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ABSTRACT: To solve the problems of complex lesion region morphology, blurred edges, and limited hardware
resources for deploying the recognition model in pneumonia image recognition, an improved EfficientNetV2 pneumo-
nia recognition model based on multiscale attention is proposed. First, the number of main module stacks of the model
is reduced to avoid overfitting, while the dilated convolution is introduced in the first convolutional layer to expand
the receptive field of the model; second, a redesigned improved mobile inverted bottleneck convolution (IMBConv)
module is proposed, in which GSConv is introduced to enhance the model’s attention to inter-channel information, and
a SimAM module is introduced to reduce the number of model parameters while guaranteeing the model’s recognition
performance; finally, an improved multi-scale efficient local attention (MELA) module is proposed to ensure the model’s
recognition ability for pneumonia images with complex lesion regions. The experimental results show that the improved
model has a computational complexity of 1.96 GFLOPs, which is reduced by 32% relative to the baseline model, and the
number of model parameters is also reduced, and achieves an accuracy of 86.67% on the triple classification task of the
public dataset Chest X-ray, representing an improvement of 2.74% compared to the baseline model. The recognition
accuracies of ResNet50, Inception-V4, and Swin Transformer V2 on this dataset are 84.36%, 85.98%, and 83.42%,
respectively, and their computational complexities and model parameter counts are all higher than those of the proposed
model. This indicates that the proposed model has very high feasibility for deployment in edge computing or mobile
healthcare systems. In addition, the improved model achieved the highest accuracy of 90.98% on the four-classification
public dataset compared to other models, indicating that the model has better recognition accuracy and generalization
ability for pneumonia image recognition.
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1 Introduction
Pneumonia, a prevalent lung disease frequently caused by diverse pathogens, is typically classified into

three etiological categories: bacterial, viral, and fungal infections. Viral pneumonia is often mild, whereas
bacterial pneumonia is typically severe [1]. Each year, over 150 million individuals, primarily children under
the age of five, are affected by pneumonia [2]. Pneumonia ranks among the top causes of hospitalization
and mortality, with its potential to trigger severe complications that significantly elevate patient death rates.
Therefore, early diagnosis of pneumonia is of great significance. Medical imaging technology plays a crucial
role in pneumonia diagnosis. Among them, chest X-ray (CXR) is one of the preferred imaging methods
because of its easy operation, relatively low cost and low radiation exposure. However, the presentation of
pneumonia on chest X-ray images is generally unclear and easily confused with other diseases, which often
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affects the radiologist’s judgment and decision-making. Different types of pneumonia appear differently on
X-rays, and conventional human-based diagnostic approaches frequently lack efficiency and carry risks of
oversight and incorrect diagnosis, depending on the doctor’s personal experience or other objective factors.
Therefore, the use of computer-aided diagnosis and the proposal of an efficient and accurate method for
recognizing pneumonia under X-ray are essential.

Pneumonia image recognition methods have received a great deal of attention from researchers. Earlier
recognition methods usually consisted of extracting image features using manual or shallow neural networks
followed by a combination of machine learning methods for classification. Oliveira et al. [3] used eight
wavelet transform coefficients to extract texture features followed by a weighted nearest neighbor method to
identify pneumonia images. Yao et al. [4] proposed a computer-aided detection method that utilized texture
analysis and support vector machine (SVM) classification. This method was evaluated on 40 chest computed
tomography (CT) scans to differentiate normal and abnormal lung regions. Shi et al. [5] developed a lesion
size-adaptive random forest framework for pneumonia classification. This approach automatically stratified
patients based on infection severity levels, with group-specific random forest models demonstrating superior
classification performance. Sousa et al. [6] extracted texture-based features from pneumonia images and
applied sequential forward elimination to select relevant features, which were then classified using SVM, K-
Nearest Neighbors (KNN), and Naive Bayes algorithms. However, the effectiveness of feature extraction in
the above algorithms is often highly dependent on the experience and domain knowledge of the researcher,
and due to human cognitive limitations and data complexity, some features that are crucial to model
prediction may be omitted during feature extraction, leading to poor recognition results.

Recent advancements in computing power and the availability of large-scale datasets have facilitated the
gradual rise of deep learning technology. Unlike conventional feature extraction approaches that rely heavily
on expert heuristics, this method autonomously identifies data-driven patterns, thereby reducing human
dependency while enhancing model adaptability and generalization. There have been many research meth-
ods for pneumonia recognition based on deep learning especially Convolutional Neural Networks (CNN).
Khan et al. [7] used Xception based CNN model to detect pneumonia. They modified the Xception model
by appending a dropout layer and two fully connected layers, both incorporating dropout functionality, at its
conclusion. Wong et al. [8] introduced a novel deep learning approach called Multi-scale Attention Network
(MSANet) for automatically classifying Corona Virus Disease 2019 (COVID-19), which effectively focuses
on the distinguishing features and multi-scale information of pneumonia lesions. Li et al. [9] proposed
a hybrid model that builds upon the InceptionV3 architecture. This model incorporates deep separable
convolution following the Inception module and integrates the squeezing and excitation (SE) mechanism.
By doing so, the model is able to capture more diverse features without a substantial increase in parameter
count or computational burden, thereby significantly enhancing its capability in predicting and classifying
lung diseases. Wang et al. [10] proposed an attention-based DenseNet pneumonia classification method to
focus more on the pneumonia region and achieved 92.8% accuracy on the Chest X-ray [11] dataset. Singh
et al. [12] introduced the Quadratic Channel Spatial Attention (QCSA) Network, integrating spatial and
channel attention modules with Quadratic Residual Networks to enable pneumonia detection from chest
X-ray imagery. Arun et al. [13] introduced a method to enhance images and developed a stacked classifier
that integrates deep learning feature fusion. Subsequently, they applied this integrated stacked classifier for
pneumonia classification.

Although there are numerous diagnostic algorithms for pneumonia classification and deep learning-
based algorithms have achieved better results, the lesion areas in chest X-ray often have the problems of
complex morphology and blurred edges of the lesion areas, and most of the pneumonia classifications are
normal-abnormal classifications, which seldom involves the classification of multiple types of pneumonia,
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which makes it difficult to truly realize the automatic identification of pneumonia in clinical diagnosis.
Moreover, the high accuracy of the aforementioned existing pneumonia recognition models often relies
on deep network hierarchies or relatively complex network designs, and they often perform poorly in
resource-constrained medical clinical environments.

Currently, numerous algorithms improved based on EfficientNetV2 [14] have been widely applied to the
domain of medical imaging analysis due to their high efficiency and accuracy, and have shown remarkable
results. Pacal et al. [15] developed a modified variant of the EfficientNetV2 architecture that integrates
two distinct attention mechanisms to enhance the accuracy of brain tumor classification tasks. Through
multiple experimental validations implemented on a large publicly available dataset, their proposed model
demonstrated extremely high classification accuracy, setting a new benchmark for brain tumor classification.
Huang et al. [16] developed a new lightweight CNN architecture named LightEfficientNetV2. The method
first follows the first two convolutional layers of AlexNet, and then selects two convolutional modules,
MBConv and Fused-MBConv, from EfficientNetV2 and adds two self-designed convolutional modules
to construct the complete network. Their conclusions show that LightEfficientNetV2 exhibits excellent
performance on different datasets of both chest X-ray and CT images. In addition, EfficientNetV2 has the
following characteristics: first, EfficientNetV2 adopts a composite scaling method, which allows the model
to scale in a balanced manner, and is able to effectively reduce the parameters and computation while
maintaining the model’s accuracy; second, EfficientNetV2 excels in resource-constrained environments,
which makes it ideal for many practical application scenarios.

The above analysis shows that the improved algorithm based on EfficientNetV2 has great potential for
pneumonia recognition. Therefore, to solve the problem that most of the existing pneumonia recognition
methods are binary classification, have low accuracy in recognizing pneumonia images with complex lesion
areas and are difficult to operate in resource-constrained environments, and to design a multi-category
pneumonia classification and recognition model that takes into account the efficiency and performance, an
improved model is proposed in this study based on EfficientNetV2. The model is lighter than the baseline
model and possesses better classification performance. The study’s major contributions are outlined below:

(1) The overall architecture of the model is adjusted to reduce the number of main modules to reduce
the complexity of the model and avoid the overfitting phenomenon, based on which the dilated con-
volution is introduced into the initial convolution layer instead of the original ordinary convolution,
which ensures that the receptive field is enlarged without increasing parameter count, and effectively
improves the feature extraction capability of the network.

(2) The IMBConv module is proposed, which introduces the GSConv [17] instead of the depth-separable
convolution of the original module, so that the model can effectively obtain the connection between
the channels of each feature map; and the Squeeze-and-Excitation (SE) module [18] is replaced by the
SimAM module [19], which reduces parameter count, and improves the computational efficiency of
the model while maintaining a better performance.

(3) Combining the improved MELA module with EfficientNetV2, the MELA module will fuse the multi-
scale features and attention to ensure the acquisition of the precise location information of the image
region of interest, improving the performance of the model for pneumonia recognition.

(4) The improved model is applied to multi-class pneumonia recognition and achieves high classification
performance in multiple experiments, while being more lightweight compared to the original model.
In order to deeply confirm the ability of the improved network in pneumonia recognition, the
input pneumonia images are visualized using Gradient-weighted Class Activation Mapping (Grad-
CAM) [20] and SHapley Additive Explanation (SHAP) [21].
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2 Proposed Research Methodology

2.1 Introduction to the EfficientNetV2 Model
EfficientNetV2 is an improved network based on EfficientNet [22]. This network is an efficient and

fast deep learning model, suitable for various computer vision tasks. EfficientNetV2 employs a composite
scaling method, which strikes a superior equilibrium between model accuracy and computational efficiency
by introducing the fused mobile inverted bottleneck convolution (Fused-MBConv) layer, optimized Neural
Architecture Search (NAS), and an incremental learning strategy. It surpasses its predecessor in both
training velocity and parameter effectiveness, and achieves excellent performance on multiple benchmark
datasets. This bodes well for its ability to cope with the task of classifying multiple types of pneumonia,
thus overcoming the limitations of existing pneumonia classification algorithms that are mostly binary and
have low recognition accuracy. More importantly, EfficientNetV2 achieves faster training speed and higher
parameter efficiency compared to other deep learning models. This means that even in mobile devices or
resource-constrained environments, EfficientNetV2 can maintain high performance without deployment
difficulties due to the deep network structure. Therefore, combining these advantages, EfficientNetV2 is
chosen as the improved baseline model.

MBConv and Fused-MBConv are the main building blocks of the EfficientNetV2 model. To expedite
model training, Fused-MBConv modules are deployed in the initial layers, whereas MBConv modules are
utilized in deeper sections of the network. The MBConv module is shown in Fig. 1a, which consists of two
1 × 1 convolutional kernels, one 3 × 3 depthwise convolutional kernel, an SE module, and a dropout layer.
At the beginning of the module first use 1 × 1 convolution kernel to uplift the input feature map to increase
the number of channels and lower the computational cost of the subsequent operations, after the depthwise
convolution and SE module, use 1 × 1 convolution again for the downlift process to reduce the number of
channels, so that the number of channels of the output feature map is the same as the input of the module,
and finally the processed feature map is obtained through the dropout layer. Due to the limited acceleration
support of current hardware for depthwise separable convolution (DSConv), a 3 × 3 convolution is used
in the Fused-MBConv module to replace the 1 × 1 ascending convolution as well as the 3 × 3 depthwise
convolution, as shown in Fig. 1b. This architecture enhances feature extraction across both shallow and deep
layers, shortens training duration, and boosts overall model performance.

In this study, pneumonia is multicategorized, and there is often an imbalance in the number of datasets.
EfficientNetV2 stacks a large number of MBConv modules as well as Fused-MBConv modules, which will
lead to the model being prone to the phenomenon of overfitting. In addition, the original EfficientNetV2 uses
a large number of depthwise separable convolutions, which results in the model not being able to effectively
obtain the inter-channel connections in the process of feature extraction and thus losing some semantic
information. Finally, the various pneumonia representations under X-ray are often very similar, requiring
the model to be able to extract image features more accurately.



Comput Mater Contin. 2025;84(1) 517

Input

Expand Conv1×1

Depthwise Conv3×3

SE

Project  Conv1×1

Dropout

Output

BN,Swish

BN,Swish

Input

Expand Conv3×3

SE

Project  Conv1×1

Dropout

Output

BN,Swish

(a) (b)

Figure 1: Structure of MBConv and Fuse-MBConv modules. (a) MBConv; (b) Fuse-MBConv

2.2 Introduction to the Improved EfficientNetV2 Model
To address the above problems, this study further improves EfficientNetV2 and proposes a PLW-

EfficientNetV2 that is lighter and more effective, and the overall structure is shown in Fig. 2. The detailed
information of each module of PLW-EfficientNetV2 is shown in Table 1.

In Fig. 2a, N refers to a normal image, B refers to a bacterial pneumonia image, and V refers to a
viral pneumonia image, which serve as training samples for PLW-EfficientNetV2. In Fig. 2b, to increase
the diversity of the training samples, PLW-EfficientNetV2 enhances the images by random cropping and
horizontal flipping operations, followed by using image normalization techniques so that each pixel in the
image is correlated with the global mean and standard deviation, thereby maintaining the global information
and non-linear characteristics of the images.
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Table 1: Detailed information of each module of PLW-EfficientNetV2

Stage Operator Stride Channels Layers
0 Dilated Conv3 × 3 2 24 1
1 Fused-MBConv, k3 × 3 1 24 1
2 Fused-MBConv, k3 × 3 2 48 2
3 Fused-MBConv, k3 × 3 2 64 2
4 IMBConv, k3 × 3 2 128 2
5 IMBConv, k3 × 3 1 160 3
6 IMBConv, k3 × 3 2 256 5
7 MELA 1 256 1
8 Conv1 × 1&Pooling&FC – 1280 1

In Fig. 2c, the improved model is trained using training images, which is the core stage of the entire
recognition process. Initially comes the stage of feature extraction, the input image is pre-processed to be
resized to 224 × 224. Dilated convolution enhances the model’s receptive field by spacing out the elements
of a standard convolution kernel with a fixed gap, without incrementing the number of computational
elements, thereby avoiding the introduction of extra parameters. The work by Yu et al. [23] demonstrates that
dilated convolution can enable exponential growth of the receptive field while maintaining both resolution
and coverage. Therefore, after entering the feature extraction network, it first undergoes a 3 × 3 dilated
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convolution, which enlarges the receptive field and enables the model to thoroughly capture the semantic
information of pneumonia. Then, following the idea of the original EfficientNetV2, the extraction of low-
level pneumonia features is enhanced by the Fused-MBConv module. Subsequently, the high-level features
of pneumonia are further extracted by increasing the inter-channel linkage of the input image feature map
through the IMBConv module in the deep network to obtain the pneumonia detail information. Then, after
the last IMBConv module, a MELA module is added to obtain the multi-scale fusion pneumonia semantic
information and enhance the model to extract important features. Finally, the classification stage is entered
to classify the pneumonia images and save the best model weights by combining each evaluation metric.

In Fig. 2d, the test images also include three categories of images for evaluating the overall recognition
performance of PLW-EfficientNetV2.

2.3 Improved MBConv Module
2.3.1 Introduction of the GSConv Module

In MBConv module, DSConv processes the feature map information, but DSConv does not acquire the
link between the channels of each feature map, which results in the model not being able to recognize well for
the pneumonia images with a high degree of similarity. Therefore, GSConv is introduced to replace DSConv
in the MBConv module to further acquire the link between the channels. GSConv passes the information
produced by the channel-dense convolution into the individual feature maps generated by the DSConv by
using the shuffle operation, which enables the model to achieve high performance using the lowest possible
complexity. The time complexity of DSConv and GSConv are shown in Eqs. (1) and (2), respectively:

TimeDSC ∼ O(W ⋅H ⋅K1 ⋅K2 ⋅ 1 ⋅C2) (1)

TimeGSConv ∼ O (W ⋅H ⋅ K1 ⋅ K2 ⋅
C2

2
⋅ (C1 + 1)) (2)

It can be seen that compared with DSConv, the time complexity of GSConv is similar, and the use of the
GSConv module can reduce the loss of inter-channel information during feature extraction, maintain the
integrity of semantic information, and further improve the model performance, and its detailed structure is
shown in Fig. 3.

Conv

DWConv Concat shuffle

C2/2 channels

C2/2 channels

input
C1 channels

output
C2 channels

GSConv

Figure 3: Structure of GSConv module
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In Fig. 3, it can be found that GSConv first performs a standard convolution, dividing the processed
feature map’s channels into two groups. One group remains unchanged, while the other group is further
processed by depthwise convolution to reduce computational complexity while extracting features. The
features output from these two branches are then concatenated channel-wise. Subsequently, a shuffle
operation is performed to facilitate inter-channel information flow, integrating the inter-channel information
obtained from the standard convolution into the final output feature map.

2.3.2 Introduction of the SimAM Module
Yang et al. [19] developed SimAM, a novel attention mechanism for convolutional neural networks,

which is straightforward in design but demonstrates strong performance. They added various attention mod-
ules, including SE, CBAM [24] and ECA [25], to the ResNet [26] family of models and the MobileNetV2 [27]
model for image classification experiments, respectively. Their experimental results demonstrate that incor-
porating the SimAM module yields superior performance across multiple benchmark datasets compared
to models integrating other attention mechanisms, all while maintaining equivalent parameter counts.
Therefore, in order to construct a lightweight model and ensure the recognition ability of the model, this
study introduces the SimAM module to replace the SE module. The SE module improves the network
performance by dynamically adjusting the channel weights of the feature maps and uses two fully connected
layers to calculate the channel attention weights. However, the SE module operates globally in all the channels
and neglects spatial data interaction, causing loss of certain spatial details and increasing computational load
due to numerous fully connected layers, resulting in a redundant model and a proliferation of parameters.
The SE module’s structure is illustrated in Fig. 4.

C
W

H

C

W

H

Squeeze

Exicitaion

Fusion

Figure 4: SE module structure

Different from the original channel-based weight assignment, which will miss some important informa-
tion and has high computational complexity, the SimAM module can compute 3D attention weights for the
intermediate feature maps without expanding the model’s parameter count, improve the expressive ability
of the model features, and find the information-rich key features through the computation of the divisibility
between the features to lower the complexity and enhance processing speed. The SimAM model structure is
shown in Fig. 5. The feature map X(X ∈ RC × H × W) of the input image R has C channels, and there exists a
neuron M composed of H ×W feature maps in each channel, and since the neurons composed of the same
channel have the same distribution, the mean and variance of the neurons can be computed first to get the
attentional weights in the feature map, which are multiplied with the original input feature map to highlight
important features while diminishing trivial ones, with the weighted feature map serving as the output of the
attention module.
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2.4 Improved Efficient Local Attention Module
To address the problem that lesion regions in pneumonia images often appear to have inconspicuous

sizes and blurred edges that are difficult to distinguish, using only a single-scale module often fails to extract
information effectively. Li et al. [28] proposed the Multiscale Attention Guided Deep Network, which extracts
attention on feature maps of multiple sizes and estimates points of interest at various scales. Finally, it
evaluates the prediction vector generated by the encoder through attention pooling to obtain classification
results, achieving better classification performance on multiple pneumonia image datasets. Building upon
the integration of a multi-scale dense network and a residual attention network with hierarchical scales,
Fu et al. [29] developed a hybrid architecture designed to extract and enhance deep hierarchical features
for the fusion of magnetic resonance and nuclear medicine imagery. Comparative experimental analyses
demonstrate that this approach produces fusion outcomes with enhanced detail preservation and superior
objective metric performance when benchmarked against contemporary medical image fusion methodolo-
gies. Combining the above work, it can be found that the multi-scale attention module can further fuse
pneumonia image feature information, enabling the model to obtain richer pathological information. For
this reason, the multi-scale efficient local attention (MELA) module is introduced after the last MBConv
module. The Efficient Local Attention (ELA) module [30] computes feature vectors along horizontal and
vertical axes using spatial band pooling, while preserving an elongated kernel structure to model long-
range dependencies. Then the feature vectors in these two directions are processed independently for
attention prediction and finally they are integrated by a product operation, which ensures the acquisition of
information about important regions in the pneumonia image. However, the ELA module only integrates
the local information, and to further integrate the deep feature information, the ELA module is partially
improved in this study. As shown in Fig. 6, the improved MELA module uses convolution kernels with
different receptive field sizes for input feature maps to obtain multi-scale semantic information, and in order
to retain part of the information of the input feature maps and promote the flow of information, residual
connections are further added, so that the input to the ELA module not only integrates the information of
the original feature maps, but also contains the multi-scale fusion of semantic information, which improves
the feature extraction performance of the ELA module.
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3 Experimental Results and Analysis

3.1 Data and Pre-Processing
The experimental data were sourced from the publicly available Chest X-ray dataset [11]. The dataset

comprised a total of 5856 lung X-ray images, with 1583 normal images and 4273 pneumonia-labeled images.
According to the labeling of pneumonia type in the dataset, it can be further subdivided into bacterial
pneumonia and viral pneumonia, with the number of images being 2780 and 1493, respectively, and the data
distribution are shown in Table 2. The image samples in the dataset are shown in Fig. 7.

Table 2: Distribution of Chest X-ray data

Category name Category tag Number
Normal 0 1583

Bacterial pneumonia 1 2780
Viral pneumonia 2 1493

Total – 5856

Normal Bacterial Viral

Figure 7: Samples from the Chest X-rays dataset

3.2 Experimental Environment
The experimental architecture is constructed using Python programming language and implemented

within the PyTorch deep learning ecosystem, and the details of the required runtime environment configu-
ration for the experiment are shown in Table 3.
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Table 3: Environment configuration

Environment Version
GPU NVIDIA GeForce RTX 3080

CUDA 11.7
OS Ubuntu 18.04

Python 3.8.18
PyTorch 1.13

During the experiments, we utilized the AdamW optimizer, AdamW mitigates the overfitting issue
inherent in the Adam optimizer by integrating L2 regularization into the loss function for the model param-
eters. This optimizer stands out as the fastest in terms of gradient descent speed and neural network training
efficiency. Additionally, to enhance training stability and convergence rate, we implemented real-time decay
for the learning rate. The details of the parameters during the experiment are shown in Table 4.

Table 4: Training parameter settings

Parameters Value
Epcho 200

Batch_size 32
Initial learning rate 2 × 10−3

Minimum learning rate 2 × 10−6

Dropout rate 0.2
Optimizer AdamW

3.3 Evaluation Metrics
In order to accurately assess the performance of the pneumonia image recognition model proposed in

this study, Accuracy (A), Precision (P), Recall (R), Specificity (S), and F1-Score (F1) are used as evaluation
metrics, which are calculated as shown in Eqs. (3)–(7).

Accuracy = TP + TN
TP + TN + FP + FN

(3)

Precision = TP
TP + FP

(4)

Recal l = TP
TP + FN

(5)

Speci f icity = TN
TN + FP

(6)

F1 = 2 × Precision × Recal l
Precision + Recal l

(7)
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Furthermore, the experimental outcomes are displayed in a more intuitive manner through the use
of a confusion matrix. In this matrix, rows indicate actual labels, columns indicate predicted labels, and
diagonal elements show correct predictions per category. In addition, the size and complexity of the model
are measured using the parametric quantity (Params) and the floating point operations (FLOPs).

3.4 Experimental Procedures
The experimental procedures in this study are as follows:

(1) Randomly split the pneumonia image dataset samples into a training set and a test set at an 8:2 ratio,
and use 10% of the training data as a validation set.

(2) For the training set, first randomly crop the images to 224× 224 pixels, then perform horizontal flipping
to enhance data diversity. Next, convert the images into tensors through data type conversion. Finally,
to ensure the uniformity and comparability of pixel values across different channels, standardization
processing is required.

(3) Use the processed images as input and output the corresponding labels. Additionally, train using PLW-
EfficientNetV2. Monitor and save metrics. Select the weights that perform best in these metrics as the
final weights to obtain the optimized model.

(4) Select test samples and resize the images to 256 × 256 pixels. Then, crop the images at the center
to reduce the size to 224 × 224 pixels, preserving the central part to enhance model robustness.
Next, convert the images into tensors through data type conversion. Finally, to achieve comparable
ranges and distributions, perform standardization processing on the pixel values of each channel in
the images.

(5) Use the processed images as input and utilize the optimized model obtained from the previous training
process to determine the image labels based on the model’s output.

3.5 Experimental Results
3.5.1 Performance Testing Experiments

The results of binary and ternary classification of the improved model are visualized using the confusion
matrix, which is obtained as shown in Fig. 8, and the Accuracy, Precision, Recall, Specificity, and F1-Scores
of the binary and ternary classification of pneumonia are obtained by calculating, as shown in Table 5.
From Fig. 8, the improved model achieves extremely good results in the two-classification task, the number
of judged right images is 1144, and the number of judged wrong images is only 26; in the three-classification
task, the improved model still achieves good results, and it can be found that the model is more effective in
classifying normal images, and it is slightly less effective in the task of categorizing the bacterial pneumonia
images and the viral pneumonia images, which is due to the severe imbalance in the number of bacterial
pneumonia images and viral pneumonia images in the dataset and the fact that there is indeed a high degree
of similarity between the two. In addition, from Table 5, it can be found that the various indicators of the
improved model on both the two-classification and three-classification tasks have reached a high level with
good classification performance.

To further explore the impact of the extent of disparity between bacterial and viral pneumonia image
counts within the dataset on the improved model’s performance, three sets of binary classification experi-
ments were carried out in this study by randomly selecting bacterial pneumonia images and viral pneumonia
images from the Chest X-ray dataset and keeping their number ratios as 1:1, 2:1, and 3:1, respectively, and they
were labeled Experiments 1, 2, and 3. The results of the experiments are shown in Table 6. It can be found that
the accuracy of the model does show a certain degree of degradation as the degree of imbalance of the dataset
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increases. Therefore, in order to address this issue, we designed two additional sets of experiments, based on
the 3:1 ratio of bacterial pneumonia to viral pneumonia from Experiment. Experiment 4 is the enhancement
of viral pneumonia samples using the random oversampling technique, specifically, the random replication
of viral pneumonia images to increase their number to be comparable to the number of bacterial pneumonia
images, and Experiment 5 further introduces a weighted loss function, Focal Loss [31]. It can be found that,
after the introduction of the random oversampling, the performance of the model has not been enhanced
or even has a slightly decreased, while after the introduction of Focal Loss, the model performance is
slightly enhanced but the extent of this improvement remains very limited, we will continue to explore other
strategies to alleviate the imbalance of the dataset to solve this problem in our future work.

(a) (b)

Figure 8: Improved dichotomous and trichotomous confusion matrices. (a) Binary classification confusion matrix;
(b) Triple categorization confusion matrix

Table 5: Comparison of secondary and tertiary classifications

Task Category P/% R/% S/% F1/% A/%

Binary classification Normal 96.77 94.94 98.83 95.85 97.78Pneumonia 98.14 98.83 94.94 98.48
Normal 96.17 95.25 98.59 95.71

Triple categorization Bacteria 86.91 89.57 87.79 88.22 86.67
Virus 75.70 72.15 92.09 73.88

Table 6: Classification results for the unbalanced dataset

Experiment Ratio P% R% S% F1% A%
Experiment 1 1:1 91.50 91.96 91.46 91.73 91.71
Experiment 2 2:1 90.14 88.16 88.47 89.02 90.48
Experiment 3 3:1 88.64 83.52 84.23 85.64 89.95
Experiment 4 3:1 88.74 83.02 83.68 85.17 89.70
Experiment 5 3:1 89.02 84.62 85.02 85.24 90.20
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We further plotted the Receiver Operating Characteristic (ROC) curve and Precision Recall (PR) curve
of the model on the three-class task, and computed the Area Under Curve (AUC) values. As the ROC
curve nears the upper left corner, the ROC-AUC value increases, demonstrating the model’s enhanced
classification ability. The PR curve serves as a crucial metric for assessing a model’s classification capabilities,
particularly in scenarios characterized by imbalanced data distributions. Different from the ROC curve, the
PR curve focuses more on the performance of the positive class, and the closer the PR curve is to the upper
right corner of the coordinate axis, the larger the PR-AUC value is, the better the model performance is.
As can be seen from Fig. 9, the ROC curves under each category are very close to the upper left corner
of the coordinate axis, and the ROC-AUC value under the bacterial pneumonia category reaches 0.93,
which indicates that the model has high accuracy in distinguishing bacterial pneumonia samples from non-
bacterial pneumonia samples; the ROC-AUC value under the normal category reaches 0.99, which indicates
that the model recognizes normal samples with almost perfect performance; the ROC-AUC value under
the viral pneumonia category reaches 0.89, which is slightly lower than the other two categories, but still
indicates that the model has better performance in distinguishing viral pneumonia samples from non-viral
pneumonia samples. The PR curve also closely approaches the top-right corner, with high PR-AUC values
for each category. The combined results of the ROC curve and PR curve images show that the improved
model has excellent classification performance for each category, especially for normal category images.

Figure 9: ROC curve and PR curve of the improved model on the triple classification task

3.5.2 Comparison and Analysis of Model Performance
To validate the effectiveness of the proposed model, it is compared with a variety of main-

stream models on a more challenging ternary classification task, namely VGG16 [32], ResNet50 [26],
EfficientNet-B5 [22], Inception-V4 [33], Swin TransformerV2-T [34], MobilevitV2 [35], ConvNeXt-B [36],
EfficientNetV2 [14], Vision Transformer-B [37], LeViT [38], MedMamba [39], EfficientViT [40], Pool-
Former [41] and NextViT [42]. The experimental results are shown in Table 7.

Table 7: Comparison results of the models on the Chest X-ray dataset

Model P/% R/% S/% F1/% A/% Params/M FLOPs/G
VGG16 [32] 84.03 83.33 91.51 83.67 84.27 134.27 15.47

ResNet50 [26] 83.50 84.10 91.78 83.78 84.36 23.51 4.13
EfficientNet-B5 [22] 82.14 81.00 90.49 81.21 82.74 28.35 2.46
Inception-V4 [33] 85.43 85.05 92.45 85.19 85.98 41.08 6.12

(Continued)
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Table 7 (continued)

Model P/% R/% S/% F1/% A/% Params/M FLOPs/G
Swin TransformerV2-T [34] 82.95 81.99 90.95 82.37 83.42 27.56 4.51

MobilevitV2 [35] 85.06 84.08 91.93 84.53 85.21 4.37 1.41
ConvNeXt-B [36] 84.54 83.03 91.58 83.58 84.79 87.55 15.37

EfficientNetV2 [14] 83.24 82.73 91.30 82.89 83.93 20.18 2.90
Vision Transformer-B [37] 76.64 74.05 87.03 74.69 76.84 85.65 16.86

LeViT [38] 83.14 81.25 90.64 81.85 83.25 37.59 2.25
MedMamba [39] 85.29 85.42 92.46 85.33 85.64 22.76 3.47
EfficientViT [40] 85.25 84.61 92.21 84.90 85.38 12.09 0.53
PoolFormer [41] 83.12 82.48 91.23 82.75 83.76 20.84 3.39

NextViT [42] 83.84 82.88 91.39 83.24 84.27 30.74 5.79
Proposed model 86.26 85.66 92.82 85.84 86.67 18.63 1.96

ResNet50 achieves better results than VGG16 by mitigating gradient vanishing and redirecting network
information flow through residual connections. EfficientNet-B5 uses smaller convolutional kernels and
stacks more layers, which limits its feature extraction ability and loses more semantic information deeper
in the model, resulting in poorer classification results. Inception-V4 employs parallel convolutional kernels
of varying sizes to extract multi-scale image features, yielding strong performance but also resulting in a
high parameter count and operational complexity. Swin TransformerV2-T and ConvNeXt-B incorporate
self-attention mechanisms and large kernel convolutions respectively to enhance global feature extraction,
but still perform poorly. MobilevitV2 greatly lowers the computational complexity through introducing a
separable self-attention, but its ability to recognize pneumonia is limited. EfficientNetV2 has improved its
performance compared to EfficientNet-B5, but it does not notice the connection between the channels of
the feature map and does not have the ability to acquire multi-scale semantic information, which leads
to poor classification results. Vision Transformer enhances its feature extraction capabilities through a
global self-attention mechanism, which requires substantial computational resources, yet its classification
performance remains poor. LeVit combines the advantages of CNNs and Transformers, adopting a multi-
stage Transformer architecture and introducing a novel attention bias, resulting in improved classification
performance compared to the Vision Transformer. MedMamba further elevates model performance by
integrating convolutions that extract local features with state-space models that capture long-range depen-
dencies, although it still has not achieved the best classification results. EfficientViT further optimizes its
structure by designing a new cascaded group attention module, achieving good recognition results with
lower FLOPs. PoolFormer adopts a more general architecture design, achieving a certain performance
improvement compared to the Vision Transformer. NextViT, as a CNN-Transformer hybrid architecture
designed for industrial deployment scenarios, further enhances its pneumonia classification performance,
but its computational efficiency still needs improvement.

Finally, it can be found that the proposed model achieves an accuracy of 86.67%, precision of 86.26%,
recall of 85.66%, specificity of 92.82%, and F1-score of 85.84%, with Params of 18.63 M and FLOPs of
1.96 G. Its classification performance surpasses that of other models, while keeping the parameter count
and computational complexity relatively low. This demonstrates that the proposed model ensures high
classification performance and possesses high computational efficiency, proving that it indeed further
enhances pneumonia recognition ability while reducing complexity. In this study, the confusion matrix is
used to visualize the test results of each model, and the results are shown in Fig. 10. The comparison of the
confusion matrices reveals that each model can achieve certain results, but the proposed model achieves
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the optimal classification performance. Following a thorough examination of the experimental findings,
the proposed model not only exhibits higher computational efficiency but also achieves higher accuracy
compared to EfficientNetV2. Among these advanced architectures, models that achieve high accuracy, such
as Inception-V4, have relatively high computational complexity, while models with lower computational
complexity, such as MobilevitV2, sacrifice a certain degree of recognition accuracy. Only the proposed model
ultimately achieves the best trade-off between efficiency and accuracy.

(a) VGG16 (b) ResNet50 (c) EfficientNet -B5

(d) Inception -V4 (e) Swin TranformerV2 -T (f) MobilevitV2

(g) ConvNeXt-B (h) EfficientNetV2 (i) Vision Transformer -B

(j) LeViT (k) MedMamba (l) EfficientViT

(m) PoolFormer (n) NextViT (o) Proposed method

Figure 10: Confusion matrix of classification results for different models
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3.5.3 Ablation Experiments
EfficientNetV2 was used as the base model, on which improvements were made and ablation experi-

ments were performed on the triple categorization task. Eight sets of experiments were performed based on
the EfficientNetV2 network, where the original EfficientNetV2 is denoted as Model 1, the model that reduces
the number of stacked MBConv, Fused-MBConv in the model alone is denoted as Model 2, the model that
introduces dilated convolution in the first convolutional layer alone is denoted as Model 3, the model that
introduces the IMBConv module alone is denoted as Model 4, the model that introduces the MELA module
alone is denoted as Model 5, the model that reduces the number of stacked MBConv, Fused-MBConv in
the model and introduces the dilated convolution in the first convolutional layer is denoted as Model 6, and
the model that introduces the IMBConv module based on Model 6 is denoted as Model 7. The model that
includes all optimization strategies is denoted as Model 8.

Table 8 shows the results, and the recognition accuracies of the models with the addition of each
improvement point individually have been improved, which suggests that all the improvement points are
effective. Model 2’s recognition accuracy has been improved by 0.34% in comparison to Model 1, which
suggests that the reduction in model layers does avoid the risk of model overfitting to some extent. The
accuracy of Model 3 is improved by 0.94% compared to Model 1, which indicates that the addition of dilated
convolution does expand the receptive field of the model and improves the feature extraction ability of
the model, and the accuracy of Model 4 is improved by 1.28% compared to Model 1, which indicates that
the proposed IMBConv module strengthens inter-channel feature map links, which makes it easier for the
model to focus on the detailed features of the pneumonia image. Model 5 has the most improved recognition
accuracy of 2.05% compared to Model 1, which indicates that the introduction of the MELA module serves
the best purpose and the addition of the MELA module indeed effectively promotes the extraction of multi-
scale semantic information from the model, and enhances the model’s ability to classify pneumonia. In Model
6 and Model 7, when multiple improvement points are combined, it can be observed that their combined
structure enhances the model’s feature learning capability, resulting in a significant increase in accuracy
compared to Model 1.

Table 8: Comparative results of ablation experiments

Model P/% R/% S/% F1/% A/%
Model 1 83.24 82.73 91.30 82.89 83.93
Model 2 84.13 83.11 91.44 83.58 84.27
Model 3 84.69 83.41 91.67 83.94 84.87
Model 4 84.62 84.16 92.04 84.35 85.21
Model 5 86.09 84.26 92.13 84.89 85.98
Model 6 85.50 84.06 92.07 84.64 85.64
Model 7 85.80 85.20 92.51 85.49 86.07
Model 8 86.26 85.66 92.82 85.84 86.67

Finally, it can be found that Model 8 reaches the highest value in all the metrics, there is a significant
enhancement in overall performance relative to the original model, demonstrating the effectiveness of the
proposed improvement strategies.
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3.5.4 Analysis of Visualization Results
To additionally validate the efficacy of the proposed model for pneumonia recognition, the input

pneumonia images are visualized using Grad-CAM, as shown in Fig. 11. In Fig. 11, from left to right, the left
column is the original image, the middle column is the Grad-CAM of EfficientNetV2, and the rightmost
column is the Grad-CAM of PLW-EfficientNetV2. Through the comparison of Grad-CAM results, it can
be observed that after integrating the MELA and IMBConv module, PLW-EfficientNetV2 primarily focuses
on the thoracic region for images belonging to the normal category, which is the most influential area for
classification decisions, while paying little attention to the background regions irrelevant to the prediction
outcomes. For samples of the pneumonia category, the model focuses more on the location of the lesion areas
and ignores other unimportant information. This enhances the model’s ability to capture crucial information
for pneumonia recognition, thereby improving the model’s classification performance.
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Figure 11: Comparison of Grad-CAM

In addition, to further explore the interpretability of PLW-EfficientNetV2, we draw the SHapley Additive
Explanation (SHAP) plot of PLW-EfficientNetV2 for each category as shown in Fig. 12. The red areas in
the SHAP plot represent the features that have a positive impact on the model’s predictions, while the blue
areas are the opposite. Through the comparison of SHAP plots, it can be found that in the case of normal
category images, the key regions influencing the proposed model’s predictions are mostly evenly distributed
on both sides of the thorax; whereas in the case of pneumonia category samples, the key regions are more
concentrated, indicating that the proposed model at this time pays more attention to areas where lesions may
be present. Combining the Grad-CAM and SHAP plots, we can find the focus areas and decision-making
characteristics of the proposed model for the input images, which further provides a theoretical basis for the
interpretability of the model.

Normal Bacterial Virus

Figure 12: PLW-EfficientNetV2 SHAP charts in each category
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3.5.5 Generalization Ability Test
This study conducts experiments on a four-category pneumonia dataset from the Kaggle Challenge

website under the same hardware environment and parameter settings, which comprises four image
categories: 3270 normal images, 1281 COVID-19 images, 3001 bacterial pneumonia images, and 1656 viral
pneumonia images, totaling 9208 images. Fig. 13 shows the confusion matrix for this dataset and it can
be seen that PLW-EfficientNetV2 is able to accurately recognize the pneumonia images. Table 9 shows the
detailed performance metrics of the improved model for each class in the four-classification task, and the
model achieves high values for all metrics on COVID-19 samples and normal samples, which indicates that
the model has a very good recognition ability for these two types of samples, and for bacterial pneumonia
samples, the model also demonstrates a more excellent recognition ability. In addition, the model’s ability to
recognize viral pneumonia samples is slightly weaker. Table 10 shows the results of multiple models on the
four-classification dataset. From Table 10, analysis reveals that our proposed model achieves top performance
across all evaluation metrics, suggesting strong generalization capabilities.

Figure 13: Confusion matrix of the proposed model on four categorical dataset

Table 9: Classification results for each category of the improved model on the four categorical dataset

Category P/% R/% S/% F1/% A/%
COVID-19 98.83 99.22 99.81 99.02

90.98Normal 95.99 98.93 97.73 97.44
Bacterial 86.96 90.00 93.47 88.45

Viral 80.97 70.69 96.36 75.48

In addition, in order to verify the ability of the proposed model to recognize pneumonia images under
other imaging modalities, we chose the public COVID-19 lung CT dataset [43] to evaluate the robustness.
This dataset contains 1252 infected positive CT images and 1229 uninfected CT images. The confusion matrix
of the proposed model on this dataset is shown in Fig. 14. From the confusion matrix, it can be found that
even for pneumonia images under CT imaging modality, the proposed model still achieves high recognition
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accuracy, and the number of images classified correctly under COVID category and non-COVID category
reaches 246 and 240, respectively, with only 9 images classified incorrectly, and the overall classification
accuracy reaches 98.18%, which suggests the proposed model demonstrates strong generalizability and
robust performance.

Table 10: Comparison results of the models on the four categorical dataset

Model P/% R/% S/% F1/% A/%
VGG16 [32] 89.50 88.72 96.52 89.04 90.01

ResNet50 [26] 89.59 88.27 96.49 88.74 89.95
Inception-V4 [33] 89.65 88.06 96.35 88.58 89.68
MobilevitV2 [35] 89.20 87.48 96.18 88.04 89.24
Proposed model 90.69 89.71 96.84 90.10 90.98

Figure 14: Confusion matrix of the proposed model on COVID-19 lung CT dataset

4 Conclusion and Outlook
This study addresses the challenges of most existing pneumonia recognition methods being binary

classification and low accuracy for pneumonia images with complex lesion areas, as well as the diagnostic
challenges under resource-constrained conditions. We propose an improved EfficientNetV2 pneumonia
recognition model based on multi-scale attention. Firstly, to tackle the issue of high computational com-
plexity of the model, we simplify the model structure by reducing the number of main modules, on this
basis, we apply dilated convolution within the first convolutional layer to expand the model’s receptive
field, ensuring feature extraction capability. Secondly, to guarantee the model’s detection capability on
multi-class tasks, we propose the IMBConv module, which can attend to the relationships between various
feature maps, strengthen the model’s ability to identify highly similar pneumonia images, and improve the
model’s classification performance. Finally, to address the challenge of pneumonia images with lesion regions
of diverse shapes and sizes and blurred edges, the MELA module is proposed, which fuses multi-scale
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information and attention prediction to enhance the extraction of features from pneumonia images, further
enhancing the overall performance of the proposed model.

The proposed model is evaluated on the three-classification dataset and four-classification dataset,
respectively, and the experimental results show that compared with other mainstream classification models,
the proposed model in this study has the highest accuracy, precision, recall, specificity, and F1-Score in
the two datasets, and the number of parameters and the computational complexity are both lower, which
suggests that the proposed model indeed achieves a better balance between the recognition performance and
complexity, and realizing the unity of accuracy and efficiency. The model holds promise for deployment on
resource-constrained medical devices, where it can further enhance real-time diagnostic systems in hospitals
and assist doctors in making rapid and accurate diagnoses of pneumonia patients, thereby providing timely
and appropriate treatment to them.

However, if the proposed model is to be integrated into existing hospital systems or telemedicine
platforms, there are still some potential challenges and limitations in this study, including data heterogeneity,
cross-hospital generalization, and potential biases in medical datasets. In addition, although the model
performance was validated in the experiments, the effect of practical application in real clinical settings still
needs to be further investigated. To address the above issues, we plan to enhance data preprocessing and
standardization, conduct cross-hospital data validation studies, and leverage advanced techniques such as
transfer learning and domain adaptation to improve the model’s generalization capability. Simultaneously,
we will perform more application validations in real clinical environments to ensure the model’s effectiveness
and reliability.

Future studies will primarily focus on the following directions:

(1) Working on validating the utility of the model in a real clinical setting and further exploring the model’s
extended application in other imaging modalities.

(2) Extending the research to video-based analysis or integrating the model with other diagnostic tools
such as clinical data or patient history.

(3) Enhancing the interpretability and robustness of the model so that physicians and patients can more
clearly understand the diagnostic basis of the model.

(4) Research on improving methods for handling class imbalance and utilizing self-supervised learning to
tackle limited datasets.

(5) Research on combining CNNs with Transformers to enhance feature extraction in pneumonia
classification.

(6) Studying the feasibility of deploying the model in real-time mobile X-ray scanning applications and
evaluating how multi-objective optimization techniques can improve the accuracy-latency trade-offs
in pneumonia detection.

These efforts will help further improve the accuracy and efficiency of pneumonia diagnosis and bring
greater benefits to patients.
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