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ABSTRACT: Pedestrian detection has been a hot spot in computer vision over the past decades due to the wide
spectrum of promising applications, and the major challenge is false positives that occur during pedestrian detection.
The emergence of various Convolutional Neural Network-based detection strategies substantially enhances pedestrian
detection accuracy but still does not solve this problem well. This paper deeply analyzes the detection framework of
the two-stage CNN detection methods and finds out false positives in detection results are due to its training strategy
misclassifying some false proposals, thus weakening the classification capability of the following subnetwork and hardly
suppressing false ones. To solve this problem, this paper proposes a pedestrian-sensitive training algorithm to help two-
stage CNN detection methods effectively learn to distinguish the pedestrian and non-pedestrian samples and suppress
the false positives in the final detection results. The core of the proposed algorithm is to redesign the training proposal
generating scheme for the two-stage CNN detection methods, which can avoid a certain number of false ones that
mislead its training process. With the help of the proposed algorithm, the detection accuracy of the MetroNext, a
smaller and more accurate metro passenger detector, is further improved, which further decreases false ones in its metro
passenger detection results. Based on various challenging benchmark datasets, experiment results have demonstrated
that the feasibility of the proposed algorithm is effective in improving pedestrian detection accuracy by removing
false positives. Compared with the existing state-of-the-art detection networks, PSTNet demonstrates better overall
prediction performance in accuracy, total number of parameters, and inference time; thus, it can become a practical
solution for hunting pedestrians on various hardware platforms, especially for mobile and edge devices.
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1 Introduction
Pedestrian detection has always been fundamental in various artificial intelligence tasks, such as

autonomous driving, pedestrian tracking, and abnormal behavior detection. It is indispensable in their
successful applications and deployments [1]. However, compared to general object detection, pedestrian
detection presents specific technical difficulties that make it one of the most challenging subfields of object
detection. First, pedestrians are often found in complex and ever-changing scenes where other objects may
appear similar, making it difficult for detectors to differentiate between them, even with advanced pedestrian
feature extraction techniques. Second, the high intra-class variation in pedestrians due to differences in
clothing, lighting, and pose requires the learned human features to be more semantically meaningful and
robust to achieve accurate pedestrian recognition. This poses a significant challenge for feature extraction
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and detection strategy design. Finally, pedestrians are frequently occluded by other objects or each other,
leaving only partial human bodies visible to the detectors. This lack of complete pedestrian features hinders
the detector’s ability to segment and localize individual pedestrians from the crowd.

Over the past decades, a major methodology has enriched key pedestrian features for recognizing
pedestrians in complex scenes [2,3]. Recently, deep learning, specifically Convolutional Neural Networks
(CNN), has become the algorithm of choice for pedestrian detection. This is thanks to the significant
improvements made in the realm of CNN [3]. However, False Positives (FPs) remain a notorious problem
in pedestrian detection. While using CNN has enhanced the feature extraction capabilities of the entire
detection framework, most CNN-based pedestrian detectors are adapted from general object detectors.
These general detectors emphasize target position awareness and multiple object classification. In contrast,
pedestrian detection is a binary classification problem requiring pedestrian awareness and the ability to
classify pedestrian and non-pedestrian objects effectively. The issue of avoiding FPs is often overlooked in
pedestrian detection, leading to the suboptimal performance of CNN-based detectors and making it difficult
to improve their pedestrian detection capabilities further.

To address the issues above and improve detection accuracy, this paper conducts a deep analysis of the
detection process of a CNN-based, accuracy-oriented, two-stage detection network. It highlights that the
current training strategies are insufficient to enhance the network’s classification capabilities, particularly
in distinguishing between pedestrians and non-pedestrians, leading to many False Positives (FPs). To
mitigate this issue, a novel Pedestrian Sensitive Training (PST) algorithm is proposed. This algorithm
aims to strengthen the classification abilities of this detection network, thereby reducing FPs. Moreover,
the recognition of pedestrians is often required on edge devices, which necessitates that any proposed
solution improves the FP removal capability of the base detector without incurring significant additional
computational costs. This is crucial to meet the hardware constraints of target platforms. Given these
requirements, this paper selects a compact two-stage detector, MetroNext [4], and integrates it with the
PST algorithm to create a small, fast, and accurate pedestrian detector called PSTNet. The effectiveness
of PSTNet is validated using real-life metro station datasets, specifically SY-Metro, and on an embedded
platform to assess its capability to quickly and accurately detect metro passengers, potentially replacing
human surveillance. In summary, this paper makes three contributions:

1) This paper deeply analyses the detection pipeline of the two-stage CNN-based detection network. It
points out that its training strategies can’t help the whole detection network have a stronger classification
ability to distinguish pedestrians and non-pedestrians. Thus, a novel PST algorithm is proposed, which
can effectively guide the training process of the two-stage CNN-based detection network and promote its
classification capability to wipe out non-pedestrian predictions, achieving zero-cost accuracy improvements.

2) Various experiments have been conducted on challenging benchmark datasets and a real-life metro
station dataset: SY-Metro. The ablation and benchmark experiments on these datasets demonstrate that the
PST algorithm has the general ability and adaptability to improve the prediction accuracy of plain models
and effectively suppresses false positives even for the small model. The metro scene dataset tests the newly-
built PTSNet’s ability to accurately detect pedestrians in crowded metro scenes, confirming its effectiveness
in delivering pedestrian detection results accurately in such scenarios.

3) In order to accurately measure the detection latency and power consumption of the PSTNet, the
inference speed and power usage analysis experiments are conducted on workstations and embedded
platforms. The experiment results demonstrate that PSTNet achieves faster inference speed and lower power
consumption compared to other competitors. This makes PSTNet a suitable pedestrian detection solution
on embedded platforms.
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2 Related Work
Over the past decades, the main solutions have been divided into traditional and emerging deep

learning-based methods, which are briefly summarized below.

2.1 The Traditional Methods
Vision-based pedestrian detection methods obtain detection results through two key image processing

steps: feature extraction and proposal classification. The traditional techniques design various handcrafted
filters to extract pedestrian features and further process them via the following subnetwork to output
detection results [5–7]. Due to the weak feature extraction capability of the handcrafted filters, the extracted
features are poorly semantic in foreground (pedestrian object) and background (non-pedestrian object)
information, making it difficult for the top classification network to distinguish between pedestrians and
background images using these features, resulting in some false ones in the detection results. References
[8–10] have proposed different tricks to suppress these FPs, among them, reference [8] creatively proposed
a multi-resolution infrared vision pedestrian detection system, which designed a series of matched filters to
avoid several FPs, and the efficient of this pedestrian detection system had been proved in various situations
with lower false-positive rates. However, the traditional methods have limited learning ability and can’t be
adapted to the considerable intra-class variation of backgrounds and pedestrians, thus preventing further
improvements in detection accuracy.

2.2 The Deep Learning-Based Methods
To compensate for the limitations of manually designed filters in traditional methods for pedestrian

feature representation, reference [11] first represented pedestrian attributes using pedestrian features gener-
ated in CNN and then used these features to train SVM classifiers to recognize human objects from input
images. Since then, references [12–15] continuously improved the pedestrian detection accuracy on popular
benchmark datasets. For false positive detection results, researchers have also proposed different technical
routes to deal with this problem.

3D convolution operation Differing from 2D convolution operation, the 3D convolution operation
can slide over a 3D volume, so it can directly process 3D perception data and help the detector to describe
the spatiotemporal relationship of objects in the 3D space. Reference [16] proposed to combine 2D deep
learning-based pedestrian detectors with a 3D CNN to wipe out false ones, where the 2D deep learning-
based pedestrian detector is responsible for providing potential pedestrian proposals. In contrast, 3D CNN
determines whether these proposals are true positives. Similarly, Reference [17] adopted the same detection
pipeline to reject FPs and demonstrated that this method has better general capability than the CNN-based
detection methods. Reference [18] proposed a novel 3D feature-pulling strategy to achieve 2D to 3D feature
transformation, which demonstrates fewer false positives. These 3D convolution FPs suppression strategies
increase the computational complexity of the whole detection system when plugging a 3D network to process
3D features. Thus, the application scenarios for this method are relatively limited, and it can’t be deployed in
the application scenarios with limited hardware resources.

Multimodal fusion The multimodal fusion effectively reduces false positives by integrating various
types of input data. Meanwhile, this approach also involves developing recognition models and algorithms
specifically tailored to process the fused data. Reference [19] combines the multimodal object detector
with Kernel Extreme Learning Machine and Hybrid Salp Swarm Optimization algorithm to build the
IPDC-HMODL model, which adopts an image processing techniques to process two kinds of input data:
image frames and its ground truth images to help the IPDC-HMODL model to suppress the false ones
in detection results. Reference [20] proposed a CNN-based LiDAR-camera fusion mechanism and then
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designed a neural network to confirm the recognition results to reduce FPs. The comparison study has
highlighted the performance gains of these methods. However, the integration of multimodal information
faces several challenges. Firstly, the acquisition of multiple sensors can significantly increase its development
costs. Secondly, the alignment of information across various sensors requires additional processing steps,
which promote the system’s complexity.

Non-maximum suppression Choosing the ideal NMS threshold for pedestrian detection remains a
challenging task, and the higher threshold brings more FPs. At the same time, a lower one causes a higher
miss rate. Reference [21] proposed an adaptive NMS strategy that can compute a suitable suppression
threshold according to the object density, but this approach fails when accurate object density information
is unavailable. Unlike standard NMS strategy, Reference [22] design a novel Representative Region NMS
strategy to calculate the Intersection over Union (IoU) of two objects, where representative region boxes of
two objects are used to compute this value, and a Paired-Box Model is proposed to responsible for predicting
pedestrian’s representative region boxes. However, the problem of this method is how to ensure that the PBM
has strong generalization capabilities that can provide accurate predictions of pedestrian’s representative
region boxes in dynamically changing real-life scenarios. Moreover, it brings more human annotation work
to label human visible bodies when establishing training datasets. Reference [23] had a similar technical
route to optimize the NMS algorithm, and the false positives in the pedestrian detector have been reduced
to a certain extent. However, the problem above has still not been solved.

Feature enhancement The Feature enhancement method constructs various image processing modules
to strengthen and enrich pedestrian features to help the detector recognize hard samples. Reference [24]
adopted two key components: attention modules and reverse fusion blocks to build a semantic attention
fusion mechanism to increase the classification capability of the detector. Reference [25] designed a Pose-
Embedding Network that combines human pose information with visual description and used the pedestrian
pose information to re-evaluate the confidence scores of pedestrian proposals and eliminate the false ones
with high confidence scores. However, the main drawback of these methods is that the constructed feature
information extraction module further increases the computational cost of the deep learning methods,
making them more demanding on the computational resources of the target platforms, which hinders their
widespread adoption on low-end computing devices.

In summary, although several research works have been carried out to effectively remove pedestrian
false positives, to the best of our knowledge, there is still a lack of a suitable method for deployment
on embedded devices with good pedestrian false positives suppression with no extra computational cost.
Therefore, this paper has devoted our efforts to researching this direction by proposing a training algorithm
to help the two-stage CNN pedestrian detection method achieve this goal.

3 Methodology

3.1 The Training Strategy of the Two-Stage CNN-Based Detection Method
As is shown in Fig. 1, in the training stage, the backbone network extracts deep convolutional features

from the input images. Then, the several convolutional layers of the Region Proposal Network (RPN)
utilize these features to obtain coordinate offsets and scores of predefined anchors and send them to the
following proposal layer to produce pedestrian proposals. Where the Intersection over Union (IoU) strategy
is utilized to classify pedestrian proposals. However, the IoU strategy uses a threshold to classify pedestrian
proposals, which will misclassify some ones containing human body information as negative ones, and
these misclassified proposals are mixed into the training samples, which will directly influence the training
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process of the subnetwork to weaken its pedestrian/background distinguishing ability, and inevitably lead to
some FPs.
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Figure 1: The training strategy of two-stage CNN-based pedestrian detection paradigm. Where “offsets & scrs” denotes
the coordinate offsets and scores of predetermined anchors. “bbs” represents the bounding boxes. “p” denotes the
proposals and their foreground and background are represented by “fg,bg”. “RoI Pooling” denotes the RoI Pooling layer.
“Dc(x), Dr(x)” denote the classifier and regressor of the subnetwork.⊗ denotes the operator for calculating IoU values

3.2 The Drawback of IoU Strategy
IoU strategy is a common object detection metric used to measure the matching degree of two bounding

boxes. The higher the IoU value of the two objects, the better the match between them. Generally, an IoU
threshold is predetermined to evaluate the hit rate of the predictions to the ground truth. When the IoU value
exceeds the threshold, the predictions hit the GT (considered in the foreground). Otherwise, they don’t hit it
(considering the background). Therefore, the IoU threshold is a very important hyperparameter, and choos-
ing an appropriate IoU threshold has always been a tricky problem [26]. In addition, since the predefined
IoU threshold can’t be changed adaptively, it’s unsuitable for dealing with object detection problems with
large-scale variations such as pedestrian detection. This can be observed from its computational formula.

Given two bounding boxes p = {x p
1 , yp

1 , x p
2 , yp

2} and tb = {xtb
1 , ytb

1 , xtb
2 , ytb

2 }, their IoU value
is computed

IoU = ∣ p ∩ tb
p ∪ tb

∣ (1)

where p ∩ tb and p ∪ tb represent the area of interaction and union region of p and tb, respectively.
According to Eq. (1), if the denominator is much larger than the numerator, a lower IoU score below

the IoU threshold will be obtained, and the corresponding proposal will be regarded as a negative training
sample, which may occur in pedestrian detection. As shown in Fig. 2, although several proposals contain
human bodies, their IoU values after IoU computation with true bounding boxes are lower than the IoU
threshold. Thus, they are misclassified as negative samples, which directly affects the training process of
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the two-stage CNN-based pedestrian detection paradigm, so it can’t effectively classify pedestrians and
backgrounds, which leads to some FPs. A direct solution is to lower the IoU threshold, but only adjusting
the IoU threshold during the training stage can’t effectively solve classification issues between positive and
negative ones. For this reason, this paper proposes the PST algorithm to meet this demand.

Figure 2: Some training samples are misclassified to negative ones using the IoU strategy

3.3 The PST Algorithm
As mentioned above, false positives occur because the IoU strategy misclassifies the training samples,

thereby affecting the training process of the subnetwork and weakening its classification ability. The solution
is to accurately classify positive and negative samples to the network and guide it to train effectively.
During the training process of the two-stage pedestrian detection paradigm, the network must share weights
between building accurate pedestrian localization and classification capabilities, making it difficult to power
the network to build strong classification capabilities [27]. Therefore, this paper adopts the cascading
strategy to design the PST algorithm to enhance this paradigm’s pedestrian/background classification
capability, which empowers this paradigm with pedestrian sensitivity and helps it accurately differentiate
pedestrians/backgrounds during training. The theory of the PST algorithm is described below.

Overall processing pipeline The PST algorithm brings the step of evaluating the pedestrian information
quantity of each proposal and changes the allocation process of positive and negative proposals in the
proposal target layer, which is plugged into the two-stage CNN-based pedestrian detection paradigm
(demonstrated in Fig. 3), in which a series of proposals P generated from the proposal layer can be denoted as

Feature
extraction

RPN

offsets &

scrs

C
o
n
v

la
y
er

s

P
ro

p
o
sa

l

la
y
er

s

New ProposalTarget layer

F(x)
Map to
features

Training post
processing

subnetwork

True bbs

I

Figure 3: The processing pipeline of the PST algorithm, where I represents the input image. F(x) denotes the
pedestrian sensitive classifier. ϕi represents the pedestrian confidence of the proposal. ε represents the confidence
threshold for pedestrians. All dotted bounding boxes indicate these proposal are not used for training subnetwork

P = {p1 , ⋅ ⋅ ⋅ , pn} (2)
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where ith proposal is represented as pi = {x pi
1 , ypi

1 , x pi
2 , ypi

2 }, 1 ≤ i ≤ n. These proposals are computed with
the true bounding box tb to obtain their IoU scores.

S IoU = {∣
p1 ∩ tb
p1 ∪ tb

∣ , ⋅ ⋅ ⋅ , ∣ pn ∩ tb
pn ∪ tb

∣} (3)

where the IoU score of i-th proposal is denoted as IoUi = ∣ pi∩tb
pi∪tb ∣. Comparing each IoU score with the

threshold εIoU , the corresponding proposals can be divided into positive and negative training samples, as is

P+ = {pi , IoUi ≥ εIoU , 1 ≤ i ≤ n}
P− = {p j , IoU j < εIoU , 1 ≤ j ≤ n} (4)

In the redesigned proposal target layer, the P− can’t be seen as the true negative samples and require a
new processing procedure to reevaluate the human information of each proposal and suppress the proposals
with rich human body information. To this end, a new-designed pedestrian-sensitive classifier is adopted
to finish this job, which processes the P− corresponding input image slices (represented as IP−) and output
their human body information scores.

Φ = F(IP−), Φ = (ϕ1 , . . . , ϕm) (5)

When scores in the Φ higher than the threshold, the corresponding proposals will be omitted from P−,
which solves the problem that these samples containing rich human torso information mislead the training
process of the subnetwork. In addition, these proposals are not used as positive ones to train the subnetwork
because the positioning accuracy of these proposals is poor, which requires larger coordinate offsets and
affects the convergence of the training process of the network. Thus, the new negative samples are

P−n = {pi , ϕi < ε, 1 ≤ i ≤ m} (6)

Finally, the P+ and P−n is merged to a new training proposal to effectively guide the training process of
the subnetwork to construct a stronger pedestrian/background classification capability.

P t = P+ ∪ P−n (7)

Pedestrian-sensitive classifier The key component of the PST algorithm is the pedestrian-sensitive
classifier, which helps the PST algorithm accurately classify the pedestrian/background proposals. Moreover,
the classifier must have a low computational burden so as not to slow down the paradigm’s training speed in
each training epoch. As a result, the newly designed classifier needs to have a performance balance between
stronger classification capabilities and fewer computational resources. This paper uses the following methods
to construct the pedestrian-sensitive classifier to achieve this goal.

Classifier MacroArchitecture The pedestrian-sensitive classifier is a CNN-based classifier, which can
directly process the images and extract the image features to classify the object. The architecture of the
classifier can be expressed as

F(x) = (L1○, ⋅ ⋅ ⋅ , ○Li○, ⋅ ⋅ ⋅ , ○Lk)(I) (8)

where Li is a network layer and k means the total layers of the classifier. ○ denotes the layer connection.
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To select the total number of layers, the resolution of the input image must be considered first. The
chosen image resolution should not be excessively high, as this would increase the training time cost.
Therefore, balancing image resolution and computational efficiency is essential to ensure optimal model
performance. In pedestrian detection datasets, most pedestrians are observed at a scale of 30 to 80 pixels [28].
Therefore, a 64 × 64 pixel image size is chosen as the input image size, which is suitable for pedestrian
classification. This resolution effectively captures the necessary features of pedestrians while maintaining
reasonable computational requirements.

Secondly, the trade-offs between receptive field and classification accuracy are critical considerations
in designing neural network architectures. A larger receptive field allows the model to capture more global
context, while a smaller receptive field emphasizes image patches to extract local features. The pedestrian
proposals generated in the proposal layer often encompass parts of the human torso. Hence, this paper selects
a moderate-sized receptive field to ensure that the model focuses on relevant local features while reducing
computational complexity, thereby decreasing the training load.

The equation for calculating the receptive field of CNN is as follows [29].

rn = rn−1 + ( fn − 1)
n−1
∏
i=1

si (9)

where rn , rn−1 represent the receptive field of nth layer and (n − 1)th layer, respectively.
Using Eq. (9), in a nine-layer CNN, the top layer has a receptive field of more than a quarter of the

64 × 64 image, enabling the classifier to extract image features effectively.
Finally, the architecture design does not utilize the residual and multi-scale feature extraction blocks.

This decision is based on several considerations. First, a shallow network helps avoid the vanishing gradient
problem, which is crucial for maintaining stable training. Second, each pedestrian proposal typically contains
only one pedestrian or parts of their body, reducing the need for multi-scale feature extraction. Since the
model does not need to handle significant variations in pedestrian size, these blocks are omitted. As a result,
the network becomes more lightweight and faster, which is beneficial for speeding up the training process.

Thus, the Eq. (8) can be expressed as

F(x) = (L1○, ⋅ ⋅ ⋅ , ○Li○, ⋅ ⋅ ⋅ , ○L9)(I) (10)

Classifier MicroArchitecture Convolutional neural network has many types of network layers. This paper
combines the convolutional layer, pooling layer, plus fully connected layer to construct the classifier, in which
the convolutional layer is used to extract the image features and the pooling layer is used to compress the
features information, and the fully connected layer is adopted to map extracted features to the label space.
Then, the F(x) can be as

F(x) = (Lc
1 ○ Lp

1 , ⋅ ⋅ ⋅ , ○Lc
i ○ Lp

i ○, ⋅ ⋅ ⋅ , ○L
FC
9 )(I) (11)

where Lc
i , Lp

i denote i th convolutional and pooling layer, respectively. LFC
9 stands for the last fully connected

layer. Let W c
i , W p

i represent sampling matrix of convolutional and pooling layers, and W FC
9 stands for the

fully connected weights. X i ∈ RH×W×C denotes input features of different layers. The Eq. (11) can be rewritten
as

F(x) = {{W c
8 ∗ { ⋅ ⋅ ⋅ {W c

2 ∗ [(W c
1 ∗ I) ↓Wp

1 ]} ↓Wp
2 ⋅ ⋅ ⋅ }} ↓Wp

8}W
FC
9 (12)

MConv = f 2Ci C f W ′H′ (13)
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H′ =[(H − f + 2p)/s] + 1
W ′ =[(W − f + 2p)/s] + 1

(14)

where MConv stands for the computation complexity of the convolution layer. f is the filter size. Ci , C f
represents the channel number in the input image and convolution filters. p, s are the padding and stride
parameters, respectively. According to Eqs. (13) and (14), the computational complex of the convolution layer
is controlled by H, W , p, s, f , Ci , C f , among which only the f , Ci , C f has optimized selection space, so this
paper need to optimize these parameters to reduce the computational complexity of the network.

For the fully connected layer, its total parameters are computed by

NFC = IJ (15)

where I, J are its input and output vectors’ size. Since I is determined by the feature map shape of previous
layers, this paper can reduce J to decrease the number of network parameters.

This paper utilizes 3 × 3 convolutional filter size to balance the computational burden and pedestrian
feature extraction. The 3 × 3 convolutional filter size is effective at capturing local features. Besides, by
stacking multiple 3 × 3 filters, the network can effectively capture more complex and hierarchical features.

In summary, this paper utilizes the following strategies to design the pedestrian-sensitive classifier,
whose structure is illustrated in Fig. 4.
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Figure 4: The architecture of the pedestrian-sensitive classifier. “Conv” denotes its convolutional block and the number
in the bracket means the number of convolutional filters. “FC” stands for the Fully Connected layer. No Maxpooling
layer in Conv 4 block

1) The 9-layer network structure ensures that the top layer of the classifier has a reasonable receptive
field to cover the input image.

2) The residual and multi-scale feature extraction blocks are omitted in the network design to make a
lightweight and fast classifier suitable for efficient training.

3) This paper adopts a 3 × 3 convolution filter and the shorter output vector length of fully connected
weights to cut down the computation burden of the classifier.

To demonstrate the PST algorithm in detail, its pseudo-code is listed in Algorithm 1.
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Algorithm 1: PST Algorithm
procedure PST(Input image: I)
//Initialize, define the proposal set P, the IoU scores set SIoU , positive
and negative training samples P+, P−, pedestrian confidence scores for
image slices set Φ, the refined negative training samples set P−n and
the refined training sample set P t . Give the confidence score and IoU
threshold εIoU , ε.
1: init P, SIoU , P+, P−, Φ, P−n , P t , εIoU , ε
2. Obtain feature maps Xbackbone by processing I.
3. Obtain proposals P by using RPN to process Xbackbone.
4. Obtain P+, P− using the IoU algorithm.

4.1 for i ← 1 to i ← n do
4.2 IoUi = ∣ pi∩tb

pi∪tb ∣
4.3 if IoUi ≥ εIoU P+ ∪ {pi} else P− ∪ {pi}

5. Obtain IP− based on the coordinates of P−

6. Obtain refined negative proposals P−n using the classifier F(x)
to process IP−

6.1 for i ← 1 to i ← m do
6.2 ϕi = F(I pi)
6.3 if ϕi < εP−n ∪ {pi}

7. Obtain refined training proposals P t = P+ ∪ P−n to guide training
process of the subnetwork.

As illustrated in Step 5 in this table, removing negative training samples relies on advanced feature
extraction and contextual understanding of the proposed classifier, which is independent of the choice
of the IoU threshold. By decoupling the IoU threshold from the training proposals generating process,
the algorithm avoids the potential biases introduced by IoU threshold selection, especially in crowded
pedestrian scenes [22]. This makes the algorithm particularly effective at handling highly occluded pedes-
trians and reduces false positives in dense crowds. The experimental results on the benchmark datasets
further validate this approach, demonstrating its efficacy in improving pedestrian recognition accuracy in
challenging environments.

Finally, the proposed methods have two strengths compared to other algorithms:

1) Enhanced detection capabilities without extra computing cost. During the training stage, the PST
algorithm guides the model in classifying foreground and background to form stronger pedestrian
detection capability and suppress false positives. Unlike other methods that require the addition
of extra computational modules (e.g., feature enhancement methods), this method enhances the
model’s pedestrian detection capability without additional computational cost. This is advantageous for
applications on resource-constrained embedded devices.

2) Redesigned proposal generating mechanism. The proposed method redesigns the proposal generation
mechanism by adding a step to evaluate pedestrian feature information, then combining it with an IoU
strategy that can provide high-quality pedestrian proposals for the subnetwork.
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4 Experiments and Results

4.1 System Setting
Experimental platform. The evaluation experiments of the proposed methods have been done on both a

workstation and an embedded platform, whose specifications are outlined in Table 1. Two hardware devices
are used on the embedded platform: the Jetson Nano and the RK1808 AI compute stick, the latter of which
integrates an NPU chip to offer performance up to 3TOPS, which can effectively speed up the inference
of the model on the embedded platform. The two embedded devices with different computing power can
comprehensively test the application potential of the model in embedded scenarios.

Table 1: The detailed hardware and software specifications of the experimental platforms

Software & Hardware Platforms

Workstation Jetson nano RK1808 AI compute stick
CPU Intel Core i7-6950x ARM Cortex-A53 RK1808

MEMORY 64 G 4 G 1 G
GPU NVIDIA TITAN X Pascal NVIDIA Maxwell –

Operating system Ubuntu 18.04 –

Evaluation metrics. This paper employs total parameters, inference time, precision, recall, and miss
rate as key metrics in the following experiments. These evaluation metrics provide a holistic assessment of
memory usage, computational complexity, and detection accuracy of all detectors in pedestrian detection. By
testing these aspects, the strengths of the PST algorithm in enhancing pedestrian detection without adding
extra computational overhead are highlighted, and the strengths and weaknesses of all detectors on different
platforms are reflected. In addition, all experimental setups adopt an Intersection over Union (IoU) threshold
of 0.5 as the default value.

4.2 Datasets
SY-Metro dataset The images are collected from the metro on-board cameras in Shenyang, China,

with 1503 images, including passenger images at varying times from different metro lines to reflect the
metro scene. All the passengers in the images have been manually annotated for the metro passenger
detection experiments.

The images in the SY-Metro dataset are shown in Fig. 5. During the dataset-building process, this paper
collected images that covered a variety of metro scenarios to guarantee the model’s ability to detect passengers
in complex and diverse real-life scenarios.

Figure 5: Various metro scenes in SY-Metro dataset
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This paper utilizes the benchmark datasets and the SY-Metro dataset to validate the feasibility of the
proposed methods. The benchmark datasets include Caltech [28], CUHK_Occ [30], and CityPersons [31]
datasets, which have been widely adopted in research works and can be used to reflect the effectiveness of the
PST algorithm to solve the pedestrian detection, demonstrating the comprehensive performance of the plain
detector aided by the PST algorithm in hunting persons. The metro scene dataset is used for the pedestrian
detection experiments in this paper because the metro scene is the main application field of the proposed
method, and this dataset can test the effectiveness of the proposed method for passenger detection in this
scene. In addition, since the benchmark dataset lacks metro scene images, this dataset further validates the
generalization capability of the proposed method for pedestrian detection in cross-scene applications.

4.3 Baseline Detectors
Extensive popular baseline detectors, including FasterRCNN [32], SSD [33], Tiny YOLOV3 [34],

FPN [35], Pelee [36], EfficientDet [37] and Swin Transformer [38] are employed for comprehensive compari-
son with the proposed method in pedestrian detection, enabling a thorough validation of the PST algorithm’s
capability to enhance the detection accuracy of the plain detection network without extra computational
cost. By comparing with these established state-of-the-art detectors, the strengths and weaknesses of the
detection performance of the PST-augmented detector can be witnessed.

4.4 The Ablation Experiment
To verify the feasibility of the PST algorithm in improving the pedestrian detection accuracy of two-

stage CNN-based detectors, this paper chooses the widely adopted FasterRCNN as the backbone detector
and evaluates it on the CityPersons dataset. Detailed experimental results are shown in Table 2, where “MR”
signifies the log average miss rate (lower is better), “Params” stands for the total number of parameters (“M”
indicating millions), and “GPU” refers to the time spent per frame in milliseconds (ms/frame). Values in
parentheses show the variation of corresponding performance metrics compared to the plain detector.

Table 2: Results of CityPersons dataset from FasterRCNN using the PST algorithm

Detector @ CityPersons Backbone MR (%) GPU (ms/frame) Params (M)
FasterRCNN-PST VGG16 73.63 (−0.8) 72 (+0) 137.1 (+0)

The CityPersons dataset’s experiment results, as illustrated in Table 2, exhibit a diminution in miss
rate by 0.8% accomplished without any extra computational expense. This improvement in the detection
accuracy of the plain detector for pedestrian detection without any additional computational burdens
demonstrates the effectiveness of the PST algorithm in promoting the detector’s accuracy while maintaining
computational efficiency.

4.5 Benchmark Experiments
To further validate the PST algorithm’s effectiveness and versatility in improving pedestrian detection

accuracy across diverse real-world scenarios, mainly when applied to a compact detection network. This
study adopts the compact two-stage pedestrian detector, MetroNext, as the baseline detector to build PSTNet,
and then it’s fully evaluated against other widely used detectors across benchmark datasets. A summary of the
experimental results is presented in Table 3, which offers insights into the algorithm’s capability to promote
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the detector’s overall detection performance under realistic conditions. From the data in this table, you can
see that:

Table 3: Experimental results of PSTNet and baseline detectors on the benchmark datasets

Detectors Params
(M)

CUHK-Occ Caltech CityPersons

MR (%) GPU
(ms/frame)

MR (%) GPU
(ms/frame)

MR (%) GPU
(ms/frame)

Swin
Transformer

45.31 24.80 105 58.72 106 60.22 106

FPN 42.12 28.01 182 59.68 180 64.28 181
FRCNN VGG16 136.69 36.59 70 64.77 69 73.63 72

SSD512 23.75 35.81 50 69.26 50 79.41 51
Tiny YOLOV3 8.66 53.33 3 77.63 3 86.82 3

Pelee 5.29 41.28 16 74.42 16 83.96 16
EfficientDet 3.90 40.62 32 71.49 32 80.49 33
MetroNext 4.56 37.81 25 64.82 25 71.87 26

PSTNet 4.56 37.00 25 64.63 25 69.56 26

1) Empowered by the PST algorithm, the newly designed PSTNet witnesses a boost in its ability to
hunt pedestrians across various scales within benchmark datasets. Specifically, in the CityPersons
dataset, The 2.31% improvement in detection accuracy highlights the algorithm’s ability to guide the
detector to distinguish between true and false detections during training. This enhancement in accuracy
demonstrates the feasibility of incorporating the proposed PST algorithm into the learning phase of the
CNN-based pedestrian detection network. Thus, it can be a practical strategy tailored to CNN-based
pedestrian detection networks to hunt pedestrians.

2) The PSTNet has demonstrated outstanding detection capabilities, showing competitive performance
compared to other baseline detectors. In particular, despite MetroNext having a tiny model size and a
smaller number of network parameters, it has better MR results within benchmark datasets, achieving
37.81%, 64.82%, and 71.87%, respectively. The integration of the PST algorithm further boosts the
MetroNext detection accuracy, reducing the miss rate by up to 2% compared to the plain model without
an extra increase in total parameters and inference time. This means that the PST algorithm is effective
in improving the detection accuracy of the model, even for smaller detection networks.

3) Compared to other deep CNNs, while they may be excellent in pedestrian detection accuracy, they
also suffer from two significant drawbacks: a large number of network parameters and relatively slow
inference speed. For instance, while the Swin Transformer achieves higher accuracy, it comes with a
larger parameter count of 45.31 M and an inference speed of about 100 ms/frame, the overhead of
which poses a challenge for deployment in resource-constrained embedded platforms. Therefore, the
drawbacks of these detectors, including a large number of network parameters and slower inference
speeds, make them unsuitable for deployment on embedded platforms. Besides, compared to the
EfficientDet, which is specifically oriented to the resource-constrained platform, the PSTNet strikes an
optimal balance between accuracy, total parameter, and inference speed. Thus, the proposed network
is more suitable for an embedded environment.
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4) When the detectors are evaluated on the Caltech and CityPersons datasets, the pedestrians in these
datasets are heavily occluded, which poses a significant challenge to the most powerful detection
models. All detectors have higher MR results compared to their performance on the CUHK-Occ
dataset. However, the established PSTNet achieves better detection accuracy, demonstrating the general
capability of the PST algorithm to enhance the detection accuracy of small pedestrian detectors in
complex real-world urban environments.

Discussion All detectors are trained and evaluated using a uniform dataset partition. The proposed
methods achieve performance gains on benchmark datasets, showing the PST algorithm’s robustness in
effectively guiding the learning phase of the plain detector to distinguish pedestrians and backgrounds. Aided
by the PST algorithm, The established PSTNet excels in terms of total parameters and inference speed yet
lags behind larger models in accuracy. This is due to the smaller model scale of the plain detector plus the
compact pedestrian-sensitive classifier in the PST algorithm, which can’t store enough semantic features to
aid the detector in accurately recognizing pedestrians. Consequently, PSTNet is a competitive choice for
pedestrian detection in resource-constrained edge devices.

Fig. 6 depicts the graphical representation of miss rates against false positives per images for Swin
Transformer, PSTNet, EfficientDet, and Pelee across benchmark datasets. These curves span miss rate
intervals from 0.1 to 1 (adjusted to 0.4 to 1 for the Caltech dataset) and false positives per image ranging from
10−3 to 100 (from 10−4 to 102 for the Caltech dataset). A lower curve signifies superior detection performance,
and the legend illustrates these detectors’ log average miss rates.
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Figure 6: MR curves of PSTNet and baseline detectors on benchmark datasets: (a) CUHK-Occ dataset, (b) Caltech
dataset, (c) CityPersons dataset

Fig. 7 shows the precision-recall curves for these detectors evaluated on the benchmark dataset,
corresponding to the precision and recall ranges of [0.5, 1.0] and [0, 1.0], respectively. These curves rep-
resent the value pairs of precision and recall of detectors and highlight the ability of each detector to
identify positive samples while minimizing false positives accurately. The higher curve indicates superior
detection performance.

A comparison of these curves highlights the differences in performance between these detectors.
Considering both computational efficiency and detection accuracy, the proposed PSTNet demonstrates
an excellent balance in detection performance. PSTNet not only achieves higher precision and recall but
also reduces the computational burden, ensuring that PSTNet can deliver robust detection results without
compromising speed or resource utilization, making it an efficient solution for real-world applications.
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Figure 7: The precision-recall curves of Swin Transformer, PSTNet, EfficientDet, and Pelee on the benchmark datasets:
(a) CUHK-Occ dataset, (b) Caltech dataset, (c) CityPersons dataset

4.6 The SY-Metro Experiment
In pursuit of validating the PST algorithm’s universal effectiveness and exploring its capacity to guide

compact detection models in distinguishing pedestrians from background across various real-life scenarios.
The PSTNet and baseline detectors are validated on the SY-Metro dataset, and the detailed experimental
results are listed in Table 4, which reveal several insights:

Table 4: Experimental results of PSTNet and baseline detectors on SY-Metro datasets

Detectors Params (M) SY-Metro

MR (%) GPU (ms/frame)
Swin Transformer 45.31 18.11 106

FPN 42.12 21.33 183
FRCNN VGG16 136.69 29.99 71

SSD512 23.75 26.16 51
Tiny YOLOV3 8.66 42.29 3

Pelee 5.29 32.25 16
EfficientDet 3.90 27.27 32
MetroNext 4.56 26.70 26

PSTNet 4.56 24.68 26

1) With the help of the PST algorithm, the PSTNet achieves competitive detection performance. Apart
from the Swin Transformer and FPN, PSTNet boasts a notably lower miss rate of 24.68% with a few
parameters and considerable inference time. This achievement further supports the PST algorithm’s
versatility in boosting the pedestrian detection accuracy of the plain detector. In addition, considering
the limited hardware resources of the embedded system for deploying online passenger detectors in
metro stations, the comprehensive performance of the PSTNet becomes a more viable option compared
to other detectors.

2) Metro stations are settled scenes compared to complicated outdoor scenes in other benchmark datasets,
and MetroNext has achieved a lower miss rate. On this basis, the use of the PST algorithm can effectively
guide the network training process to form an accurate pedestrian classification capability, thus further
improving the pedestrian detection accuracy of the plain detector (the MR value is reduced by up to 2%),
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which demonstrates that the PST algorithm is better at steadily improving the plain detector detection
accuracy in settled scenes compared to its performance gains in complicated outdoor scenes.

Fig. 8 draws the miss rate vs. false positives per image of all models on the SY-Metro dataset, which
clearly illustrates the detection prowess of each model in identifying metro passengers. As shown in Fig. 8,
our model achieves a competitive metro passenger detection ability compared to competitors.
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Figure 8: MR curves of PSTNet and baseline detectors on SY-Metro datasets

Fig. 9 compares the detection results of MetroNext and PSTNet on metro videos, demonstrating that
PSTNet outperforms MetroNext in wiping out false positives.

4.7 The Experiment on the Embedded Development Board
The experiments on the workstation have shown that the proposed classifier has the potential to

be deployed on the embedded platforms. To accurately estimate its inference speed on the embedded
development board with limited hardware resources, this paper writes our model’s forward inference
program for metro passenger detection. Then, the inference speed of the PSTNet on the SY-Metro dataset
will be tested. The specific experimental results are shown in Table 5, showing that:

1) Our model demonstrates a fast inference speed of 358 ms when processing an image on Jetson Nano,
which means that it can quickly deliver the pedestrian detection results in the carriage to the metro
video surveillance system. Due to the relatively little movement of passengers in metro carriages over a
short period, Jetson Nano’s processing speed is sufficient for video surveillance in this situation.

2) Aided by the stronger computing power of NPU, the inference speed of the proposed detector on the
RK1808 AI computing stick is further improved, processing an image in only 120 ms, which can satisfy
the time-sensitive task’s requirements.
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Figure 9: Comparing detection results of MetroNext and PSTNet on metro videos. “TPs” and “TPs+FPs” denote the
True Positives and True Positives plus False Positives detection results, respectively. False Positives are drawn in red

Table 5: The inference speed of our model on Jetson Nano and RK1808 AI computing stick

PSTNet Jeston Nano RK1808
CPU (ms/frame) 358 120

4.8 Power Consumption Analysis Experiments
In this paper, the power consumption of PSTNet and its competitors is further analyzed to reflect the

operation of these models on embedded devices, especially for battery-powered embedded devices. The
applicability of the proposed PSTNet is validated in embedded environments to test whether it can better
handle pedestrian detection tasks with high power consumption constraints. The experiments measure the
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GPU power consumption of these networks in the inference stage with a time interval of 0.01 s, and the
specific experimental results are shown in Table 6:

Table 6: The power usage of PSTNet and other competitors

Models Energy consumption

Max (W) Min (W) Ave (W)
Swin Transformer 328 54 165

PSTNet 86 50 64
EfficientDet 82 55 63

Pelee 73 50 60

1) The average power consumption of PSTNet is 64 W, comparable to that of other small models such
as EfficientDet and Pelee, and is much lower than Swin Transformer’s power consumption of 165 W.
This is because the PST algorithm guides the model to be effectively trained and improves its detection
capability without increasing the computational cost. Therefore, PSTNet has better applicability for
embedded platforms and can meet its demand for strict power consumption.

2) Transformer-based models like the Swin Transformer deployed on embedded devices can lead to
increased energy consumption due to the computationally intensive matrix multiplications required
by self-attention and feed-forward operations. This leads to more frequent processor use and memory
accesses, making the operations computationally intensive and power-intensive. In addition, higher
processor activity and memory bandwidth requirements lead to increased heat and latency, which
brings a big challenge for energy-constrained devices.

5 Conclusion
In this paper, a well-designed Pedestrian Sensitive Training algorithm has been proposed to improve the

pedestrian detection accuracy of the CNN-based detection method by removing FPs. Ablation experiments
have shown that the proposed algorithm is feasible and practicable to enhance the detection performance of
mainstream detection networks on the prevailing benchmark dataset. Combining the PST algorithm with
MetroNext, the PSTNet is established and then validated on benchmark datasets. The experiment results have
demonstrated that the PSTNet is a more competitive pedestrian detector. Besides, inference speed and power
consumption experiments also support the fact that the PSTNet has a fast detection speed and lower power
usage. In summary, the PST algorithm can effectively improve the detection accuracy of the model without
adding extra computational burden, and the PSTNet is a practical pedestrian detector tailored explicitly for
embedded vision applications.
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