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ABSTRACT: Software systems are vulnerable to security breaches as they expand in complexity and functionality. The
confidentiality, integrity, and availability of data are gravely threatened by flaws in a system’s design, implementation,
or configuration. To guarantee the durability & robustness of the software, vulnerability identification and fixation have
become crucial areas of focus for developers, cybersecurity experts and industries. This paper presents a thorough
multi-phase mathematical model for efficient patch management and vulnerability detection. To uniquely model these
processes, the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a
logistic learning function. Furthermore, the authors have used numerical methods to approximate the solution of the
proposed framework where an analytical solution is difficult to attain. The suggested systematic architecture has been
demonstrated through statistical analysis using patch datasets, which offers a solid basis for the research conclusions.
According to computational research, learning dynamics improves security response and results in more effective
vulnerability management. The suggested model offers a systematic approach to proactive vulnerability mitigation and
has important uses in risk assessment, software maintenance, and cybersecurity. This study helps create more robust
software systems by increasing patch management effectiveness, which benefits developers, cybersecurity experts, and
sectors looking to reduce security threats in a growing digital world.
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1 Introduction
Vulnerability identification and patch management have emerged as crucial focus areas for guaranteeing

software security in an era of quickly changing cybersecurity threats. Software systems are more vulner-
able to security breaches as they get more complex; therefore, protecting data availability, confidentiality,
and integrity requires prompt vulnerability identification and efficient patch deployment. However, static
frameworks, a lack of adaptive learning methods, and inefficient patch application are only a few of the
drawbacks of the vulnerability management solutions that are currently in use. Conventional vulnerability
detection algorithms are inadequate against zero-day vulnerabilities and changing attack tactics because
they rely on preset criteria and signature-based techniques. Furthermore, the cascade consequences of
flawed patches are frequently overlooked by current patch management systems, which could introduce new
vulnerabilities rather than the mitigation of existing ones. These models’ inability to incorporate dynamic
learning methods further restricts their capacity to adjust to new threats. This work suggests a multi-phase
mathematical modelling technique for vulnerability discovery and patch management to address these
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issues. The framework integrates dynamic learning methods to reduce the risks associated with defective
patches and increase patch deployment efficiency. Furthermore, numerical techniques like the Runge-Kutta
approximation are employed in complex situations where closed-form solutions are impractical. Software
engineering is systematically planning, creating, testing, and managing software systems. It includes a
collection of guidelines, procedures, and equipment to guarantee that software is dependable, effective, and
satisfies user requirements. Software quality has become crucial as modern life increasingly depends on
digital systems, from personal devices to vital infrastructure. Nevertheless, these systems’ complexity and the
quickly evolving technological environment provide weaknesses that malicious actors might exploit [1]. To
manage these risks, software developers must focus on secure coding practices, conduct thorough testing,
and implement security features like encryption, access controls, and regular upgrades. Nevertheless, no
system is infallible in the end. To lessen the possibility and impact of exploitation, a proactive approach that
includes frequent monitoring, vulnerability assessments, and timely updates is essential. For the fixation of
Vulnerabilities, Patches are deployed. Reducing software system vulnerabilities is primarily dependent on
patch management [2]. Programming mistakes, bugs, and design defects are frequently the source of software
vulnerabilities, which hackers can use to obtain unauthorised access or interfere with normal operations.
Finding, obtaining, testing, and implementing patches (software updates) to fix these vulnerabilities before
they can be exploited are all components of effective patch management. Patches are released by software
developers to address vulnerabilities when they appear. However, systems become vulnerable to assaults if
these fixes are not timely. This is particularly true when vulnerabilities are made public because unpatched
systems can be the target of attackers.

Patches are remedial measures used to address vulnerabilities in software programs. They are snippets of
code created to enhance functionality and secure or fix problems with software applications. One of the most
important components of preserving the security and stability of software systems is patch management.
It consists of a systematic process for locating, acquiring, testing, and implementing patches—also known
as updates—for software systems and apps. Effective patch management is more critical than ever with
increasingly complex and interconnected software systems. In addition to reducing the risks associated
with vulnerabilities, timely and effective patching guarantees the software’s ongoing dependability and
functionality [3].

Patch management ensures these updates are implemented as soon as possible, minimising the exposure
window and drastically lowering the chance of an attack. Patch management is essential to keeping software
systems stable and secure [4]. It entails the systematic procedure for locating, obtaining, testing, and
distributing updates or patches to systems and software applications. Effective patch management is more
important than ever as software systems get more intricate and networked. Patching vulnerabilities in a timely
and effective manner not only reduces the dangers they offer, but it also maintains the dependability and
functionality of software environments. Vulnerabilities in software systems discovered during development
are fixed via patches. Several rigorous testing processes involve creating a patch, including unit, integration,
system and user acceptance testing [5]. The main aim is to guarantee that the patch resolves the identified
issues without adversely affecting other software elements. One of the most critical parts of a patch is
its comprehensive documentation, which details the changes made, their rationales, and the expected
consequences on the system.

The significance of efficient vulnerability and patch management is highlighted by numerous real-
world occurrences. The 2020 SolarWinds supply chain hack (https://www.csoonline.com/article/570537/
the-solarwinds-hack-timeline-who-knew-what-and-when.html, accessed on 15 June 2023) was an alarming
instance of the vulnerabilities in secure software systems. Hackers accessed the company’s development
process and installed Sunburst, a malicious backdoor, into updates for its popular Orion program. This

https://www.csoonline.com/article/570537/the-solarwinds-hack-timeline-who-knew-what-and-when.html
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breach remained undiscovered for months, giving hackers access to private networks. It illustrated the catas-
trophic effects a single hacked vendor could have on global cybersecurity and emphasised the significance
of data security.

An additional illustration is a flaw in the MOVEit (https://community.progress.com/s/article/
MOVEit-Transfer-Critical-Vulnerability-15June2023, accessed on 15 June 2023) managed file transfer soft-
ware that was used by cybercriminals to compromise data, impacting almost 100 million people and
thousands of organizations. Even though patches were available, the vulnerability was exploited by attackers
due to delayed implementation, highlighting the importance of applying patches. The importance of prompt
patch distribution and efficient vulnerability management techniques is underscored by these instances.
In addition, businesses must adhere to a systematic procedure for efficient vulnerability and patch man-
agement to guarantee that vulnerabilities are fixed quickly and successfully; usually, this cycle includes the
following phases:

1. Vulnerability Induced: Vulnerabilities arise during software development due to coding or design flaws.
2. Discovery: Researchers or attackers identify weaknesses in the system.
3. Exploit Availability: Attackers create tools to exploit the vulnerability.
4. Disclosure: The vulnerability is reported to the vendor or made public.
5. Vendor Patch: The vendor develops and releases a patch to fix the issue.
6. Patch Installed: Users apply the patch to secure their systems.

The methodical procedure for efficient vulnerability and patch management is shown in Fig. 1. It gives
each cycle stage a graphic representation.

An ongoing cycle that is essential to software maintenance and security management is the identification
of vulnerabilities and the subsequent implementation of fixes. Every step must be carefully planned and
carried out to guarantee that vulnerabilities are fixed quickly and effectively. However, there may be a
situation where, after vulnerabilities have been discovered and patches are applied to address them, the
patches may, for whatever reason, also be to blame for the increase in the overall number of vulnerabilities
found; these patches are known as faulty patches. When using these fixes, there is a significant risk to the
software’s dependability and security. Due to the requirement to address serious problems or vulnerabilities,
some patches may be hurried into release without adequate testing. A poorly designed patch could introduce
new issues, break existing functionality, and introduce new security flaws.

The author of this paper presented a multi-phased methodology for vulnerability identification and
patch management. Using a logistic learning function to describe vulnerability fixation, the model integrated
the idea of the learning phenomena. In the first stage, the authors modelled the process of detecting
vulnerabilities; in the second stage, they incorporated the learning phenomena into the process of fixing
vulnerabilities. Through the incorporation of dynamic elements of learning and improvement, this holistic
approach seeks to better understand how vulnerabilities are recognized and handled over time. The authors
of this paper have covered three scenarios for vulnerability detection and repair; in one of these scenarios,
the closed-form solution was not accessible, so the authors approximated the parameter values using the
numerical approach, namely the fourth-order Runge-Kutta approach.

There are multiple sections to this work. The proposed modelling framework for this study is dis-
cussed in Section 3, the solution methodology is covered in Section 4, and model validation is completed
in Section 5. The authors also discuss previous work related to the current study in Section 2, which is a
comprehensive literature review. The author talked about the study’s findings in Section 6. Sections 7 and 8
contain the author’s conclusions on this study, and the same part also discusses the study’s limitations and
future scope.

https://community.progress.com/s/article/MOVEit-Transfer-Critical-Vulnerability-15June2023
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Figure 1: Vulnerability lifecycle and patch management process

2 Literature Review
Vulnerability Discovery Models (VDMs) are mathematical models designed to predict and explain

the process for discovering vulnerabilities in software systems. These models are essential for analysing
vulnerability detection dynamics and creating effective vulnerability management plans. As per a basic VDM
initially introduced by Rescorla [6], the pace of vulnerability discovery grows exponentially before slowing
down as the number of undiscovered vulnerabilities decreases. Alhazmi et al. [7] presented a mathematical
model for the vulnerability discovery process by considering that an operating system’s vulnerabilities are
impacted by its particular usage environment. The learning, linear, and saturation phases of vulnerability
detection rates were also covered. To improve the existing vulnerability discovery models Ozment [8]
proposed a standard set of definitions relevant to measuring characteristics of vulnerabilities and their
discovery process. A method for assessing the quality and predictability of VDM performance was developed
by Massacci et al. [9]. Croft et al. [10] provided a systematic literature review for software vulnerability
prediction. A neural network model for vulnerability detection was presented by Movahedi et al. [11]. Also,
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Liu et al. [12] in the year 2012, proposed research on software vulnerability techniques, including static
analysis, Fuzzing, and penetration testing. Research on the effect of shared code on vulnerability and patching
was conducted in 2015 by Nappa et al. [13]. Vulnerability discovery in multi-version software has been
proposed by Kim et al. [14]. In 2016, Sharma et al. [15] researched vulnerability discovery modelling for open-
source and closed-source software. In 2017, Bhatt et al. [16] modelled and described software vulnerability.
A case study on software vulnerability coordination was given by Ruohonen et al. [17] in the year 2018.
Additionally, a comprehensive empirical analysis of security patches was first carried out in 2017 by Li
et al. [18]. In recent years, a great deal of effort has been put into modelling the framework for vulnerability
discovery modelling. A small amount of work has been done concerning the patch after VDM. In 2022,
Costa et al. [19] defined the challenges of prioritizing patching in software systems. Shrivastava et al. [20]
introduced a new approach to vulnerability modelling in 2018. They divided vulnerabilities into direct and
indirect categories according to how they are fixed by using the time lag phenomenon of vulnerability
patching upon identification. In 2019, Almukaynizi et al. [21] introduced a unified method for locating
specific software flaws.

The same year, Anand et al. [22] suggested a quantitative approach to guarantee the Safety Integrity Level
(SIL) in software systems to identify the best patch release schedule for addressing vulnerabilities following
software deployment. Furthermore, the primary focus of patch-related modelling is on the procedures
involved in developing, releasing, and putting into practice patches to address vulnerabilities. The goal of
these models is to capture the dynamics of patch management, such as the optimal number of patches
published [23], the rate at which patches are released, and the effectiveness of the patch deployment
procedure. A mathematical model based on the idea of directly, indirectly, and unsuccessfully patched
vulnerabilities was proposed by Kansal et al. [24]. In the year 2023, Xu et al. [25] presented a patch presence
test approach to identify binary vulnerabilities by extracting key basic blocks of patch and vulnerability as
their signatures for patch discovery.

A two-dimensional vulnerability-patch model based on reported vulnerabilities and patch release time
was proposed by Shrivastava et al. [26]. A systematic literature review of challenges, approaches, tools and
practices of software security patch management proposed by Dissanayake et al. [27] in the year 2022. In
2020, Wang et al. [28] proposed a machine-learning approach to classify security patches into vulnerability
types. This approach highlights the value of proactive patch management and the necessity of balancing patch
releases with the continuous identification of new vulnerabilities. In 2024, Divya et al. [29] presented a study
involving the study of faulty and safe patches. In 2022, Xu et al. [30] discussed the tracking patches for OSS
vulnerabilities. Bhatt et al. [31] in the year 2024 discussed the Selection of the Best Software Vulnerability
Scanner Using an Intuitionistic Fuzzy set.

In this paper, the authors used a numerical method to approximate the closed-form solution. Numer-
ical approaches are essential when tackling mathematical problems without analytical answers. In 1990,
Dahlquist and Bjorck introduced higher-order numerical methods for solving fractional differential equa-
tions [32]. In 1996, Dennis et al. [33] studied the numerical methods for unconstrained optimisation and
nonlinear equations. In 2014, Rice et al. [34] studied numerical methods in software and analysis. Butcher
and Charles, in 2016, studied numerical methods for ordinary differential equations [35]. Butcher and
Charles carried out a study in 1996 that constituted a centennial survey of Runge-Kutta procedures. It
examines a few of Runge, Heun, Kutta, and Nystrom’s early works. In addition to discussing implicit methods,
stability analysis, error estimation techniques, and dense output, it culminates in the idea of Runge-Kutta
methods’ order of accuracy [36]. Current models provide useful information on patch management and
vulnerability detection, but they often treat both processes independently and ignore the dynamic learning
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phenomenon that occurs over time. Building on earlier methods, this work proposes a comprehensive
multi-phase mathematical model for vulnerability identification and effective patch management.

3 Proposed Modeling Framework
The vulnerability discovery and fixation processes are correlated. This paper proposes a thorough multi-

phase mathematical approach for discovering vulnerabilities and efficient patch management. To capture
the dynamics of vulnerability discovery and fixation, the model inculcates the learning factor notion, which
was first put forth by Xia et al. [37]. In vulnerability detection and maintenance rates, the learning phe-
nomenon is the process through which the effectiveness and efficiency of finding and fixing vulnerabilities
improve over time. Experience and expertise help software development and maintenance teams find and
address vulnerabilities more quickly and effectively. Additional factors that impact the learning process of
vulnerability detection and fixation include resource allocation, feedback loops, and enhanced tools and
technology. The authors in this case believe that the process of detecting and fixing vulnerabilities is divided
into two phases, with learning functions being applied to the first phase of vulnerability fixation. The model
used a logistic learning function to describe vulnerability fixation, incorporating the idea of the learning
phenomena to characterize these processes in a new way. Additionally, in situations where an analytical
solution is challenging to achieve, the authors have approximated the solution of the suggested framework
using numerical techniques. There are two steps in the mathematical modelling process for the suggested
model. The author models the total number of vulnerabilities found in the first step. In order to fix the
vulnerabilities discovered in the first stage, a number of patches were released in the second step. Also, this
study has a particular case in which the authors discuss the concept of faulty patches.

3.1 Assumptions
The modelling methodology proposed in this study depends on the following hypotheses:

• The vulnerability identification process is time-dependent.
• Time affects the patch deployment process.
• In the vulnerability-identifying process the Non-Homogenous Poisson Process (NHPP) is used.
• The quantity of vulnerabilities discovered influences how many patches are released.

3.2 Notations
This work uses the following Notations:
Ω (t) = cumulative number of vulnerabilities discovered by time t.
P (t) = cumulative number of patches released/deployed by the time t.
N (t) = total number of vulnerabilities present in the software.
b1 = the rate by which the vulnerabilities have been discovered.
b2 = the rate by which the patches are deployed.
α = rate of vulnerability increment.
β = learning function.

3.3 Model Development
The use of mathematical modelling to guide the discovery process is seen in the literature on vulnerabil-

ity discovery modelling. To tackle this problem, researchers have employed the Non-homogenous Poisson
process (NHPP). The vulnerability discovery process provided by Rescorla has made extensive use of Eq. (1),
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which is shown below.

dΩ (t)
dt

= b {N −Ω (t)} (1)

Various procedures for vulnerability discovery have been used in the past to develop plenty of
mathematical models. The authors of the present work, however, have taken this vulnerability discovery as
a step in between in the software patching process, moving one step further.

Furthermore, in contrast to other researchers, this work assumes that the overall number of vulnerabil-
ities varies over time rather than remaining constant.

Consequently, the differential equation that supports this framework can be expressed using Eq. (2):

dΩ (t)
dt

= b1 {N (t) −Ω (t)} (2)

where N (t) is the total number of vulnerabilities present in the software and Ω (t) is the cumulative number
of vulnerabilities discovered over time (t) with vulnerability discovery rate (b1). Eq. (2) represents the
cumulative number of vulnerabilities discovered by period (t) which gets exploited.

Now, after the discovery of new security holes by the aggressors, Ω (t) security holes exposed to
defenders or the patch team are notified of security flaws, which they then eliminate in accordance with the
number of vulnerabilities found during a vulnerability fixation procedure. The authors also inculcate the
notion of learning function here.

It is represented by Eq. (3).

dP (t)
dt

= b2

1 + βe−b2 t {Ω (t) − P (t)} (3)

here, P(t) is the cumulative number of patches deployed by time (t) and b2
1+βe−b2 t is the rate of provid-

ing patches.
This study also incorporates the three mathematical forms of time-dependent vulnerabilities.
Case 1: When during the upgradation the count increases exponentially with rate α, i.e., N (t) = Neαt .
Case 2: When the number of security loopholes increases linearly with time (t) and rate α, i.e., N (t) =

N (1 + αt).
Case 3: When the faulty patch increases the total number of security loopholes in the system, i.e., N (t) =

N + αP (t).
Furthermore, this study is a multi-phase modelling for vulnerability discovery and vulnerability fixation.

For both the above cases, the authors have taken two rates into consideration: for the first phase, the authors
have taken the vulnerability discovery rate as constant, and for vulnerability fixation, the authors have
incorporated the learning function, b2

1+βe−b2 t .
For the above three cases, the sets of equalities can be represented by Eqs. (4)–(9):
For Case 1,

dΩ (t)
dt

= b1 {Neαt −Ω (t)} (4)

dP (t)
dt

= b2

1 + βe−b2 t {Ω (t) − P (t)} (5)
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For Case 2,

dΩ (t)
dt

= b1 {N (1 + αt) −Ω (t)} (6)

dP (t)
dt

= b2

1 + βe−b2 t {Ω (t) − P (t)} (7)

For Case 3, when the faulty patches increase the vulnerability content in the system,

dΩ (t)
dt

= b1 {N + αP (t) −Ω (t)} (8)

dP (t)
dt

= b2

1 + βe−b2 t {Ω (t) − P (t)} (9)

Case 1 and Case 2 can be solved using the traditional methods. Using the initial condition, Ω (t) = 0, to
solve Eqs. (4)–(7) we have,

For Case 1,

P (t) = Nb1b2

(α + b1) (1 + βe−b2 t) [
eαt

(α + b2)
− e−b1 t

(b2 − b1)
− e−b2 t

(α + b2)
+ e−b2 t

(b2 − b1)
] (10)

For Case 2,

P (t) = N
1 + βe−b2 t [1 + αt − α

b2
− α

b1
− b2

(b2 − b1)
(1 − α

b1
) e−b1 t − e−b2 t + α

b2
e−b2 t + α

b1
e−b2 t

+ b2

(b2 − b1)
(1 − α

b1
) e−b2 t] (11)

When the count grows exponentially during the upgrading or debugging, Eq. (10) shows the total
number of patches deployed by time t. When security flaws increase linearly with time t, the cumulative
number of patches deployed by time t is represented by Eq. (11). Conventional techniques cannot be used to
obtain the closed-form answer for Case 3.

Case 3 also makes it very clear that there will be an increase in the number of software vulnerabilities
as a result of this case. This scenario can be called a faulty patch. Patches are necessary, but not all of
them are produced equal. Patches may be inaccurate for several reasons, such as inadequate testing, rushed
development processes, and ignorance of the underlying vulnerability. These flawed patches may fail to fix
the vulnerability, inadvertently introduce new ones, or cause unexpected software behaviour such as crashes
or reduced functionality. Faulty patches are updates designed to fix vulnerabilities but cause additional
issues or security concerns instead. One common cause is inadequate testing. The Authors used the Runge-
Kutta method because it provides high accuracy without requiring excessively small step sizes. It efficiently
handles nonlinear differential equations arising in Case 3. It converges faster than Euler’s method, reducing
computational overhead.

4 Solution Methodology
Case 3 requires more discussion, as was covered in the section before this one about the solutions for the

three cases under consideration. Since the traditional solution approaches provide a closed-form solution,



Comput Mater Contin. 2025;84(1) 1537

Cases 1 and 2 can be successfully resolved by utilizing them. Case 3, on the other hand, does not have
such a clear advantage. Even if there are a series solution for this specific framework, their infinite nature
and growing errors as the independent variable’s value increases make them extremely difficult to evaluate
numerically. This study uses numerical methods to address this complexity and get over the challenges
of generating closed-form answers. The authors have employed the Fourth-Order Runge Kutta Method to
approximate the value because it yields the best results out of all the numerical methods, which include
Euler’s method, Improved Euler’s method, Modified Euler’s method, the Runge–Kutta method, and Heun’s
method. However, Eqs. (8) and (9) are simultaneous equations. Fig. 2 represents the solution methodology
for the proposed modelling framework.

Figure 2: Flowchart of the solution methodology

The Runge-Kutta Method for Simultaneous Equations can be given as:

dΩ (t)
dt

= f1 (t, Ω (t), P (t)); Ω (t = 0) = Ω (t0)

dP (t)
dt

= f1 (t, Ω (t), P (t)); Ω (t = 0) = Ω (t0)
(12)

Approximation using RK Method can be given as by Eqs. (13) and (14).

Ω (t0 + h) = Ω (t0) +
k1 + 2k2 + 2k3 + k4

6
(13)
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P (t0 + h) = P (t0) +
m1 + 2m2 + 2m3 +m4

6
(14)

where h is a very small positive value and

k1 = h f1 (t0, Ω (t0), P (t0))
m1 = h f2 (t0, Ω (t0), P (t0))

(15)

here, k1 represents the initial slope for Ω evaluated at the starting point t0 and m1 represents the initial slope
for P, which is also evaluated at t0.

k2 = h f1 (t0 +
h
2

, Ω (t0) +
k1

2
, P (t0) +

m1

2
)

m2 = h f3 (t0 +
h
2

, Ω (t0) +
k1

2
, P (t0) +

m1

2
)

(16)

where, k2 represents the slope for Ω evaluated at the midpoint t0 + h
2 , with the predicted values Ω (t0) + k1

2
and P (t0) + m1

2 .
Also, m2 represents the slope for P under the same conditions as k2.

k3 = h f1 (t0 +
h
2

, Ω (t0) +
k2

2
, P (t0) +

m2

2
)

m3 = h f3 (t0 +
h
2

, Ω (t0) +
k2

2
, P (t0) +

m2

2
)

(17)

here, k3 represents another slope estimation for Ω, again evaluated at t0 + h
2 , but now using the updated

slopes k2
2 and m2

2 .
m3 represents the updated slope for P under the same conditions as k3.

k4 = h f1 (t0 +
h
2

, Ω (t0) + k3, P (t0) +m3)

m4 = h f3 (t0 +
h
2

, Ω (t0) + k3, P (t0) +m3)
(18)

k4 represents the slope for Ω evaluated at the endpoint t0 + h
2 using predicted values Ω (t0) + k3

and P (t0) +m3. Also, m4 represents the slope for P under the same conditions as k4. The suggested
two-phase modelling approach for vulnerability discovery and efficient patch management is shown to be
flexible and adaptive in the three instances mentioned above. Moreover, it offers a thorough foundation for
comprehending many facets of software vulnerability management.

5 Model Validation
To validate the suggested modelling approach, a real-world patch dataset for three well-known operating

systems—Linux Kernel, Android, and Redhat—was taken from CVE Details. For Case 1 and Case 2, non-
linear regression was performed using SPSS. The Runge-Kutta Method of order four has been used in
Case 3. The main steps for obtaining the information required to assess the suggested modelling framework
and performing a goodness-of-fit study are described in this section. To best match the actual data, the
model parameters must be estimated. These repositories provide patch details and advisory reports on
vulnerabilities that have been found. Using the IBM SPSS version 26 software, the author established the
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parameters of the proposed model. Several factors determine whether a vulnerability patch deployment
model statistically fits the provided sample data points. The author has taken into account R-squared,
variance, biasness, mean square error (MSE), and mean absolute error (MAE). When measures like variance,
bias, and MSE are reduced, the model shows a good match for the observed data. However, a closer fit
between the expected and actual data points is indicated by a greater R-squared value. Tables 1–3 display the
estimated parameter values for each dataset, and it is clear that all three situations produce favourable results.

Table 1: Values of estimated parameters and goodness of fit criteria for Android (DS-I)

Model
parameter
(Android)

DS-I

N(t) b1 b2 α β Goodness of
fit criteria
(Android)

DS-I

Bias MSE Variance MAE R-Square

Case 1 285.035 0.100 0.645 0.078 23.369 Case 1 0.330 155.165 7.149 9.717 0.995
Case 2 1807.54 0.018 0.956 0.023 15.007 Case 2 1.056 206.071 7.182 9.822 0.994
Case 3

(Approximated
value)

1800.54 0.016 0.93 0.021 15 Case 3 28.897 1428.47 5.588 29.229 0.994

Table 2: Values of estimated parameters and goodness of fit criteria for Redhat (DS-II)

Model
parameter

(Redhat) DS-II

N(t) b1 b2 α β Goodness of
fit criteria
(Redhat)

DS-II

Bias MSE Variance MAE R-Square

Case 1 94.097 1.135 0.797 0.067 0.990 Case 1 0.237 5.257 49.139 15.283 0.987
Case 2 103.533 0.650 0.999 0.085 0.010 Case 2 −2.250 10.84 187.313 9.369 0.957
Case 3

(Approximated
value)

94 0.135 0.597 0.087 0.990 Case 3 10.770 20.588 800.064 6.3434 0.821

Table 3: Values of estimated parameter and goodness of fit criteria for Linux (DS-III)

Model
parameter

(Linux) DS-III

N(t) b1 b2 α β Goodness of
fit criteria

(Linux) DS-III

Bias MSE Variance MAE R-Square

Case 1 211.396 0.529 0.203 0.018 10.911 Case 1 0.2012 40.0194 5.363 2.799 0.994
Case 2 60.695 0.145 0.990 0.217 0.010 Case 2 −0.4464 56.3807 6.66 2.829 0.991
Case 3

(Approximated
value)

210.86 0.428 0.198 0.015 10.81 Case 3 −1.2303 356.624 17.391 0.753 0.958

Tables 1–3 represent the comparison criteria for all the three datasets. The proposed modelling frame-
work perfectly fits the observed sample. Further, the R-square shows a close fit, as seen in Fig. 3, for DS-I,
DS-II and DS-III, respectively.
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Figure 3: The goodness of fit curve for DS-I, DS-II and DS-III, respectively

The aforementioned graphs show how the model’s predicted values and the actual effective patch
data concurred. The graphical analysis for DS-I, DS-II, and DS-III demonstrates how well the proposed
multi-phase model fits the observed data and forecasts successful patches over time. The close agreement
between actual and expected values in both detailed and cumulative perspectives demonstrates the model’s
effectiveness in a variety of software contexts. In addition to the statistical goodness-of-fit criteria, this
visual validation validates the model’s usefulness for strengthening software security and vulnerability
management tactics.
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6 Results and Discussions
The paper outlines a comprehensive multi-stage modelling approach aimed at analysing the processes of

vulnerability identification and patch deployment within systems. The study explores two distinct scenarios:
Linear Increase in vulnerabilities and Exponential Increase in vulnerabilities. For both scenarios, the authors
derive closed-form solutions, providing a clear mathematical framework to understand the dynamics of
vulnerability and patch management. Additionally, the paper introduces the concept of faulty patches, which
complicates the scenario by considering patches that may not fully resolve vulnerabilities or could introduce
new issues. The authors develop a novel mathematical framework to address the unique challenges posed by
faulty patches. The authors use the Runge-Kutta approximation method to solve the equations numerically
in situations when closed-form solutions are not practical, especially in the case of the broken patch. The
outcomes show that the models function remarkably effectively in every situation. The high R-squared
values—a statistical indicator of how well the data match the fitted regression line—especially in Table 2,
where the R-squared value hits 0.99, provide proof of this. The correctness and dependability of the suggested
framework are confirmed by this near-perfect number, which indicates that the model accounts for nearly
all of the data variability. Tables 1–3: The performance metrics of the models under various conditions are
probably displayed in these tables, with Table 2 particularly emphasizing the model’s high accuracy when
considering defective patches. The models’ excellent accuracy and dependability imply that they can be
applied successfully in real-world situations to anticipate and handle vulnerabilities and patches, particularly
in intricate settings where problematic patches are an issue. The introduction of flawed patches creates new
research opportunities, especially in the areas of minimizing the effects of such patches and enhancing patch
deployment techniques. The use of advanced mathematical techniques like the Runge-Kutta method further
underscores the sophistication of the proposed framework.

7 Limitations and Future Scope
The dynamic nature of patch management procedures can be represented by more complex math-

ematical modelling techniques, such as stochastic processes and agent-based modelling. Additionally,
behavioural research might provide insights into how human factors influence patch management practices,
directing the development of more precise models. Automated patching systems that employ machine-
learning algorithms may result in more effective and efficient patch deployment operations. Risk-based patch
prioritisation models may help improve patch management practices by considering vulnerability severity
and organisational risk tolerance. In light of changing cyber threats, future research projects seek to improve
cybersecurity posture and patch management procedures.

8 Conclusion
The study’s main goal was to develop a thorough multi-phase model that addresses vulnerabilities and

patching procedures while incorporating the idea of learning dynamics. This novel method acknowledges
that software systems and the patches that accompany them change over time, making the distinction
between safe and faulty patches essential. While faulty patches may unintentionally cause new problems,
safe patches guarantee that vulnerabilities are effectively fixed without causing any new ones. Differential
equations can be solved with these mathematical methods, especially when closed-form solutions—explicit
formulas that explain the system’s behaviour—are unavailable. These techniques allowed the study to produce
numerical solutions that faithfully capture the system’s change over time. In addition to addressing the lim-
itations brought about by the absence of closed-form solutions, this procedure showed how Approximation
Methods might be used to solve comparable problems in other fields. The paradigm developed in this study
provides avenues for more efficient vulnerability analysis and mitigation in dynamic systems. Additionally,
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Approximation Methods’ versatility guarantees that they may be used in various intricate situations, making
them invaluable instruments for solving issues in a range of scientific and engineering fields where precise
answers are sometimes elusive.
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