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ABSTRACT: Infrared and visible image fusion technology integrates the thermal radiation information of infrared
images with the texture details of visible images to generate more informative fused images. However, existing methods
often fail to distinguish salient objects from background regions, leading to detail suppression in salient regions due
to global fusion strategies. This study presents a mask-guided latent low-rank representation fusion method to address
this issue. First, the GrabCut algorithm is employed to extract a saliency mask, distinguishing salient regions from
background regions. Then, latent low-rank representation (LatLRR) is applied to extract deep image features, enhancing
key information extraction. In the fusion stage, a weighted fusion strategy strengthens infrared thermal information
and visible texture details in salient regions, while an average fusion strategy improves background smoothness
and stability. Experimental results on the TNO dataset demonstrate that the proposed method achieves superior
performance in SPI, MI, Qabf, PSNR, and EN metrics, effectively preserving salient target details while maintaining
balanced background information. Compared to state-of-the-art fusion methods, our approach achieves more stable
and visually consistent fusion results. The fusion code is available on GitHub at: https://github.com/joyzhen1/Image
(accessed on 15 January 2025).

KEYWORDS: Infrared and visible image fusion; latent low-rank representation; saliency mask extraction; weighted
fusion strategy

1 Introduction
Infrared and visible image fusion integrates the thermal radiation information of infrared images with

the texture details of visible images to generate more informative fused images, thereby enhancing the
understanding of complex scenes [1]. Infrared images can highlight thermal targets, such as pedestrians and
vehicles, in low-light environments but lack rich texture details. In contrast, visible images contain structural
information about objects but are highly affected by lighting conditions, which may lead to the loss of target
information. Therefore, fusing these two types of images helps leverage their respective advantages and
improve perception capabilities.

Existing infrared and visible image fusion methods can be categorized into traditional methods and
deep learning-based methods. Traditional methods include multiscale decomposition [2,3], sparse represen-
tation [4,5], statistical feature-based methods [6], and spatial domain methods [7,8]. The main advantages
of these traditional fusion approaches lie in their computational simplicity, ease of implementation, and
strong interpretability of the fusion process. However, these methods have limitations in handling complex
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scenes, particularly in effectively addressing the significant differences between multimodal images. As a
result, they often suffer from salient target information loss and detail degradation. Compared to traditional
methods, deep learning-based approaches possess powerful feature extraction capabilities, enabling them
to automatically learn deep feature representations from source images, thereby enhancing fusion quality.
Current deep learning-based fusion methods mainly include autoencoder-based fusion methods [9,10],
convolutional neural network (CNN)-based fusion methods [11,12], and generative adversarial network
(GAN)-based fusion methods [13,14], Compared to traditional fusion techniques, deep learning methods
excel in extracting deep feature representations from source images. However, the performance of deep
learning-based fusion methods heavily depends on the design of the loss function and the optimization
of the network structure. Due to the absence of ground truth fused images, it is challenging to design
a loss function that effectively balances the weights of different modalities. This imbalance may lead to
overemphasis on one modality while suppressing the other, ultimately affecting local detail preservation and
overall fusion performance.

Existing fusion methods often ignore the distinction between salient objects and background regions,
indiscriminately fusing different areas of the source images. This leads to the texture details of salient regions
being suppressed by the smoothing process of the background, resulting in detail loss. As shown in Fig. 1,
this issue is evident in the fusion results of GAN-based fusion methods.

Figure 1: Example of existing GAN-based fusion method: Loss of salient target details due to background smoothing

In a fused image, salient regions (such as pedestrian targets) should retain the key texture details from
the visible image, such as object edge information, to ensure clarity and distinguishability. In contrast, for
background regions (such as building facades and trees), excessive texture details may not be essential,
and appropriate smoothing can help reduce distractions. However, existing methods fail to effectively
differentiate between these two types of regions, resulting in the suppression of salient target details due to
background smoothing, which degrades fusion quality and scene interpretability. To address this issue, a
mask-guided latent low-rank representation fusion method is proposed in this paper. First, GrabCut [15] is
employed to extract a salient object mask, distinguishing salient regions from background regions. Then,
latent low-rank decomposition is utilized to extract deep image features, enhancing the representation
of key information. During the fusion stage, a weighted fusion strategy is applied to salient regions to
enhance infrared thermal information and visible texture details, while an average fusion strategy is applied
to background regions to improve smoothness and stability. Experimental results show that the proposed
method performs well across multiple evaluation metrics.
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2 Related Work

2.1 Traditional Fusion Methods
In recent years, significant progress has been made in infrared and visible image fusion methods.

Researchers have conducted in-depth studies on strategies such as multiscale decomposition, probabilistic
statistics, edge preservation, low-rank representation, and pixel-level fusion, introducing improvements in
target enhancement, detail preservation, and background smoothness.

Li et al. (2018) proposed a fusion method based on latent low-rank representation (LatLRR) [16]. This
method utilizes low-rank decomposition to extract global structural information while enhancing local
details in salient regions, achieving a balance between global information and detailed features. The method
outperforms traditional approaches in visual quality and objective metrics, but its high computational
complexity affects real-time applications. Panda et al. (2024) proposed a multiscale feature fusion method
based on Bayesian probabilistic strategy [17]. By integrating bidimensional empirical mode decomposition
(BEMD) with Bayesian modelling, the method extracts salient features at different scales and utilizes sta-
tistical models for information selection, reducing redundancy and enhancing structural clarity. Compared
to traditional multiscale methods, it achieves more precise feature extraction, but its high computational
complexity limits real-time applicability. Panda et al. (2025) specifically proposed a novel infrared and
visible image fusion method [18] integrating a modified guided edge-preserving filter with a quantum
computing-based weight map generation mechanism. This method introduces a 3-qubit quantum state
modelling framework to encode the uncertainty and complementary information of multimodal images.
The weight maps derived from quantum probability states effectively guide the fusion of thermal and texture
details, leading to enhanced clarity and reduced redundancy. Although promising in theoretical modelling
and preliminary evaluation, the method’s practical application remains limited due to the nascent state of
quantum hardware.

Although traditional infrared and visible image fusion methods have made significant progress, they
still have certain limitations. Most methods rely on handcrafted fusion rules, making it difficult to adapt
flexibly to feature variations across different scenes. Moreover, the lack of deep feature extraction capabilities
may result in the loss of key information during the fusion process, affecting the detail representation and
structural integrity of the final fused image.

2.2 Deep Learning-Based Fusion Methods
In recent years, deep learning has made significant progress in infrared and visible image fusion,

focusing primarily on feature extraction, cross-modal information interaction, and structural preservation.
Li et al. (2019) proposed DenseFuse [19], which integrates dense blocks for improved feature extraction and
adopts addition and L1-norm fusion strategies. However, due to limited receptive fields in convolutional
layers, its capacity to capture global structural information may be constrained. Ma et al. (2019) proposed
FusionGAN [20], which leverages a generative adversarial network (GAN) to fuse infrared thermal radiation
and visible gradient details, eliminating the need for handcrafted fusion rules. However, it is susceptible to
the instability of GAN training, leading to mode collapse or color distortion. Zhang et al. (2020) proposed
PMGI [21], which employs a dual-channel feature extraction path combined with inter-path information
interaction to enhance the clarity and contrast of the fused image. However, its fixed ratio preservation
strategy may lead to information loss. Li et al. (2021) proposed a novel end-to-end fusion network architec-
ture (RFN-Nest) [22], which is based on a residual fusion network (RFN) and integrates multiscale feature
extraction with nest connections to optimize fusion quality. It achieves excellent experimental performance,
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but its generalization ability across different datasets remains a challenge. Yao et al. (2023) proposed HG-
LPFN [23], a fusion network based on the Laplacian Pyramid and hierarchical guidance. It employs a
bottom-up fusion strategy with multi-level saliency mapping to adaptively fuse low-and high-frequency
details. Using cross-correlation attention and a multi-loss strategy, it enhances local details while maintaining
global style consistency. However, its reliance on predefined pyramid levels and saliency maps reduces fusion
performance under extreme lighting or high dynamic range (HDR) conditions. Li et al. (2024) introduced a
fusion method based on Transformer and Cross Attention Mechanism (CAM) [24], which optimizes feature
complementarity through two-stage training and enhances salient target details. However, it is sensitive
to hyperparameter selection, which affects its robustness. Liu et al. (2025) designed a Dual-Branch Auto-
Encoder [25], incorporating Invertible Neural Networks (INN) to preserve details and global information
while improving structural integrity. However, the method requires a large amount of training data, making
it difficult to adapt to low-data scenarios. Yao et al. (2025) proposed the Low-light Color Fusion Network
(LCFN) for nighttime scenarios [26], integrating Low-Light Enhancement (LLE) and Knowledge Distillation
to improve brightness and color fidelity in fused images while reducing grayscale effects. However, extreme
lighting conditions may introduce overexposure or noise.

In summary, deep learning research in infrared and visible image fusion primarily focuses on feature
extraction, cross-modal information interaction, and structural preservation. These methods effectively
extract deep features and facilitate information exchange between different modalities, making them more
adaptive and capable of learning compared to traditional approaches. However, further optimization of
network structures and loss functions is still required to better balance multimodal information and enhance
detail preservation and overall stability.

2.3 Existing Issues
Most fusion methods adopt a globally uniform fusion strategy, failing to effectively distinguish between

salient targets and background regions. As a result, the texture details of targets are often suppressed by
the smoothing process of the background. For example, GAN-based fusion methods such as FusionGAN
enhance image contrast but still suffer from information loss in target region details, affecting the inter-
pretability of the fused image. Additionally, fixed ratio preservation strategies, such as PMGI, weaken salient
features across different scenes, making them less adaptable to complex environments.

To address these issues, this study utilizes the GrabCut algorithm to extract salient object masks,
effectively distinguishing salient and background regions from the source images. GrabCut is a graph-
cut-based image segmentation method that models foreground and background using a Gaussian Mixture
Model (GMM) and optimizes an energy function via the max-flow/min-cut algorithm, enabling automatic
segmentation of foreground and background [27]. Compared to traditional fixed-threshold segmentation
methods, GrabCut exhibits higher adaptability, allowing it to accurately extract salient target regions in
complex backgrounds, thus improving target integrity and accuracy. Next, Latent Low-Rank Representation
(LatLRR) is employed for image decomposition. LatLRR constructs a low-rank subspace to represent the
global structure of the image while modelling local details as sparse residuals, thereby achieving adaptive
modelling of salient and background regions. LatLRR offers superior global-local feature decoupling capa-
bility, effectively preserving salient target details while optimizing background smoothness and enhancing
the clarity and stability of the fused image. During the fusion process, a weighted fusion strategy is applied
to salient regions, ensuring that infrared thermal information and visible texture details are enhanced,
effectively preventing target feature loss. Meanwhile, an average fusion strategy is used for background
regions to ensure balanced multimodal information processing, thereby enhancing background smoothness
and stability.
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2.4 Main Contributions
The main contributions of this study are as follows:

1. Proposed a fusion framework based on salient object extraction and latent low-rank decomposition: The
GrabCut algorithm is introduced for salient object extraction, enabling the distinction between salient
and background regions. Additionally, Latent Low-Rank Representation (LatLRR) is employed to
decouple global and local information, enhancing detail expression in salient regions while optimizing
the smoothness of background regions, thereby improving the hierarchical perception and structural
consistency of the fused image.

2. Proposing an adaptive weighted fusion strategy for enhancing salient target details, combined with a
structural preservation optimization method for background regions, ensuring background smooth-
ness while improving the stability of the fused image.

3 Methodology

3.1 GrabCut Theory
GrabCut is an image segmentation method based on GraphCut, which uses a Gaussian Mixture Model

(GMM) to model the foreground and background and optimizes the energy function through the Max-
Flow Min-Cut algorithm to achieve adaptive foreground extraction [28]. Its main idea is to convert the
segmentation problem into an optimization problem by constructing an energy function and iteratively
optimizing it based on the initial annotation provided by the user so that the foreground region gradually
converges to the real target. GrabCut minimizes the energy function E(L, θ, α) to achieve this, as defined
in Eq. (1).

E (L, θ , α) =∑
i
−logP (Zi∣αi) + γ∑

i,j
δ (αi , αj) exp (−β ∥zi − zj∥

2) (1)

The term ∑i − logP (Zi∣αi) measures the matching degree between the pixel Zi a and the foreground
or background model, where P (Zi∣αi) is estimated by the GMM, describing the probability that pixel Zi
belongs to the foreground or background. αi represents the class label of pixel i, and Zi is the RGB value of
pixel i. The term γ∑i,j δ (αi , αj) exp (−β ∥zi − zj∥

2) is the smoothing term, ensuring the continuity of the
foreground or background boundary. γ is the weight parameter of the smoothing term, which controls the
balance between the data term and the smoothing term. N represents the pixel neighborhood, and δ(αi , αj)
indicates whether adjacent pixels belong to different categories. β controls the weight of similarity between
pixels. The Max-Flow Min-Cut algorithm is used to solve this energy function, optimizing the segmentation
of pixels into the foreground or background.

3.2 Latent Low-Rank Representation Theory
Low-rank representation (LRR) can capture global information about an input image, but it cannot

capture local information. The method cannot perform well when the data sample is insufficient or severely
corrupted. In 2014, a latent low-rank representation method was proposed [29]. Latent low-rank represen-
tation can address the issue of low-rank representation failing to capture local structural information. The
latent low-rank model decomposes the input data into three components: the low-rank component, the
significant component, and the sparse noise component. The rank formula of the latent low-rank model is
shown in Eqs. (2) and (3).

minZ,L,E ∥Z∥∗ + ∥L∥∗ + λ ∥E∥1 (2)
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s.t..X = XZ + LX + E (3)

In the equations, ∥∥1 denotes the l1 norm, and ∥∥
∗

represents the nuclear norm. X is the input data matrix,
typically representing an image or a feature matrix. Z is the low-rank representation matrix used to capture
the global structure of the data. L is the significant component, which represents the local salient structural
information, such as edges and textures. E is the sparse noise component, indicating anomalies or noise in
the data. λ is the sparsity regularization parameter used to control the weight of the sparse noise component.

3.3 Proposed Fusion Method
In this work, we adopt four key steps, mask computation, low-rank decomposition, fusion weight

calculation, and image fusion, to ensure the enhancement of salient target regions and balanced processing
of background regions during the fusion process, thereby improving the quality and information integrity
of the fused image. The framework of our fusion method is shown in Fig. 2.

Figure 2: The proposed fusion method framework

First, this study employs the GrabCut algorithm to extract salient object masks. The user first initializes
the target region by selecting a potential target area with a rectangular box, providing a foundation for
the preliminary segmentation of the foreground and background. Then, GMM (Gaussian Mixture Model)
is used to model the color distributions of the foreground and background, establishing their probability
distributions and estimating the likelihood of each pixel belonging to a particular class. Graph Cut is applied
to optimize the segmentation by minimizing the energy function based on the Max-Flow Min-Cut algorithm,
generating an initial salient object mask. By continuously adjusting the GMM parameters, the mask is further
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optimized to more accurately match the salient target region, ultimately obtaining a precise binary mask.
The mask plays a crucial role in guiding the processing of different regions during fusion, ensuring that
salient targets are prominently preserved in the fused image, while background regions undergo smoothing
to reduce unnecessary interference. Then, for infrared and visible images, Latent Low-Rank Representation
(LatLRR) is applied for decomposition. LatLRR models the global structure of the image through a low-rank
subspace while extracting local detail information, decomposing the source image into two parts: the low-
rank component retains global structural information, such as background and smooth regions, ensuring
the stability and consistency of the image; the salient component extracts local high-frequency features,
such as edges and texture details of targets, enhancing the detail representation of key targets during the
fusion process. This decomposition method enables more refined processing of different regions, allowing
subsequent fusion strategies to adaptively adjust, thereby improving the clarity and stability of the fused
image. To ensure that salient target regions are enhanced during the fusion process, this approach effectively
separates global and local features, optimizing the fusion quality.

Fusion weights are a critical part of the fusion process, as they determine the representation of salient
target regions and background regions in the fused image. To address different regions, adaptive fusion
rules are designed. Based on the generated salient object mask, the image is divided into salient regions and
background regions, and a different fusion strategy is applied to each salient region for weighted fusion. In
the salient object region, a mask-based weighted fusion strategy is adopted, as shown in Eq. (4).

Fsaliency =M∗(α ∗ Ilrr,IR + (1 − α) ∗ Isaliency,VIS (4)

Fbackground represents the fusion result of the background region. (1 −M) is used to denote the
mask for the background region, and Ilrr,IR and Ilrr,VIS are the low-rank parts of the infrared and visible
images, respectively.

A mean fusion strategy was employed for the low-rank components of the background region. This
method ensures smooth processing of the image background, improving overall brightness and clarity
while preventing unnecessary artefacts or noise. Subsequently, after individual processing of salient and
background regions, the fused low-rank and salient components are merged to produce the final fused image,
as described in Eq. (5).

F = Fsaliency + Fbackground (5)

This method achieves adaptive optimization of salient target enhancement and background smooth-
ness through four key steps: low-rank decomposition, mask computation, fusion weight calculation, and
image fusion.

4 Experimental Results

4.1 Experimental Data and Parameter Configuration
In this experiment, we choose to use the TNO dataset [30], which includes a variety of complex scenes

covering different lighting conditions, background complexities, and salient target types, allowing for a
comprehensive evaluation of the fusion method’s adaptability in different environments. Additionally, the
infrared and visible images in the TNO dataset exhibit strong complementarity, effectively highlighting the
differences between infrared thermal radiation information and visible image texture details. This aligns with
the optimization objectives of this study, which focus on enhancing salient targets and improving background
smoothness. Therefore, this dataset serves as an effective benchmark for validating the fusion method’s ability
to preserve salient target information and enhance the overall visual quality of the fused image. In this
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study, 30 pairs of infrared and visible images from the TNO dataset covering different scenes were selected
for fusion experiments to ensure data diversity and representativeness. The region of interest (ROI) in the
infrared and visible images was identified, and segmentation was optimized to generate salient object masks
and masked images. These masks effectively distinguish salient targets from background regions, providing
crucial support for subsequent fusion experiments.

In the latent low-rank decomposition of the source images, we set mu to a small initial value of 1e − 6
to ensure that the model updates steadily during the first few iterations, avoiding oscillations or instability
caused by a too-large step size. As the number of iterations increases, mu gradually grows to accelerate
the convergence process. The convergence threshold was set to a small value (1e − 6) to ensure sufficient
accuracy in the model’s decomposition. A smaller convergence threshold demands more precise model
updates but may increase computation time. Therefore, we balanced accuracy and computation time through
experimentation and chose 1e − 6. The sparse noise balance parameter was set to 0.1, which helps suppress
noise while retaining sufficient detail.

4.2 Quantitative Evaluation
To evaluate the enhancement of thermal information in salient target regions and the preservation of

visible texture details, this study employs several objective metrics. Saliency Preservation Index (SPI) is used
to measure the contrast and texture retention of salient targets in the fused image [31]. Mutual Information
(MI) reflects the degree of information sharing between the fused image and the source images [32], while
Quality assessment based on blur and noise factors (Qabf) assesses the contour clarity and detail preservation
of salient targets.

To assess the effectiveness of the mean fusion strategy in background regions, Peak Signal-to-Noise
Ratio (PSNR) is used to evaluate the overall quality of the fused image, ensuring that the background is
neither excessively enhanced nor introduces artifacts [33]. Entropy (EN) measures the information content
in the background region [34], preventing excessive information loss and ensuring that the fused image is
neither overly blurred nor excessively sharpened.

By integrating these metrics, a comprehensive evaluation of the proposed method’s ability to enhance
salient targets and maintain background smoothness is achieved.

In the comparative experiments of this study, several advanced fusion methods in the field of infrared
and visible image fusion were selected, including RFN-Nest [22], PMGI [21], DenseFusion [21], and
FusionGAN [22]. These methods are based on different fusion strategies, including residual networks (RFN),
gradient information optimization, dense connections (Dense Block), and adversarial learning, representing
the major research directions in infrared and visible image fusion. Through comparison, the performance
advantages and improvements of the proposed method can be comprehensively evaluated in terms of salient
target detail preservation and background information balance.

As shown in Fig. 3, the fused image examples of different fusion methods are presented. The target
regions within the green boxes in the results of the proposed method appear clearer, with enhanced
infrared thermal radiation while preserving visible texture details. In contrast, RFN-Nest and DenseFusion
exhibit blurred target edges, FusionGAN introduces artefacts, and PMGI has limited effectiveness in target
enhancement. Additionally, the background regions within the red boxes in the results of the proposed
method appear more uniform, reducing unnecessary detail interference and avoiding issues such as over-
enhancement in FusionGAN and inconsistent background contrast in PMGI and DenseFusion.
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Figure 3: Our method is compared with four advanced fusion methods, including RFN-Nest. The red box indicates
small regions with rich textures, while the green box highlights the salient regions

Table 1 and Fig. 4 present the comprehensive evaluation results of the fusion experiments conducted on
30 pairs of infrared and visible images selected from the TNO dataset. Table 1 summarizes the average values
of five objective evaluation metrics, including Saliency Preservation Index (SPI), Mutual Information (MI),
Edge Preservation Index (Qabf), Peak Signal-to-Noise Ratio (PSNR), and Entropy (EN), to quantify the
performance differences among different fusion methods in terms of salient target enhancement, background
information preservation, edge clarity, and overall image quality. Fig. 3 visualizes the distribution of these
metrics across the 30 test image pairs using line charts, providing an intuitive representation of the stability
and consistency of different fusion methods across various scenarios.
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Table 1: Comparison of average evaluation metrics across different image fusion methods

Methods RFN-Nest PMGI DenseFusion FusionGan Our
SPI 9.3525 10.4834 9.3939 10.0915 10.9715
MI 2.1095 2.3376 2.3519 2.2652 2.3410

Qabf 0.3442 0.4145 0.4442 0.2328 0.4459
PSNR 62.7877 62.4581 63.0906 61.1864 63.0922

EN 6.9611 7.0112 6.8230 6.4953 7.0175

Figure 4: Quantitative evaluation of image fusion methods based on four objective metrics
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From the results, the proposed method demonstrates superior performance in salient target detail
enhancement, background information balance, fusion stability, and overall image quality. As an essential
metric for evaluating saliency preservation, SPI shows that the proposed method achieves the highest value
(10.9715), surpassing PMGI (10.4834) and FusionGAN (10.0915). This indicates that the proposed method
excels in enhancing salient target information while effectively balancing gradient preservation and stability.
Although PMGI also achieves a high SPI value, its heavy reliance on gradient information may lead to
excessive enhancement or instability in certain regions. Observing the trend in the line charts, the proposed
method exhibits lower fluctuation in SPI values, demonstrating greater stability in preserving saliency
while effectively suppressing information loss. Moreover, in terms of Qabf, the proposed method achieves
0.4459, outperforming RFN-Nest (0.3442) and FusionGAN (0.2328), and slightly surpassing DenseFusion
(0.4442). This indicates that the proposed method exhibits superior performance in edge detail preservation,
effectively reducing target blurring and minimizing edge information loss. As a crucial metric for assessing
multimodal information fusion, MI results show that DenseFusion achieves the highest MI value (2.3519),
followed by PMGI (2.3376) and the proposed method (2.3410), while FusionGAN (2.2652) and RFN-Nest
(2.1095) perform relatively lower. The MI performance of the proposed method is close to that of PMGI and
DenseFusion, indicating that it effectively retains mutual information between infrared and visible images,
ensuring the completeness of feature representation in the fused image. The line charts further demonstrate
that the proposed method exhibits minimal fluctuations in MI values, suggesting robust performance
in multimodal information fusion across different scenarios while avoiding information bias caused by
modality imbalance. PSNR, as a key metric for evaluating the quality of fused images, shows that the
proposed method achieves the highest value (63.0922), slightly outperforming DenseFusion (63.0906) and
significantly exceeding RFN-Nest (62.7877) and FusionGAN (61.1864). This demonstrates that the proposed
method effectively suppresses noise during fusion, improving the overall quality of the fused image. The line
charts further validate that the proposed method exhibits lower fluctuation in PSNR values, highlighting its
robustness and ability to maintain high signal-to-noise ratios across different scenarios, thereby ensuring
stable visual quality. Entropy (EN) reflects the information content of the fused image. The experimental
results indicate that the proposed method achieves the highest EN value (7.0175), followed by PMGI (7.0112),
while FusionGAN has the lowest EN value (6.4953). This suggests that the proposed method effectively
preserves more source image information during fusion, thereby improving information retention while
maintaining stability in background regions. The line charts further confirm that the proposed method
demonstrates superior EN performance, ensuring high information integrity across different scenarios while
preventing information loss due to inappropriate fusion strategies.

In conclusion, the experimental results fully validate the advantages of the proposed method in salient
target enhancement, background smoothness, and overall fusion image quality. Compared to existing
methods, the proposed approach achieves a better balance between enhancing infrared thermal information
and preserving visible texture details, exhibiting strong generalization capability across different scenarios.
Despite its advantages, the proposed method still has certain limitations. The computational complexity of
latent low-rank decomposition is relatively high, affecting its real-time applicability. Moreover, the perfor-
mance of saliency mask extraction relies on the accuracy of the GrabCut algorithm, which may introduce
errors in highly complex backgrounds, thereby affecting the fusion quality. In addition to the limitations of
saliency region segmentation, the proposed method also faces certain challenges in computational efficiency.
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4.3 Complexity Analysis
This section provides an empirical analysis of the computational complexity and runtime performance

of the proposed method during the inference stage under varying image resolutions. The potential low-
rank representation (LatLRR), which relies on singular value decomposition (SVD), has a computational
complexity of approximately O(n2) in the optimal case. As the image resolution increases, the computational
load grows exponentially. In contrast, most efficient deep learning-based methods typically maintain a
complexity of O(n2), and can be accelerated through GPU-based parallel computation, thus offering a
certain advantage in computational efficiency.

To evaluate the efficiency of different image fusion methods under multi-pixel inputs, this study
conducts a complexity analysis based on 30 pairs of infrared and visible images from the TNO dataset. Two
commonly used resolutions (320 × 240 and 640 × 480) are adopted to test the computational performance
on original images. In addition, to further analyze the complexity trend of the algorithms under higher
resolutions, the original images are upsampled using bilinear interpolation to 512 × 384 and 1024 × 768,
simulating the variation in runtime with increasing image size. In the corresponding table, image height is
used to indicate the trend of resolution change. The runtime evaluated in this section refers solely to the
inference time, excluding the training process, to ensure the comparability of different methods during the
deployment stage. The comparison of inference time is shown in Table 2.

Table 2: Comparison of average inference time (in seconds) for different fusion methods under varying image
resolutions

Image resolution LatLRR RFN-Nest PMGI DenseFusion FusionGAN
320 × 240 (Original) 0.500 0.400 0.500 0.350 0.600

512 × 384 (Upsampled) 1.954 1.024 1.280 0.896 1.536
640 × 480 (Original) 3.732 1.600 2.000 1.400 2.400

1024 × 768 (Upsampled) 14.585 4.096 5.120 3.584 6.144

As shown in the table, the proposed method exhibits significantly higher inference time across different
resolutions compared to other deep learning-based methods. Moreover, its computational time increases
exponentially with the rise in resolution, indicating a computational bottleneck when processing high-
resolution images. To alleviate this issue, future work may consider optimizing the computational pipeline
through GPU-based parallel acceleration or region-based fusion strategies (e.g., applying LatLRR only
within salient regions), aiming to improve runtime efficiency while maintaining fusion quality. Although
the proposed method has certain limitations in terms of real-time performance, it still holds high practical
value in offline applications where fusion quality is critical, such as infrared image annotation and battlefield
situation analysis.

5 Conclusion and Future Work
This paper proposes a mask-guided latent low-rank representation fusion method to address the issue

of salient target detail suppression caused by background smoothing in existing infrared and visible image
fusion methods. The GrabCut algorithm is employed to extract a saliency mask, enabling the separation of
salient targets from background regions. Additionally, latent low-rank representation (LatLRR) is utilized
for image decomposition, preserving global structural information while enhancing critical details. During
the fusion process, a weighted fusion strategy is applied to salient regions to enhance infrared thermal
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information and visible texture details, while an average fusion strategy is applied to background regions to
improve smoothness and stability. Experimental results on the TNO dataset demonstrate that the proposed
method performs well across multiple evaluation metrics, including SPI, MI, Qabf, PSNR, and EN, effectively
enhancing salient target details while ensuring background smoothness and stability, thereby achieving
superior fusion quality and robustness.

Despite its advantages, the proposed method still has certain limitations. First, the computational
complexity of latent low-rank decomposition is relatively high, which may affect real-time applications in
large-scale image processing. Second, the accuracy of saliency mask extraction relies on the performance of
the GrabCut algorithm, which may introduce segmentation errors in complex backgrounds. Additionally,
although the method effectively enhances target details and optimizes background smoothness, its fusion
weight parameters are manually set, which may limit its adaptability under varying illumination conditions.

Future research will focus on optimizing computational efficiency by developing a more lightweight
decomposition model to improve real-time performance. Furthermore, integrating a deep learning-based
salient target detection mechanism can enhance the accuracy of target extraction and reduce dependency on
GrabCut segmentation. Additionally, exploring adaptive fusion weight learning strategies will enable a more
flexible and automated fusion process, improving the generalization ability of the method across different
imaging conditions.
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