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ABSTRACT: In its 2023 global health statistics, the World Health Organization noted that noncommunicable diseases
(NCDs) remain the leading cause of disease burden worldwide, with cardiovascular diseases (CVDs) resulting in more
deaths than the three other major NCDs combined. In this study, we developed a method that can comprehensively
detect which CVDs are present in a patient. Specifically, we propose a multi-label classification method that utilizes
photoplethysmography (PPG) signals and physiological characteristics from public datasets to classify four types of
CVDs and related conditions: hypertension, diabetes, cerebral infarction, and cerebrovascular disease. Our approach
to multi-disease classification of cardiovascular diseases (CVDs) using PPG signals achieves the highest classification
performance when encompassing the broadest range of disease categories, thereby offering a more comprehensive
assessment of human health. We employ a multi-label classification strategy to simultaneously predict the presence or
absence of multiple diseases. Specifically, we first apply the Savitzky-Golay (S-G) filter to the PPG signals to reduce noise
and then transform into statistical features. We integrate processed PPG signals with individual physiological features
as a multimodal input, thereby expanding the learned feature space. Notably, even with a simple machine learning
method, this approach can achieve relatively high accuracy. The proposed method achieved a maximum F1-score of
0.91, minimum Hamming loss of 0.04, and an accuracy of 0.95. Thus, our method represents an effective and rapid
solution for detecting multiple diseases simultaneously, which is beneficial for comprehensively managing CVDs.

KEYWORDS: Photoplethysmography; machine learning; health management; multi-label classification; cardiovascu-
lar disease

1 Introduction
In 2019, 33 million deaths worldwide were attributed to the four major noncommunicable diseases

(NCDs) (with a confidence interval of 24.5 to 43.3 million). Among these, cardiovascular diseases (CVDs)
accounted for the greatest number of deaths, reaching 17.9 million. Undoubtedly, CVDs have become
a global health concern requiring urgent attention and solutions [1]. Although CVDs typically refer to
heart-and blood-vessel-related diseases, the category also encompasses some brain-related diseases–such
as cerebrovascular diseases–caused by issues with vascular transport [2]. Today, CVDs are linked to both
traditional risk factors, such as diabetes and hypertension, as well as the impacts of urbanization, as evidenced
by studies investigating non-traditional contributors to CVDs [3]. The most concerning CVDs are type 2
diabetes and hypertension, which are relatively easy to detect. Whether through miniature tools or wearable
devices, detection technologies have rapidly evolved to become commonplace within households.

As reported by the World Health Organization (WHO), hypertension can be monitored and managed
in order to reduce the risk of stroke and other cardiovascular diseases. This approach is considered both
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effective and affordable in preventing symptoms of stroke, such as disabilities and cognitive impairment [2].
Strokes can be classified into several types, the most common of which–ischemic stroke, also known as
cerebral infarction–is caused by the temporary or permanent obstruction of cerebral blood vessels. The harm
caused by cerebral infarction does not end after treatment, as unfavorable discharge outcomes remain a
concern. A study utilizing 20 clinical features as inputs achieved an AUC of 0.91 [4]. Cerebrovascular disease
is also associated with vascular supply issues, which encompass a number of neurological disorders due to
blockage or leakage within brain vessels. Because most cardiovascular diseases stem from vascular problems,
blood pressure plays an important role, with hypertension being the most obvious and visible symptom.
Systolic blood pressure greater than 140 mmHg and diastolic blood pressure less than 90 mmHg qualify as
hypertension. The hypertension is classified into several stages based on systolic and diastolic blood pressure
ranges. A machine learning classification study for each stage utilized physiological information, such as
age and weight, achieving an accuracy rate of 99% [5]. Overall, hypertension is a risk factor for a variety of
diseases, including stroke and heart failure, and is closely associated with most cardiovascular conditions.

In addition to hypertension, diabetes is another important factor associated with CVDs. There is a
direct relationship between hypertension and diabetes, both of which are considered noncommunicable
diseases often caused by unhealthy lifestyle choices. Research shows that nearly half of diabetic patients also
suffer from hypertension. Furthermore, studies have demonstrated that individuals with hypertension and
diabetes are more likely to develop CVDs than those without either condition. Moreover, in machine learning
research, diabetes ranks as the third most important feature in predicting the length of hospitalization [6].
Additional research conducted through questionnaires and physical examinations indicates that patients
with type 2 diabetes face an even higher risk of cardiovascular disease [7]. Fortunately, a study utilizing
gender, age, and other hospitalization-related features successfully classified patient outcomes [8], demon-
strating the potential of machine learning in diabetes prediction. In contrast, our approach incorporates
physiological features and statistical characteristics of PPG signals.

Photoplethysmography (PPG) is a physiological signal that records changes based on vascular con-
ditions. It is commonly employed to predict measurements such as heart rate or blood pressure, offering
advantages in terms of compactness, portability, and easy setup [9]. Several studies have been conducted
on measuring CVDs and related indicators based on PPG signals. The research applied machine learning
technologies to predict CVDs and demonstrated the feasibility of diagnosis via such methods [10]. Although
many CVDs share common pathogenic factors, they may require different predictive methods due to
their different focuses. In particular, the detection of hypertension may have greater research value, as the
condition is associated with a wide range of diseases. In some studies, hypertension has been classified into
four types: normal, prehypertension, stage 1 hypertension, and stage 2 hypertension. One study has also
demonstrated that fine-tuned decision trees yield better results than ensemble learning [11]. Additionally,
it was noted in [12], that the extraction of 20 PPG signal features yielded higher performance than that
of 8400 features, with a final accuracy of 93% when using random forests. The use of deep learning has
also been widely adopted to complement traditional machine learning [13]. Some prior studies adopted
binary classification approaches to predict hypertension. For instance, a support vector machine (SVM)
was able to distinguish between normal blood pressure and prehypertension with an accuracy rate of
71.42%. This suggests that a combination of PPG signals with physiological features prior to model training
(early fusion) may yield better results than combining the outputs of separate models at a later stage
(late fusion) [14]. In other studies, stage 1 and 2 hypertension were combined to distinguish between
hypertension and prehypertension [15]. Diabetes has also been studied as a CVD-related condition. Type
2 diabetes has especially received significant attention, with one study proposing a pathology-based index
that achieved an accuracy of 98.52% [16]. Multimodal prediction approaches that integrate PPG signals
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with other sources of information generally achieve better performance. One study focused on personal
identification using both electrocardiogram (ECG) and PPG signals. The results demonstrated that, with
10 training data points, the proposed algorithm achieved 92.77% accuracy, 7.23% false rejection rate (FRR),
6.29% false acceptance rate (FAR), 92.77% sensitivity, and 93.21% specificity [17]. Relatively few studies [18]
have focused on predicting multiple diseases simultaneously. However, one study proposed a classification
task for various disease combinations—including diabetes and hypertension, as well as cerebral embolism
and hypertension—achieving an accuracy of 79.83% after data selection.

In this study, we employed a multi-label classification method to predict multiple diseases simulta-
neously, including all possible combinations of the diseases under consideration. The advantages of this
approach include convenience in comparison with the prediction of individual diseases, as well as a more
comprehensive assessment of the patient’s condition.

2 Methodology

2.1 Dataset
Due to the scarcity of publicly available PPG signal datasets specifically compiled for CVD prediction,

the PPG-BP dataset was an ideal choice for our study. This dataset was approved for collection by Guilin
People’s Hospital and Guilin University of Electronic Technology. Initially, 219 volunteers provided basic
physiological data. Subsequently, CVD-related information was extracted from medical records, and 657
segments of PPG signals were collected on-site, with each volunteer contributing three segments of PPG
data. Additionally, this dataset is publicly available online [19,20].

Table 1 lists the characteristics of the physiological and cardiovascular disease data in the PPG-BP set.
An ethics committee at the hospital has reviewed all data to address any privacy concerns. Furthermore,
the age distribution of the participants was relatively broad, ensuring a sufficiently representative sample.
To avoid fluctuations caused by movement, PPG signals were collected after the subjects had sat quietly
for ten minutes. Subsequently, three segments of 2.1 s each were intermittently recorded, and a signal
quality index was used to determine whether retesting was necessary. Ultimately, 657 segments of PPG
signals were obtained. The CVD data are highly valuable, encompassing four major categories: hypertension,
diabetes, cerebral infarction, and cerebrovascular diseases. Using measured blood pressure, hypertension
data can be further classified into four categories, as illustrated in Fig. 1: normal, prehypertension, stage
1 hypertension, and stage 2 hypertension. The other four conditions can be classified into two categories:
normal and unhealthy.

Table 1: Distribution of physiological data in dataset

Category Distribution (Amount or range)
Num 219

subject_ID 219
Sex Male: 104, Female: 115

Age (year) 21.0 < 58.0 < 86.0
Height (cm) 145.0 < 160.0 < 196.0
Weight (kg) 36.0 < 60.0 < 103.0

Systolic BP (mmHg) 80.0 < 126.0 < 182.0
Diastolic BP (mmHg) 42.0 < 70.0 < 107.0

Heart rate (bpm) 52.0 < 73.0 < 106.0
BMI (kg/m2) 14.7 < 22.6 < 37.5
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Figure 1: Pie chart of hypertension categories in dataset

Each of the four disease labels in the dataset was associated with its own subcategories, with samples not
exhibiting a particular disease designated as NaN. Table 2 lists the number of subcategories for each of the
four diseases. When processing the data, we generally regarded NaN samples as disease-free, as the presence
of a disease was indicated otherwise. A further discussion of the processing stage is provided in Section 3.3.

Table 2: Distribution of disease categories in dataset

Category Sub-Category Amount
Diabetes Diabetes 1

Type 2 Diabetes 37
Cerebrovascular Cerebrovascular disease 10

Insufficiency of cerebral blood supply 15
Cerebral infarction Cerebral Infarction 20

Hypertension Normal 80
Prehypertension 85

Stage 1 hypertension 34
Stage 2 hypertension 20

2.2 Multi-Label Classification
It is common for a single sample to be associated with a set of labels, indicating that the sample

belongs to multiple categories. For example, in the PPG-BP dataset, one sample may be classified into four
cardiovascular disease categories simultaneously. For instance, if a sample is characterized by hypertension
and diabetes, but not cerebrovascular disease or cerebral infarction, it is represented as the four-dimensional
binary array [1, 1, 0, 0]. The predictions generated by the machine learning model are also output in
four-dimensional binary array form. We applied this rule to all samples.
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For a label space Y with q labels and a feature space X with d features, classification can be expressed as
follows:

Y = {y1 , y2, y3, . . . , yq}, X = Rd (1)

The goal of multi-label classification is to find a function f ∶ X → Y 2. Depending on the actual situation,
given a feature set D encompassing m samples, the sample input xi and the corresponding label yi can be
represented as follows:

D = {(xi , yi) ∣ 1 ≤ i ≤ m} (2)
xi = {xi1 , xi2, xi3, . . . , xid}T , xi ∈ X (3)
yi = {yi1 , yi2, yi3, . . . , yiq}, yi ⊆ Y (4)

For the test set, each sample will have a predicted label ŷ, which also belongs to the label space [21]. We
adopted a technique known as binary relevance (BR), where in each label is classified independently without
considering the other labels [22]. Essentially, this transforms multi-label classification into multiple-single-
label classification, which is a relatively simple and straightforward process.

2.3 Machine Learning Algorithm
Several machine learning methods will be used below to determine the performance of multi-label

machine learning classification of cardiovascular diseases.

2.3.1 Decision Tree
The decision tree is a machine learning algorithm structured in the form of a tree, consisting of a root

node and leaf nodes connected by branches. Decisions are based on the input data, with each decision rule
forming a branch that divides the data features into subsets. Each subset is further divided based on prior
decisions until the final leaf nodes represent the ultimate prediction outcomes. As the algorithm continually
divides the data into subsets, there is a risk of overfitting [23,24].

2.3.2 Random Forest
The random forest can be regarded as an ensemble of multiple decision trees, representing an integrated

algorithm that can be applied to both regression and classification problems. A random forest uses the
bagging (bootstrap aggregation) model, wherein each decision tree is given different classification options
and independently trained to produce an outcome. The final prediction is then determined by majority
voting or other methods based on the classification results of each decision tree, selecting the most-voted
classification result or identifying the optimal solution to maximize prediction accuracy. Because the random
forest generates predictions based on votes across the entire set of decision trees, it mitigates the bias that
may occur if any single decision tree is subject to overfitting [23,25].

2.3.3 Extra Trees
The extra trees algorithm is an enhanced version of the random forest that operates directly on the

original dataset as an alternative to bagging. Furthermore, whereas a random forest follow specific rules
when splitting data, the extra trees algorithm uses random splitting. With these improvements, Extra Trees
introduces more randomness, leading to improved generalization of the data [23,24].
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2.3.4 Ridge Classifier
A Ridge classifier is a machine learning model developed from a Ridge regression model for classifi-

cation tasks. Ridge regression is used to address regression problems, whereas the Ridge classifier is used
to address classification problems. Specifically, this method utilizes the L2 regularization term from Ridge
regression to address the problem of multicollinearity among features. The addition of the hyperparameter
α influences the model to reduce overfitting, thereby enhancing generalizability. The formula for Ridge
classification is expressed as follows:

ŵ = arg min
w∈Rn

1
2
∥x − Aw∥2

2 + α∥w∥q (5)

where x represents the features of the training data, A denotes the data matrix, q is the total number of
training samples, w is the weight vector to be learned, and α is the hyperparameter [26].

2.3.5 K-Nearest Neighbors
The k-nearest neighbors (KNN) algorithm is a supervised learning algorithm commonly used to solve

classification problems. Essentially, it predicts the class label of a new data point based on the proximity of
nearby data points. Thus, a sample is classified as belonging to a particular class in the feature space if the
majority of its K nearest neighbors belong to that class as well. For example, given a dataset X and data point
Xtest, the algorithm calculates the distance between Xtest and all training samples Xtrain. It then identifies
the closest K data points to Xtest and checks whether these points belong to the same class. If they do, Xtest
is classified as that class; otherwise, the classification result is determined based on the voting or weighted
prediction from the K nearest data points.

2.4 Evaluation Metrics for Multi-Label Classification
In traditional classification tasks, common evaluation metrics include accuracy, F1-score, receiver

operating characteristic (ROC) curve, and area under the curve (AUC). However, because the output of
multi-label classification differs from that of multi-class classification by representing a set of multiple items,
evaluation metrics for multi-label tasks include conventional metrics as well as those specifically designed
for multi-label tasks. According to prior studies, evaluation metrics designed for multi-label classification
can be classified into two main categories: sample-based and label-based [21]. Sample-based metrics evaluate
the performance of the entire system in a distributed manner, averaging the results based on the number
of samples. In contrast, label-based metrics evaluate each label individually and then average the results
based on the number of labels. We employed both types of evaluation metrics to assess the classification
results in our experiments. Subset accuracy and Hamming loss represent the sample-based metrics, whereas
accuracy and F1-score represent the label-based metrics. These evaluation metrics were selected to provide
a comprehensive assessment of model performance. In the following subsections, we describe the adopted
metrics in terms of a dataset with m samples, where each sample has an independent variable xi and
corresponding dependent variable yi with q labels. The prediction yi is then generated according to the
function h(xi).

2.4.1 Subset Accuracy
In single-label classification, accuracy refers to the percentage of predictions that match the true labels.

In multi-label classification, subset accuracy is defined as 1 if the predicted labels for a sample exactly match
the true labels, and 0 otherwise. The subset accuracy for the entire test set is then calculated by summing all
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the scores and dividing the result by the total number of samples. This process can be represented as follows:

SubsetAccuracy(h) = 1
m

m
∑
i=1
[∣h(xi) = yi ∣] (6)

2.4.2 Hamming Loss
In multi-label classification, a sample may have more than 10 labels simultaneously, making it difficult

for all predicted labels to match the true values. The Hamming loss was introduced to address this challenge
by calculating the proportion of incorrect labels for each sample:

HammingLoss(h) = 1
m

m
∑
i=1

1
q
∣h(xi)Δyi ∣ (7)

2.4.3 Accuracy, F1-Score
In binary classification tasks, it is often necessary to calculate a confusion matrix. Based on the confusion

matrix, prediction results can be categorized into four types: True Positive (TP), where the actual value is
true, and the prediction is also true; False Positive (FP), where the actual value is false, but the prediction is
true; True Negative (TN), where the actual value is true, but the prediction is false; and False Negative (FN),
where the actual value is false, and the prediction is also false.

TPj = ∣{ xi ∣ y j ∈ yi ∧ y j ∈ h(xi), 1 ≤ i ≤ m}∣
FPj = ∣{ xi ∣ y j ∉ yi ∧ y j ∈ h(xi), 1 ≤ i ≤ m}∣
TN j = ∣{ xi ∣ y j ∉ yi ∧ y j ∉ h(xi), 1 ≤ i ≤ m}∣
FN j = ∣{ xi ∣ y j ∈ yi ∧ y j ∉ h(xi), 1 ≤ i ≤ m}∣

(8)

Accuracy represents the proportion of TPs among all predicted results. In contrast, the F1 score Fβ is a
combined metric of precision and recall, with β > 0. Typically, β is set to 1, representing the harmonic mean
of precision and recall. Precision and recall can be expressed as follows:

Accuracy = 1
q

q

∑
j=1

TPj + TN j

TPj + FPj + TN j + FN j
(9)

Precision = 1
q

q

∑
j=1

TPj

TPj + FPj
(10)

Recall = 1
q

q

∑
j=1

TPj

TPj + FN j
(11)

Based on the definition of the F1-score, can then be expressed as follows:

F1-score =
2 (Precision × Recall)

Precision + Recall
(12)
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The F1-score approaches 1 only when both precision and recall are high. Because precision and recall
better represent a model’s performance in the context of imbalanced data than accuracy, the F1-score is highly
regarded. The ROC evaluation metric is a curve representing the ratio between the FR rate (FPR) and the TP
rate (TPR), with the corresponding AUC also being an important indicator.

3 Experimental Process and Result Analysis
Our experimental process is illustrated in Fig. 2. First, the dataset was divided into two subsets for

processing. The first subset of 657 PPG signals underwent preprocessing, where the data were transformed
into multiple statistical features, while the remaining subset of 219 physiological features was filtered. PPG
signals were then concatenated with the corresponding physiological features, resulting in 657 combined data
entries for early fusion. Subsequently, six machine learning algorithms were applied in sequence to evaluate
multi-label classification performance.

Physiological Characteristic PPG Siganl

Feature Selection Preprocessing

Feature
Concatenating

Machine Learning

Multi-Label Evaluation

Figure 2: Experimental process flowchart

3.1 Pre-Processing
PPG is an imaging method based on the detection of subtle light variations caused by blood vessels.

The measurement process is highly vulnerable to noise, with factors such as ambient light and motion
artifacts frequently affecting the waveform. Motion artifacts occur due to movement during recording or
subject movement, resulting in severe and irregular amplitude fluctuations in the waveform [27]. This creates
significant challenges when converting the data into statistical features, necessitating techniques to suppress
motion artifacts. As previous studies have shown that the Savitzky-Golay (S-G) filter effectively addresses
motion artifact issues [28], we adopted the same approach in this study. The S-G filter, proposed by Savitzky
and Golay in 1964, is a filtering tool that can simultaneously denoise and smooth signals [29]. The filter’s core
function is to find a polynomial solution based on the signal’s sampling points x. Given N PPG sampling
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points, where N = 2M + 1 and the center point n is set to 0, the polynomial can be expressed as:

p(n) =
N
∑
k=0

ak nk (13)

By minimizing the mean squared approximation error ε, in Eq. (13), the signal x is smoothed.

εN =
N
∑

n=−M
(p(n) − x[n])

2
=

N
∑

n=−M
(

N
∑
k=0

ak nk − x[n])
2

(14)

Because this method can correct the offset caused by motion artifacts in PPG signals and thereby
enhance classification accuracy, we applied this processing to each PPG signal segment.

3.2 Standardization
Many algorithms are highly sensitive to the range of data, making the process of standardization crucial

to suitably adjust features for algorithms. Z-score standardization ensures that the data follow a standard
normal distribution with a mean of 0 and standard deviation of 1. This can be understood simply as using the
standard deviation as a unit to measure the distance of a value from the group mean. Z-score standardization
can be expressed as follows:

xstandard =
x − μ

σ
(15)

where μ is the mean of all samples, σ is the standard deviation of all samples, and x is the sample to
be calculated.

3.3 Experimental Setup
We first processed the PPG signals using the S-G filter to eliminate noise and subsequently converted the

signals into seven statistical features, including standard deviation, variance, and skewness. For physiological
characteristics, we selected features based on their practical relevance. Our objective is to facilitate disease
classification using only the patient’s PPG data, along with physiological features such as height, weight, and
age, which can be obtained through telemedicine or wearable PPG devices. Therefore, we excluded diastolic
blood pressure (DBP), systolic blood pressure (SBP), and heart rate. The final selected features were gender,
age, height, weight, and body mass index (BMI). To ensure representativeness of the performance metrics, all
six machine learning algorithms were evaluated using five-fold cross-validation. Predictions were handled
separately for four- and six-label classification, and we compared the results with those of prior studies using
the same dataset.

Because the experimental dataset does not contain related research on multi-label classification, we
focused primarily on prior studies that compare multi-class classification to multi-label classification as
shown in Table 3. Both multi-class and multi-label classification are based on binary classification. In
multi-class classification, only one class is predicted among multiple categories, whereas in multi-label
classification, each category is treated as a binary classification task, resulting in predictions that can
include zero or multiple labels. Both multi-label and multi-class classification aim to broaden the scope of
classification and thereby enhance research value. However, as the number of predicted labels increases, the
difficulty of both tasks also increases.
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Table 3: Comparison of methods

Reference Dataset Disease type Method F1-score Accuracy
Yen et al. [13] PPG-BP Prehypertension, stage 1

hypertension, stage 2
hypertension

Xception
+BILSTM

45% 76%

Nasir et al. [15] PPG-BP Prehypertension, Hypertension LSTM-
CNN+SVM

66.0% 71.9%

Sinha et al. [12] PPG-BP Prehypertension, stage 1
hypertension, stage 2

hypertension

Random Forest 90.00% 93.00%

Chowdhury
et al. [18]

PPG-BP 6-Label Prediction SVM – 79.83%

Our work
(4-label)

PPG-BP Hypertension, Diabetes,
Cerebral Infarction,

Cerebrovascular Disease

Random Forest 91.05% 95.59%

Our work
(6-label)

PPG-BP Prehypertension, stage 1
hypertension, stage 2

hypertension, Diabetes,
Cerebral Infarction,

Cerebrovascular Disease

Random Forest 84.95% 95.43%

Given the same number of predicted categories, multi-label classification is more challenging and
practical than multi-class classification. For example, the probability of correctly guessing one out of six
categories is 1/6, whereas the probability of correctly predicting all six labels is 1/26, or 1/64. Therefore, in
addition to using the conventional evaluation metrics of accuracy and F1-score, we adopted the Hamming
loss and subset accuracy as metrics specifically designed for multi-label tasks, allowing us to assess predictive
performance from different perspectives. The ROC and AUC measures were also used to evaluate classifica-
tion performance at different thresholds, as well as overall classification quality. Because our task involved
classifying different labels, multiple ROCs and corresponding AUC scores were generated.
Four- and Six-Labels Prediction

In the dataset, hypertension was further divided into four categories: normal blood pressure, prehy-
pertension, stage 1 hypertension, and stage 2 hypertension. In the four-label prediction task, we classified
samples with “prehypertension,” “stage 1 hypertension,” and “stage 2 hypertension” as exhibiting hyper-
tension, whereas those labeled as “normal blood pressure” were classified as not having hypertension.
This approach allows the four-label prediction task to focus on predicting the presence of hypertension,
diabetes, cerebral infarction, and cerebrovascular disease. The number of labels for each disease is listed
in Table 4. As previously mentioned, the four-label prediction somewhat simplifies the study objective.
The six-label prediction further divides the hypertension label into three disease labels: prehypertension,
stage 1 hypertension, and stage 2 hypertension. The number of each of these labels is listed in Table 4,
where “Pre-H” represents prehypertension while “Stage 1 H” and “Stage 2 H” correspond to stages 1 and 2
hypertension, respectively.
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Table 4: Binary value distribution of four-disease labels and six-disease labels

4-Label 6-Label

Without disease With disease Without disease With disease
Diabetes 543 114 543 114

Cerebrovascular 582 75 582 75
Cerebral Infarction 597 60 597 60

Hypertension 240 417 – –
Prehypertension – – 402 255

Stage 1 H – – 555 102
Stage 2 H – – 597 60

3.4 Experimental Results and Analysis
In our comparative experiment, we primarily focused on multi-class classification research that closely

resembles our multi-label classification approach, using accuracy and F1-score as the main metrics. Some
studies utilized deep learning techniques [13,15] whereas others specifically predicted certain combinations
of diseases [18]. Compared to other machine learning studies of the same type, some have converted
PPG signals into time and frequency domain values with multiple physiological information to categorize
different periods of hypertension and achieved 95% accuracy using random forests [12], while others have
converted PPG into nine statistics with two physiological information to categorize different combinations
of disease occurrences and achieved 79% accuracy using support vector machines. The accuracy of 79% was
achieved using support vector machine [18]. Meanwhile, we used six statistical values with four physiological
information to categorize the occurrence of each disease using a multi-label classification method, achieving
95% accuracy using random forests. As shown in Table 3, when compared with popular existing multi-class
classification methods using the same dataset, our method achieved the highest results using the random
forest algorithm in the four-label prediction task, with an accuracy of 95.59% and F1-score of 91.05%. In
the six-label prediction task, our random forest algorithm also outperformed the baselines, achieving an
accuracy of 95.43% and F1-score of 84.95%.

Regarding evaluation metrics tailored for multi-label classification tasks, the random forest algorithm
exhibited the lowest Hamming loss in the four-label classification experiment, achieving values of 0.0441 and
0.0449 with and without data standardization, respectively, as presented in Tables 5 and 6. These findings
suggest that data standardization does not inherently guarantee superior model performance. In the six-label
classification task, as shown in Table 7, the random forest algorithm also achieved the lowest Hamming loss
of 0.0457 along with a subset accuracy of 80.37%. Our six-label classification task involved the prediction
of six different diseases, the most among all the studies selected for comparison [18]. However, multi-
label classification is inherently more challenging than multi-class classification because it requires binary
decisions for each label.

We also conducted ablation studies to determine the impact of preliminary data standardization
on predictive performance. As shown in Tables 6 and 8, we found that standardization only improved
performance in the KNN algorithm. The lack of improvement for the other algorithms may be attributed
to the fact that standardization narrows the data range, which has little effect on tree-based algorithms.
Specifically, tree-based methods are not sensitive to data distribution, whereas KNN relies on calculating
Euclidean distances between data points, making standardization more effective. These reasons led us to use
the results obtained without standardization as the final scores. The bolded entries in Tables 5–8 indicate the
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best-performing algorithm. In this study, the random forest algorithm demonstrated superior robustness
across multi-label classification tasks.

Table 5: Results of four-label classification without data standardization

Methods Accuracy F1-score Hamming loss Subset accuracy
Decision Tree 0.9422 0.8848 0.0578 0.4475

Extra Tree 0.9441 0.8896 0.0559 0.8402
KNN 0.8139 0.5949 0.1861 0.8524

Random Forest 0.9559 0.9105 0.0441 0.4049
Ridge 0.8364 0.6362 0.1636 0.8493

Table 6: Results of four-label classification with data standardization

Methods Accuracy F1-score Hamming loss Subset accuracy
Decision Tree 0.9395 0.8800 0.0605 0.4475

Extra Tree 0.9315 0.8647 0.0685 0.8295
KNN 0.8436 0.6628 0.1564 0.8174

Random Forest 0.9551 0.9085 0.0449 0.5145
Ridge 0.8352 0.6321 0.1648 0.8417

Table 7: Results of six-label classification without data standardization

Methods Accuracy F1-score Hamming loss Subset accuracy
Decision tree 0.9414 0.8288 0.0586 0.7900

Extra tree 0.9361 0.8128 0.0639 0.7808
KNN 0.8328 0.3443 0.1672 0.3059

Random forest 0.9543 0.8495 0.0457 0.8037
Ridge 0.8300 0.0483 0.1700 0.2831

Table 8: Results of six-label classification with data standardization

Methods Accuracy F1-score Hamming loss Subset accuracy
Decision tree 0.9401 0.8247 0.0599 0.7884

Extra tree 0.9399 0.8214 0.0601 0.7823
KNN 0.8463 0.4368 0.1537 0.4018

Random forest 0.9551 0.8529 0.0449 0.8113
Ridge 0.8300 0.0429 0.1700 0.2816

This study explored both four-label and six-label disease classification. To better understand the
prediction outcomes, the ROCs for both classification tasks are shown in Figs. 3 and 4. With the same FP
rate, a higher TP rate indicates better predictive performance, making AUC a natural evaluation metric. The
average AUC for four-label classification was 97.75%, with hypertension at 98%, diabetes at 97%, and both
cerebral infarction and cerebrovascular diseases at 98%. The average AUC for six-label classification was
97.83%, with diabetes at 97%, cerebral infarction at 97%, cerebrovascular diseases at 98%, prehypertension
at 98%, and stage 1 and stage 2 hypertension at 99% and 98%, respectively. In both four- and six-label
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classification, the standard deviation of AUC for each label was within 1% to 2%, indicating consistently high
classification performance. Combined with the previously discussed accuracy, F1-score, subset accuracy, and
Hamming loss measures, these results provide a comprehensive understanding of multi-label classification
for cardiovascular diseases using PPG signals and physiological characteristics.

Figure 3: ROC curves for four-label prediction

Figure 4: ROC curves for six-label prediction
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The conclusions of the referenced studies [30,31] indicate that imbalanced labels should be examined
using various evaluation methods, and employing multiple types of evaluation metrics is crucial. Specifically,
reference [31] provides an experimental workflow that outlines appropriate evaluation metrics for analyzing
imbalanced datasets. As the level of imbalance increases, relying on a single metric may yield seemingly
perfect results while leading to significantly poor performance from another evaluation perspective. For
instance, in the case of binary classification with a highly imbalanced dataset, a high TN rate and a low TP rate
may result in high Accuracy but a low F1-score. This discrepancy underscores the limitations of relying on
a single evaluation metric. To address this issue, our study incorporates multiple evaluation metrics, such as
Subset Accuracy (which requires complete label matching), Accuracy (which allows partial correctness), and
F1-score (which is more sensitive to positive samples), thereby providing a more comprehensive performance
assessment from different perspectives.

In addition, we performed a feature importance ranking for the Random Forest algorithm in Fig. 5,
where the ranking was determined by the Gini impurity, weighted by the probability of reaching the node.
The importance values are normalized to sum to one, facilitating the interpretation of each feature’s relative
contribution within the model. The analysis revealed that age, BMI, and the mean value of the PPG signal
were the three most influential features. This finding not only validates the efficacy of our approach in
converting the PPG signal into a representative statistical feature but, more importantly, aligns with existing
research [2] indicating the significant impact of BMI on various diseases. Furthermore, consistent with
established knowledge, unhealthy lifestyle habits, particularly those resulting in overweight and obesity, are
identified as major contributors to cardiovascular diseases (CVDs). These results underscore the importance
of public health initiatives promoting awareness of BMI and overall physical well-being.

Figure 5: Relative feature importance of random forest algorithm

4 Discussion
In our comparative experiments, due to the limited availability of similar studies on multi-label

classification, we primarily reference existing research on multi-class classification, as it closely aligns with
our approach. Accuracy and F1-score are used as the primary evaluation metrics. The comparison table
includes both deep learning techniques and traditional machine learning methods. Overall, our multi-
label classification approach outperforms all multi-class classification methods in terms of F1-score and
accuracy, even when utilizing the same machine learning models. This improvement is primarily due to



Comput Mater Contin. 2025;84(1) 361

the binary relevance strategy in multi-label classification, which independently predicts each label, allowing
for more flexible and accurate modeling. Additionally, a key observation is the significant performance
variation between machine learning and deep learning models on the PPG-BP dataset. In general, machine
learning models demonstrate superior performance, which may be attributed to the dataset’s sample size.
As noted in reference [8], deep learning methods often exhibit reduced robustness compared to traditional
machine learning techniques when trained on small datasets. Moreover, Table 3 shows that the F1-score is
significantly affected by the number of classification labels. This is because changing from four to six labels
splits the hypertension label into three distinct categories, leading to a more pronounced data imbalance and,
consequently, a substantial decrease in the F1-score.

5 Conclusions
CVDs pose a significant health risk on a global scale. The WHO has demonstrated that the regular

monitoring and management of hypertension, one of the primary causes of CVDs, can effectively prevent
these conditions. Although this is a positive development, there are other factors that contribute to CVDs
in addition to hypertension. The present study was conducted to facilitate the management of CVDs by
using six different machine learning algorithms to predict risk factors and diseases using PPG signals and
physiological characteristics. Using accuracy and F1-score, we compared the results of four- and six-label
disease prediction with those from other studies. Our random forest algorithm outperformed the baseline
methods with an accuracy of 95.59% and F1-score of 91.05% for four-label classification. Furthermore,
we utilized common multi-label metrics including the Hamming loss, ROC, and AUC to obtain a more
comprehensive and accurate understanding of multi-label CVD prediction. We use a variety of evaluation
metrics to comprehensively assess model performance on imbalanced datasets, in order to avoid misleading
results from relying on a single metric. With multi-label classification, we will be able to predict CVDs and
their risk factors for a broader range of samples in the future without being limited to specific combinations.
This objective represents the focus of our future work. Although multi-label classification may sacrifice a
degree of accuracy in exchange for convenience, it is more than sufficient as a simple self-assessment tool for
detecting potential problems at an early stage.
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