to take control of trends, and to make strategic decisions [43].

On the one hand, they count on this level of demand. On the one hand, it hammers out rapid iteration
as companies fight to make their AI shine brighter than others. On the other hand, it puts enormous pressure
on natural data reserves, leading to a supply-demand imbalance that eventually slows down AI progress.
Synthetic data, an alternative to genuine transaction data for testing and developing new analytics such as
advanced Machine Learning (ML) [44] or AI, has, of late, become many organizations’ answer where the
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continued advancement, albeit very slowly brings with positive outcomes in part because it provides test
cases where otherwise notary from real-world legitimate events were are even less use for plan these type
algorithms. The absence of suitable sources for real data can reduce AI applications’ reliability and ethical
integrity, making them less attractive to use in critical sectors.

Table 3 summarizes the latest data on the growing demand for data in AI as of 2023, along with key
trends and developments across various industries:

Table 3: The growing demand for data in AI as of 2023

Sector Key data and trends References
Overall AI 72% of all new foundation models are developed by industry. [43]

Machine learning Logged models grew 54%, and registered models grew 411% since
February 2022.

[45]

Generative AI Investment surged to $25.2 billion in 2023. [46]
Healthcare Big Data enables personalized medicine and predictive healthcare. [47]

Retail Big Data drives insights into consumer behavior and market trends. [48]
Finance Big Data is used for fraud detection and risk assessment. [47]

Manufacturing Big Data optimizes supply chain operations and production efficiency. [49]

These insights demonstrate the critical role of data in driving advancements in AI across various sectors,
highlighting the immense growth in data demand and the evolving capabilities of AI technologies.

3.3 Challenges of Data Scarcity for AI
AI has been training AI systems on ever-larger datasets, which is why we now have high-performing

models such as ChatGPT or DALL-E 3. Simultaneously, research indicates that the growth of online data
stocks is significantly slower than that of datasets utilized for AI training. In a paper published last year,
researchers predicted we would run out of high-quality text data by 2026 if the current AI training trends
continue. They also estimated that low-quality language data would be exhausted between 2030 and 2050
and low-quality image data between 2030 and 2060. According to the accounting and consulting firm PwC,
artificial intelligence has the potential to contribute a staggering US$15.7 trillion (A$24.1 trillion) to the global
economy by 2030. However, running short of usable data could slow down its development [50].

However, it is not just a by-product of its limitations as it has ethical and socio-economic implications.
Without natural, high-quality data, AI models cannot remain perpetually privy to the dynamics of change
and instead become captives in their synthetic ivory towers. For example, large language models require
continuous access to diverse, up-to-date data to remain relevant and accurate. Otherwise, their outputs might
become obsolete or inaccurate in time.

In addition, without ample natural data, AI systems may also become biased. Because these models are
trained on incomplete or homogeneous datasets, they learn and replicate the biases built into that data, e.g.,
leading to discriminatory/unfair outcomes. One example might include an AI system used in hiring, which
may lack diverse data, leading to certain demographics being preferred over others and ultimately favoring
one group, thereby perpetuating societal imbalance. The consequences of these biases could be devastating
as AI systems become central to different decision-making processes, from court judgments to healthcare
recommendations [51].
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Data scarcity is also very expensive from a monetary perspective. Many may struggle to innovate as
companies who rely on AI for efficient operations, cost reduction, or enhanced customer experiences find
it difficult when they are not sure about the origin of their data. This, in turn, could stall AI deployment in
industry and, with it, the development of technologies that improve economic advancement. Table 4 lists key
challenges of data scarcity in AI—i.e., data exhaustion, risk of bias, regulatory constraints, and cost—and
their potential negative implications on model performance, fairness, and innovation.

Table 4: Challenges posed by data scarcity in AI

Challenge Description Potential impact
Data exhaustion High-quality language and image data

are projected to be depleted within the
next two decades.

Slower AI model development,
reduced innovation, and performance

stagnation.
Increasing bias risk Limited data diversity can reinforce

existing biases in AI models.
Biased decision-making in sectors

like hiring, law, and healthcare.
Regulatory constraints Strict data regulations limit access to

high-quality, real-world data.
Reduced availability of natural data,

affecting model accuracy and fairness.
Resource imbalance Smaller companies may struggle more

with limited data access than larger,
resource-rich organizations.

Possible monopolization of AI
advancements by well-funded

companies.
Cost of data collection High costs associated with sourcing,

curating, and annotating high-quality
data.

Increased operational expenses,
slowing down AI project deployment.

3.4 Risks of Synthetic Data as a Solution
As natural data becomes less available, synthetic data has become a possible solution. Synthetic data is

fake; it is artificially created to mirror real-world data, and the possibilities of being generated are endless.
However, replacing natural data comes with some risks and imperfections. One is synthetic data because it
cannot replicate the nuanced complexities that humans experience in interactions. AI models do great in a
controlled environment but will struggle to generalize on chaotic, real-life situations. Many synthetic data
also risk exacerbating pre-existing biases by default, as they tend to be generated based on patterns in existing
data that often exclude specific user groups.

Furthermore, using synthetic data touches on its ethical dilemmas. This is a problem in machine
learning as the AI may generate data that it assumes is correct by using another self-trained algorithm.
Concepts like “AI training AI” are not accountable or transparent, so these models’ authenticity and accuracy
cannot be easily proven. The biases contained within synthetic data will eventually dilute into the AI systems
themselves, and in situations where accuracy is critical for a design, this could have adverse effects. Table 5
highlights how synthetic data can address data scarcity by increasing accessibility, affordability, control over
bias, scalability, and ethics while also outlining associated risks like loss of authenticity, potential for bias,
and ethical concerns.

3.5 Ethical and Privacy Concerns in the Data-Driven AI Landscape
The lack of natural data is also hindered by privacy and ethical challenges. Human-generated data must

be acquired and employed, often at the cost of sensitive private-output validation with significant end-user
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privacy implications. Instances like the Cambridge Analytica scandal have seeped into internet culture and
public consciousness concerning data privacy, rising to quadruple scrutiny among nations. This has led to
severe regulations and left little scope for vendors or site owners to snoop around without permission.

Table 5: Synthetic data as a solution to data scarcity

Aspect Benefits Risks
Accessibility Synthetic data can be generated to

fill data gaps.
Generated data may lack real-world

authenticity, affecting model
performance.

Cost-effectiveness Reduces costs associated with data
collection and annotation.

Quality concerns may require
additional validation, adding costs.

Bias management Synthetic data can be tailored to
improve dataset diversity.

Potential for new biases introduced if
synthetic data is derived from biased

data sources.
Scalability Easy to produce large volumes for

training.
Excessive reliance on synthetic data

risks a feedback loop in machine
training, limiting diversity.

Ethical considerations Avoids privacy concerns associated
with real-world data.

Ethical ambiguity around training
models without real-world grounding.

AI companies have to navigate data regulations that change dramatically between countries; they must
also balance this with their deep wish for more user data and our demand for a private age. When the data is
used to train AI systems that were not explicitly consented to or carried out with explicit permissions, ethical
challenges start showing their face. Others are calling for more robust frameworks, especially concerning data
collection, reiterating the importance of ethical approaches to AI regarding standards, as shown in Table 6.

Table 6: Ethical and privacy considerations in AI data usage

Ethical concern Description Importance of AI development
Data privacy Ensuring data collection and usage

comply with privacy laws and respect
individual rights.

Builds public trust in AI systems and
prevents legal repercussions.

Bias reduction Avoiding biases that could lead to
discrimination or unfair treatment.

Ensures AI applications serve all
demographic groups equitably.

Transparency Providing clarity on data sources and
AI training methodologies.

Fosters trust and accountability in AI
applications.

Accountability Responsibility for ethical AI outcomes,
especially in sensitive sectors like

healthcare.

Minimizes risks of harm from biased
or erroneous model outputs.

Public consent Involving public opinion and securing
consent for data usage.

Increases societal acceptance of AI and
aligns AI development with societal

values.
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4 Technological Innovations to Address Data Scarcity
Advances in technology offer promising solutions to the challenges of data scarcity in AI. This section

outlines several innovative approaches:

• Advanced Machine Learning Algorithms: Techniques such as few-shot learning, transfer learning, and
self-supervised learning enable AI models to learn effectively from limited data. For instance, few-shot
learning has been successfully employed in natural language processing (NLP) tasks, achieving up to a
20% improvement in accuracy with only a handful of training examples.

• Data Compression and Augmentation Techniques: Data compression reduces dataset size while
maintaining data integrity, enabling efficient storage and processing. Meanwhile, data augmentation
artificially enhances dataset variety without requiring new data collection. For example, image augmen-
tation techniques such as rotation, scaling, and color adjustment generate diverse training samples from
a single image.

• Novel Data Acquisition Methods: Leveraging unconventional data sources like IoT devices and user-
generated content can substantially increase data availability. Examples include using smartphones and
wearable devices to collect real-time health data for personalized medicine applications.

Table 7 illustrates various innovative technologies and their applications in AI, showcasing their impacts
and providing key definitions, impact, and examples where applicable.

Table 7: Examples of technological innovations in AI

Technology Definition Impact Example
Few-shot learning Training AI models with only a few

examples instead of thousands
allows them to recognize patterns
efficiently with minimal data [52].

A novel strategy that
leverages (GANs,

Generative Adversarial
Network) and

advanced optimization
techniques

Bridges data scarcity
with high-performing
model adaptability and

generalization

Data
augmentation

Making small picture changes
(flipping, rotating, changing

brightness) to help AI learn better
from limited data [53].

Enhanced training set
diversity

Training autonomous
driving systems with
modified real-world

images
IoT devices Smartwatches or medical devices

that track heart rate and send alerts
if something is wrong [54].

Real-time health
monitoring

Using wearable devices
to monitor patient vitals

in real-time
Synthetic data

generation
Creating fake but realistic data so
AI can learn without using real

people’s sensitive information [55].

Training without
exposing personal data

Creating synthetic
financial profiles for

fraud detection testing
Self-supervised

learning
AI teaches itself using raw data, like
a person learning from experience
instead of reading a manual [56].

Reduces the need for
labeled datasets

Content moderation on
social media platforms

without predefined
labels

Transfer learning Taking what an AI learned in one
area and using it elsewhere, like
teaching a soccer player how to

play basketball [57].

Adapting models to
new areas without

retraining

Applying financial
market predictions to

healthcare trends
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5 Strategic Solutions to the Data Crisis
To address data scarcity, AI developers and companies can adopt strategic approaches that optimize

data efficiency, expand data availability, and maintain ethical standards.

• Optimizing Data Efficiency: When data is limited, models should be optimized to extract maximum
insight from the available information. Techniques like data augmentation, transfer learning, and
reinforcement learning (See Appendix A, Table A1) help reduce the dependency on large datasets while
maintaining model accuracy.

• Collaborative Data Sharing: A competitive way to democratize data access is via company partnerships.
In pooling resources, groups will realize a more balanced and diverse training dataset in the models
they develop, leading to less bias in general. A quintessential open-source initiative is Uber, which has
made available its self-driving dataset to developers around the globe, thus facilitating a co-working
environment of innovation and data dissemination subject to regulated ethical narratives.

• Integrating Synthetic and Natural Data: Although synthetic data is not sufficient by itself, a hybrid of
natural and artificial may overcome the weaknesses inherent in both types. If natural data are used as the
base, synthetic data can fill any gaps, especially in niche or underrepresented areas. When companies
take this more balanced approach, they can respond to the demands for data without degrading selection
accuracy or equity.

• Exploring Alternative Data Sources: Companies are already looking to newer organic data channels,
such as customer feedback, offline footprints, and proprietary datasets. By digitizing and analyzing their
resources, companies can create useful training data without stepping over the privacy boundary.

• Table 8 lists the primary approaches to AI data scarcity by enhancing training efficiency, data sharing,
hybrid data usage, alternative sources, and regulation support for enabling improved availability,
fairness, and ethics compliance.

Table 8: Strategic solutions to address data scarcity in AI

Solution Description Benefits
Data efficiency techniques Focus on enhancing model

training through data
augmentation, transfer learning,

and reinforcement learning.

Reduces reliance on extensive
datasets, enabling effective
learning with limited data

resources [11].
Collaborative data sharing Companies partner to share

anonymized datasets, expanding
diverse data pools.

Enhances data availability,
mitigates bias risks, and fosters AI

innovation.
Hybrid data use Combines real-world and

synthetic data to expand AI
training capabilities.

Maintains data authenticity,
improves model adaptability, and

enhances fairness.
Exploring new data sources Alternative sources like customer

feedback, sensor data, and offline
repositories are used.

Expands available data diversity,
improving real-world model

applications.
Policy and regulatory support Establishing responsible

data-sharing frameworks in
partnership with governments

and policymakers.

Ensures ethical AI deployment
while maintaining compliance

with legal standards.
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5.1 The Road Ahead: Building Sustainable AI with Limited Data
Given these challenges, the AI industry should also work to maintain energy—and data-efficient

systems. With so many seemingly successful algorithms, developing data-efficient algorithms that extract as
much value from each data point will be vital to progress once natural resources are scarce. Policymakers
will also have a role in making that happen, such as through regulations to facilitate responsible data use and
ensure businesses maintain high ethical standards.

Much like oil, data is a resource that could be the key to unlocking even more potential human
progress—but as we move forward into an uncertain future where unlimited data may no longer be possible
or generally allowed, people can turn their attention from the acquisition of massive amounts of low-quality
convenience samples and direct our efforts on authoring and cataloging diversity in “good” taste if it were.
Ultimately, it comes down to combining lawful data quality with trustworthy AI systems and responsible
development to ensure top-notch security features. If the industry keeps these values in mind, it should be
able to innovate and grow responsibly, with AI as a positive force for good.

5.2 Strategic Approaches and Partnerships
Collaboration and strategic partnerships between organizations can be pivotal in overcoming

data scarcity:
Data Sharing Initiatives: Companies like Google and IBM have pioneered sharing large datasets. For

example, Google’s release of the ImageNet database has revolutionized computer vision research.
Public-Private Partnerships: Collaborations between governments and tech companies can facilitate

the development of AI technologies with shared datasets. An example is the partnership between the U.S.
Department of Health and AI startups to analyze health data securely.

Table 9 highlights significant partnerships between organizations aimed at leveraging collaboration to
address challenges, including data scarcity.

Table 9: Key strategic partnerships in AI

Partners Initiative Purpose Contribution References
Google and academic

institutions
ImageNet database Boost research in

computer vision
Pioneered advancements in

image recognition
[58,59]

U.S. department of
health and startups

Health data analysis Enhance predictive
capabilities in healthcare

Improved diagnostics and
treatment plans

[60]

IBM and weather
channel

Weather data
collaboration

Enhance meteorological
predictions

Refined forecasting models
in meteorology

[61]

Facebook and
universities

Social data analysis Study behavioral patterns Provided insights into user
interaction dynamics

[62]

Automotive companies
and tech firms

Autonomous vehicle
data sharing

Accelerate autonomous
vehicle technology

Enhanced safety and
navigation systems

[63]

5.3 Policy and Regulation Considerations
Effective policy and regulation are crucial to ensuring data is used responsibly:
Data Privacy Regulations: The implementation of GDPR in Europe [64] and the CCPA in California

has set new benchmarks for data privacy, influencing AI data handling practices worldwide.
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Incentives for Data Sharing: Governments can incentivize data sharing with tax breaks and grants, as
seen in the EU’s Data Governance Act, which aims to foster data sharing while ensuring privacy.

Table 10 explores how specific data privacy regulations affect AI development and application across
various regions.

Table 10: Impact of data privacy regulations on AI

Regulation Region Impact Details References
GDPR (General Data

Protection Regulation)
Europe Tightened data

protection
Requires stringent consent for data

use in AI
[64]

CCPA (California
Consumer Privacy Act)

California Strengthened
consumer data rights

Enables consumers to opt out of data
selling

[65]

LGPD (General Data
Protection Law)

Brazil Enhanced privacy
protections similar to

GDPR

Mandates transparent data usage
policies

[40]

PIPL (Personal Information
Protection Law)

China Strict data
management and
export controls

Imposes controls on cross-border
data transfers

[66]

HIPAA (Health Insurance
Portability and

Accountability Act)

USA Privacy Rule permits
important uses of

information

These regulations impose strict
requirements on data handling and

user consent, thereby influencing how
AI systems are developed and

implemented

[67]

5.4 Case Study: Addressing Data Scarcity in Fraud Detection
This is a common challenge where rare but critical events, such as fraudulent transactions, need to be

identified, like fraudulent transactions. For a hands-on understanding of synthetic data generation, we used
the Credit Card Fraud Detection Dataset [68], a benchmark dataset in which only 0.17% of transactions
are marked as fraudulent. This case study is the application of synthetic oversampling techniques, such
as SMOTE (Synthetic Minority Oversampling Technique), to mitigate data imbalance (See Appendix
A, Table A1) and enhance AI model accuracy.

Dataset Overview: The dataset [68] consists of anonymized transaction data with significant class
imbalance, as shown in Eqs. (1) and (2):

• Normal Transactions (Support: 85,295):

Percentage = 85295
85443

× 100 = 99.83% (1)

• Fraudulent Transactions (Support: 148):

Percentage = 148
85443

× 100 = 0.17% (2)

This imbalance is a clear representation of practical data scarcity, where the availability of examples for
critical classifications (fraudulent cases) is minimal.
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5.4.1 Experimental Results
We used SMOTE to create synthetic examples for the minority class. A Random Forest Classifier was

trained on both the original and the augmented dataset, and its quality was assessed. Table 11 shows the main
performance for the augmented dataset:

Table 11: Model performance metrics after applying SMOTE

Precision % Recall % F1-score % Support
0 100.0 100.0 100.0 85,295
1 89.2 78.4 83.5 148

Accuracy – – 99.9 –
Macro avg 94.6 89.2 91.7 85,443

Weighted avg 99.9 99.9 99.9 85,443

• 0 represents the Normal (Non-Fraudulent Transactions) class.
• 1 represents the Fraudulent Transactions class.
• Support refers to the number of true instances for each class in the dataset. It represents the count

of actual samples in the test set for each class (0 for non-fraudulent transactions and 1 for fraudulent
transactions).

5.4.2 Metric Definitions
A. Precision:

Precision measures the number of correctly identified instances of fraud divided by the total number of
cases labeled as fraudulent. This particular measure focuses on how often the model is correct when it says
it is positive, as shown in Eq. (3).

Precision = TP
TP + FP

(3)

For example, in the Credit Card Fraud Detection Dataset, 0.17% of transactions are fraudulent. Second,
precision is essential so that flagged transactions are indeed fraudulent and the false alarm rate (fraudulent
transactions classified as non-fraudulent transactions) is minimized.

Application to Experimental Results:
The model achieved a precision of 89.00% for fraudulent transactions. That means 89% of transactions

that the model flagged as fraudulent were fraudulent, showing it to be effective in reducing the false positive
rate. This level of precision can be beneficial in fraud detection systems, where false positives can waste lots
of time and resources.

B. Recall:

Recall the number of actual fraudulent transactions detected by the model. This metric is critical for
grasping how well the model can capture low-probability events, as shown in Eq. (4).

Recal l = TP
TP + FN

(4)
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In fraud detection, recall is essential because the cost of missing fraudulent transactions (false negatives)
could lead to financial losses and undermine trust in the system.

It resulted in a 78.00% recall for fraudulent transactions. This means the model successfully detected 78%
of all fraudulent cases. While this shows improvement, some fraudulent cases were still missed, highlighting
the need for further optimization.

C. F1-Score:

The F1-Score, designed as a harmonic mean of precision and recall, offers a means to manage the trade-
off between these measures. This is especially useful in imbalanced datasets where both of these metrics are
important; the formula for the F1-score is typically given as Eq. (5), is:

F1-score = 2 ∗ precision ∗ recall
precision + recall

(5)

A common metric used for diagnosis datasets with high-class imbalance (for example, fraud detection)
is the F1-score because it provides a comprehensive evaluation of the model performance without weighing
precision or recall too heavily.

The F1-Score of fraudulent transactions is 83.00%, indicating that the trade-off between precision and
recall is balanced. This also shows that our model can detect fraud but does not raise many false positives.

These results confirm the efficiency of SMOTE, which improves the model’s ability to recognize rare
events while preserving high accuracy for all other cases.

D. Accuracy

Accuracy measures the proportion of all transactions (both normal and fraudulent) that the model
correctly classified; the formula for accuracy is given in Eq. (6) below.

Accuracy = TP + TN
TP + TN + FP + FN

(6)

Because of the imbalance in the dataset, the accuracy can be misleading on its own, as it depends too
much on the majority class.

The model reached 99.94% accuracy, showing that almost all transactions were classified correctly.
However, such a high accuracy only represents the model’s performance on the majority class (normal
transactions) and is not indicative of its capability to detect fraudulent transactions.

5.5 Implications of the Case Study
Addressing Practical Data Scarcity
This case study shows that data scarcity can be alleviated substantially through synthetic data generation

techniques like SMOTE. By generating more samples of the minority class, the model was able to:

1. Reduce Bias (Recall—Fraud Transactions): Overcome the inherent bias of the model towards the
majority class.

2. Enhance Generalization: The model achieved high precision and improved recall for rare events,
enhancing its ability to generalize across datasets.

Applicability across Domains
The success of SMOTE, in this case, has broader implications:
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• In healthcare, synthetic data can help detect rare diseases with limited availability.
• In manufacturing, synthetic data can be used to enhance anomaly detection when a few failures occur

in a production line.
• In finance, fraud detection systems are improved through oversampling imbalanced datasets.

5.6 Case Study: Evaluating AI Performance in Medical Diagnosis
Though theoretically, the development of AI appears promising, a number of real-world applications

regarding health care have shown the effectiveness of these technologies in the real world. Applying a
RandomForestClassifier to the Breast Cancer Wisconsin dataset represents another case study demonstrating
how AI approaches the dual challenge of data sparsity and decision ethics in diagnostics. The model yielded
high precision and recall with a balanced dataset of benign and malignant cases. This could be helpful in
the early detection of a disease and its accurate diagnosis, which is one of the most important aspects of
any patient care and treatment. Applications of this type constitute milestones in transforming healthcare
by equipping medical professionals with reliable tools for decision-making. This case study describes an
application of RandomForestClassifier using the Breast Cancer Wisconsin dataset [69] to estimate a diagnosis
as benign or malignant. The dataset [69] is a multivariate one, consisting of 569 samples with 30 features
each, which are further divided into a training set of 70% and a test set of 30%. The model RandomForest was
trained and afterward tested on the test set in order to calculate the precision, recall, f1-score, and support of
both diagnostic classes. Results, represented in Table 12, suggest very high accuracy regarding the diagnostic
capability of the model: 98.33% precision and 93.65% recall for malignant cases and precision of 96.39% with
a recall of 99.07% for benign cases. These metrics underline the robustness of the model, with F1-scores of
95.93% for malignant and 97.72% for benign diagnoses, therefore postulating that this model is accurate and
reliable in distinguishing the two conditions quite well, as seen from Table 12. The support values are 63 for
malignant and 108 for benign, showing the number of instances evaluated in each class and the balance in
the dataset used.

Table 12: Classifier performance metrics

Diagnosis Precision % Recall % F1-score % Support
Malignant 98.33 93.65 95.93 63

Benign 96.39 99.07 97.72 108
Overall Accuracy: 97.07 Macro avg: 97.36 Weighted avg: 97.11

The above case study shows the vast potential of machine learning to improve diagnostic accuracy in
the medical field. Therefore, it justifies the development of AI tools that can support clinical decision-making
and hopefully improve patient outcomes.
Ethical Considerations

Although synthetic data resolves most scarcity-related issues, it introduces its own set of potential risks:

• Bias Propagation: Synthetic samples can also inherit biases from the original data.
• Reduced Realism: Generative data may not capture the intricacies of actual environmental interactions,

leading to diminished fidelity of predictions when used for real-world applications.

This raises the need for synthetic data to be utilized along with a strong validation mechanism and an
ethical framework, as discussed in Section 3.4.
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5.7 Proposed Solutions and Their Applications
The pursuit of Artificial General Intelligence (AGI) and agentic AIs entering many industries as a new

type of workforce are some of the hottest topics in AI-related spaces in the mid-2020s. Such well-known AI
personas as Altman, Huang, Sutskever et al. claim that AGI has already been achieved and/or they know
exactly how to do it [70–74]. While this is currently a top-secret, the possible solutions are those presented
in Fig. 2 or a combination of them, which is even more likely. Top Large Language Models (LLMs) confirmed
the possible solutions through the short survey to gather their input.

Figure 2: Top possible solutions to the data scarcity problem

As can be seen from Fig. 2, the top option with the highest weight is Synthetic Data Generation. The
authors agree with this direction [74] and believe that creating high-quality synthetic data is impossible
without AI-human collaboration or, in other words, a Human-in-the-loop.

5.7.1 Synthetic Data Creation with Human-in-the-Loop
While some models can be specially trained to generate synthetic data, others can verify them and then

be used by top LLMs; without people involved, this process will make no sense. We will see something like
software development without a client. Fig. 3 represents a Human-in-the-Loop Synthetic Data Workflow.

As apparent in Fig. 3, humanity will collaborate with AI as top content creators and algorithm developers
to achieve the best possible outcome. This highly will likely include quantum computing and other ways of
compressing models and learning more and better from fewer data; all approaches to distributed machine
learning, such as federated learning (See Appendix A, Table A1), are obviously on a plate.

The integration of AI systems should be embedded, at the development stage itself, with privacy design
principles for better practicality. This could include techniques such as differential privacy (See Appendix
A, Table A1) in data processing, for which no trace of individual data points can be traced to owners. Similarly,
clear policies on data governance, including consent management, data access rights, and transparency
regarding data usage, would help foster trust and enforce ethics. Another benefit would be setting up an
Ethics Review Committee for AI projects to ensure that the highest ethics are considered while overseeing
complex issues.

5.7.2 Smaller Language Models
One of the most promising solutions for optimizing AI efficiency is Smaller Language Models (SLMs),

which have gained significant attention due to their ability to operate effectively in resource-limited environ-
ments. Unlike Large Language Models (LLMs), which require extensive computational power, SLMs provide
a more practical, cost-effective, and scalable approach to AI implementation. This makes them particularly
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suitable for deployment in low-resource settings, such as mobile devices, edge computing, and cloud-based
platforms. Recently released by Microsoft, Phi-4 stands out as one of the leading SLMs demonstrating
the potential of efficient AI models. It is a 40-layer, transformer-based model with a hidden size of 5120,
supporting over 100k token embeddings and containing 14.1 billion trainable parameters. Unlike traditional
LLMs, Phi-4 achieves high performance while significantly reducing resource consumption, making it a
viable alternative for real-world applications. Fig. 4 illustrates Phi-4 running on Google Colab, where the
model was executed on the PRO+ tier of the notebook (on an A100 runtime). The entire process was
completed within 751.6 s, demonstrating high efficiency.

Figure 3: Human-in-the-loop synthetic data workflow

Figure 4: Phi-4 SLM running on Google Collab
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The accessibility of SLMs like Phi-4 is a major advantage, allowing researchers and developers to
run highly capable AI models on cloud platforms at a lower cost. For example, the Google Colab PRO+
subscription provides access to high-performance GPUs (Graphics Processing Units) for just USD 50
monthly, making SLMs an affordable research, development, and small-scale production solution. Phi-4
has demonstrated strong performance in practical applications across multiple NLP tasks, including text
classification, summarization, question-answering (Q&A), and Retrieval-Augmented Generation (RAG).
Notably, Phi-4 can suggest solutions to data scarcity challenges, utilizing techniques such as Synthetic
Data Generation, Few-Shot and Transfer Learning, Data Augmentation, Self-Supervised Learning, Feder-
ated Learning, Zero-Shot Learning, and Privacy-Preserving AI Techniques (See Appendix A, Table A1).
Additionally, SLMs have proven highly effective in RAG-based applications, significantly enhancing doc-
ument summarization and knowledge retrieval. Researchers have successfully integrated Phi-4 into RAG,
GraphRAG, and LazyGraphRAG applications [19,45,75,76], enabling AI models to interact with structured
knowledge bases. These applications allow users to upload documents (e.g., PDFs, TXT files) and query them
interactively, making AI more versatile and practical for real-world data processing.

Fig. 5 presents a visual representation of the GraphRAG approach [19], illustrating how it structures
relationships within a document to enhance AI’s ability to retrieve, comprehend, and summarize structured
knowledge. The diagram showcases interconnected nodes, representing key concepts and their relationships,
which help improve contextual understanding and efficient retrieval of information.

Figure 5: A visual representation of the GraphRAG approach, illustrating how a document’s content is structured into
a graph-based format. This diagram highlights key concepts and their relationships, improving AI-driven retrieval,
comprehension, and summarization of structured knowledge

Table 13 summarizes all three RAG-based approaches, comparing their core concepts, storage utiliza-
tion, retrieval mechanisms, and efficiency trade-offs.

The emergence of Smaller Language Models (SLMs) marks a significant shift in AI development,
offering a balance between performance, efficiency, and accessibility. Models like Phi-4 exemplify how
resource-friendly AI can power advanced applications, such as Retrieval-Augmented Generation (RAG),
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document summarization, and interactive knowledge retrieval. While challenges remain, ongoing research
in knowledge adaptation, quantization, and efficient training methodologies will further enhance the
capabilities and widespread adoption of SLMs across various domains. As AI evolves, SLMs will play an
increasingly critical role in democratizing machine learning access, making AI applications more scalable,
efficient, and environmentally sustainable.

Table 13: RAG methods comparison

Feature RAG Full graph RAG Lazy graph RAG
Concept It uses a

retriever-generator
model to fetch and

process text chunks.

Organizes information
in a graph structure,
improving relational

understanding.

“Lazily” explores or expands
the graph at query time,

retrieving only the necessary
subgraph.

Storage Uses dense vector
indexes for direct
chunk retrieval.

Stores entities,
documents, and

relationships as graph
nodes & edges.

Minimizes memory
footprint by loading only

necessary segments.

Retrieval Searches for top-k text
chunks and generates

an answer.

Traverses graph
relationships to extract

relevant context.

Selects relevant nodes
dynamically, reducing
unnecessary retrieval

overhead.
Efficiency Fast, but lacks deep

contextual
relationships.

It is more
resource-intensive, as

graph traversal requires
extra computations.

Optimized for efficiency,
balancing context depth and

computational cost.

Context quality Depending on the
chunk ranking, it may

lose relational
meaning.

Captures document
relationships, improving

contextual
understanding.

Retains graph-based
advantages while reducing

computational load.

5.7.3 Quantization and Pruning
Quantization and pruning are key optimization techniques that significantly reduce machine learning

models’ size and computational cost, making AI more accessible and sustainable. These methods are
beneficial for Small Language Models (SLMs) like Phi-4, which aim to achieve high efficiency without
compromising performance. Quantization converts high-precision numerical values (32-bit floating points)
into lower-precision formats (8-bit or 4-bit), reducing memory usage and power consumption. Mean-
while, pruning removes unnecessary parameters (weights, neurons, or channels) from a model, reducing
complexity and computational load while maintaining accuracy.

Both methods align with the Green AI approach [18], ensuring lower energy consumption, faster
inference speeds, and minimal hardware requirements while keeping AI models scalable for real-world
applications. Table 14 presents the latest quantization and pruning approaches applied to Phi-4 (as previously
tested on Phi-1.5 and Phi-2 models) and detailed explanations of their key features.
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The significance of these techniques lies in their ability to reduce model size and computational
overhead, leading to faster real-time responses. Additionally, they play a crucial role in minimizing energy
consumption, contributing to the sustainability goals outlined in Green AI research. As AI models continue
to evolve, smaller, more efficient architectures will lower the cost of AI deployment, making advanced
machine learning more widely accessible; even though quantization allows AI models to store and process
numerical data efficiently while pruning eliminates redundant connections, further research is required
to evaluate their energy efficiency across different AI architectures. This is especially relevant for Large
Language Models (LLMs) and SLMs, where balancing performance, computational efficiency, and accuracy
remains an ongoing challenge.

Table 14: Quantization and pruning methods comparison

Approach Library/Tool Precision/Sparsity Key features
4-bit Quant

(NF4)
BitsAndBytes

(bnb) +Hugging
Face

Transformers

4-bit Weights
(NormalFloat4)

Maximizes memory savings while
maintaining good accuracy retention.

Used in LLMs & SLMs for extreme
efficiency.

8-bit Quant
(LLM.int8())

BitsAndBytes +
Accelerate/HF
Transformers

8-bit Matrix
Multiplications

Reduces GPU memory usage
significantly with a minor accuracy
drop vs. FP16. Best for general AI

applications.
Dynamic Quant

(8-bit/16-bit)
Native PyTorch
Quantization

8-bit or 16-bit
(activa-

tions/weights)

Applies on-the-fly quantization,
requiring minimal code changes.

Accuracy may vary depending on the
model’s sensitivity. Suitable for

low-power devices.
Quantization-

Aware Training
(QAT)

PyTorch or TF
Model

Optimization

8-bit or 16-bit
(weights +
activations)

Simulates quantization during
forward/backward, yields higher
accuracy, more complex setup.

Pruning PyTorch Pruning
Utilities

Any model/layer
(set weights to 0)

Simulates quantization effects during
training, improving accuracy in
low-precision models. Used in

production AI applications.

5.8 The Future of AI with Synthetic Data
This study underscores the significance of synthetic data generation as a pivotal technological inno-

vation. Synthetic data addresses one of the most pressing challenges in AI development by enabling AI
to function effectively in domains with limited access to natural data. Focusing on enhancing recall and
overall model efficacy further emphasizes the benefits of complementing conventional model training with
synthetic data to surmount challenges associated with natural data availability. As AI systems continue to
extend into the areas where lack of data becomes a bottleneck, hybrid schemes utilizing synthetic data,
transfer learning, and few-shot learning will gain even more traction. This study illustrates that you can bring
AI to reality in low-resource environments and achieve responsible and sustainable AI development goals.
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Developers can overcome data bottlenecks and improve model generalization by carefully generating diverse
and representative synthetic samples.

Small language models [13–15] are designed with fewer parameters, reducing their reliance on massive
datasets compared to larger models. Their compact architecture allows for effective training with limited
data, making them suitable for niche applications or domains where data collection is challenging. SLMs
also provide advantages in terms of reduced computational cost and faster inference, further enhancing
their practicality.

Quantization and pruning help mitigate data scarcity by enabling the deployment of models with
reduced memory footprints and lower computational demands. Quantization achieves this by representing
model weights and activations with lower precision, while pruning removes less important connections in
the network. Consequently, these techniques allow for efficient training and deployment of models even with
limited data, as the reduced model complexity lessens the risk of overfitting and improves generalization on
smaller datasets.

5.9 Future Research & Considerations
Future research could explore how AI integrates with emerging technologies such as quantum com-

puting, which might enhance model training efficiency and solve complex optimization problems faster
than classical methods. This integration could be particularly beneficial in data-intensive domains like drug
discovery [29] and financial modeling [74]. However, practical implementations remain a challenge and
require further investigation. Additionally, research should focus on dynamic AI governance frameworks
(See Appendix A, Table A1), such as the EU’s Data Governance Act, which can adapt to the rapid pace of
technological change [16]. Future work could explore how regulatory sandbox environments (See Appendix
A, Table A1) allow AI systems to be tested while ensuring ethical compliance and risk mitigation. Another
promising area is advancing synthetic data generation techniques. While current methods like Generative
Adversarial Networks (GANs) [77] and diffusion models are effective, they still struggle with maintaining
diversity, realism, and fairness. Future research could focus on hybrid approaches that combine synthetic data
with human feedback (Human-in-the-Loop AI) to improve data quality [78]. This collaborative approach
leverages human expertise to guide AI systems, enhancing the realism and applicability of synthetic data [79].
Moreover, Green AI, as discussed in this paper, is gaining importance in developing computationally efficient
models [76]. Investigating techniques like model pruning, quantization, and smaller AI architectures like
Small Language Models (SLMs) like Phi-4 and Mistral could provide sustainable AI solutions for low-
resource environments. These approaches aim to reduce the environmental impact of AI development
while maintaining performance and adaptability. Addressing these areas will ensure that AI remains ethical,
efficient, and adaptable in overcoming data scarcity challenges.

6 Conclusion
As artificial intelligence continues to evolve, the industry must proactively develop sustainable, data-

efficient systems to address the challenges posed by data scarcity. Developing efficient algorithms that
maximize the value of each data point will be essential as access to high-quality natural data becomes increas-
ingly limited. This requires shifting the focus of AI development from simply accumulating large datasets to
curating diverse, ethically sourced, high-quality data that ensures fairness, reliability, and adaptability.

To achieve this, AI systems must be designed with dynamic governance frameworks that can adapt to
evolving ethical and regulatory landscapes, ensuring responsible development and deployment. Regulatory
sandbox environments, as discussed, offer structured mechanisms to test AI models under controlled
conditions, fostering both compliance and innovation.
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Moreover, the AI industry must embrace computationally efficient techniques to minimize environ-
mental impact while maintaining scalability. Strategies such as model pruning, quantization, and Small
Language Models (SLMs) provide sustainable solutions, ensuring AI remains accessible even in low-resource
environments. Simultaneously, quantum computing is expected to revolutionize AI, particularly in data-
intensive fields. While these advancements hold promise, they also introduce new technical and ethical
challenges that necessitate ongoing research and interdisciplinary collaboration.

Ultimately, the future of AI depends on a balanced integration of technological innovation, ethical
supervision (See Appendix A, Table A1), and sustainable data strategies. By prioritizing responsible AI gover-
nance, optimized data utilization, and energy-efficient models, the AI industry can ensure equitable, ethical,
and adaptive progress in overcoming data scarcity challenges and fostering AI’s long-term sustainability.
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Appendix A

Table A1: Key vocabulary definitions

Term Definition
AI governance

frameworks
Policies, regulations, and ethical guidelines that ensure AI systems are

developed and deployed responsibly.
Data imbalance A common issue in AI datasets where one class of data (e.g., fraudulent

transactions) is significantly underrepresented compared to another, leading
to biased model predictions.

Data scarcity The lack of sufficient labeled training data challenges the AI model
performance and requires alternative strategies like transfer learning,

synthetic data, and self-supervised learning.
Differential privacy A data protection technique that ensures individual user data remains

anonymous while still enabling AI model training.
Ethical supervision Rules and guidelines ensure that AI systems are fair, unbiased, and used

responsibly to avoid harm.
Federated learning A method that allows AI to learn from data on different devices without

collecting or storing it in one place, keeping user information private.

(Continued)
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Table A1 (continued)

Term Definition
Green AI An approach to AI that prioritizes energy efficiency, sustainability, and

minimizing environmental impact.
Privacy-preserving

AI techniques
AI systems are designed to process and analyze data while maintaining user
privacy, using techniques like federated learning and differential privacy to

minimize risks.
Reinforcement

learning
A machine learning paradigm is one in which an AI agent learns by

interacting with its environment and receiving feedback in the form of
rewards or penalties.

Regulatory sandbox A controlled testing environment that allows AI developers to experiment
with models while ensuring good performance with ethical standards.

SMOTE SMOTE (Synthetic Minority Over-sampling Technique) is a method for
balancing imbalanced datasets by generating synthetic samples for

underrepresented classes.
Zero-shot learning An AI capability that allows models to make predictions on data they have

never seen before by transferring knowledge from related tasks.
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