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ABSTRACT: Aiming at the problems of incomplete characterization of text relations, poor guidance of potential
representations, and low quality of model generation in the field of controllable long text generation, this paper
proposes a new GSPT-CVAE model (Graph Structured Processing, Single Vector, and Potential Attention Com-
puting Transformer-Based Conditioned Variational Autoencoder model). The model obtains a more comprehensive
representation of textual relations by graph-structured processing of the input text, and at the same time obtains a
single vector representation by weighted merging of the vector sequences after graph-structured processing to get an
effective potential representation. In the process of potential representation guiding text generation, the model adopts
a combination of traditional embedding and potential attention calculation to give full play to the guiding role of
potential representation for generating text, to improve the controllability and effectiveness of text generation. The
experimental results show that the model has excellent representation learning ability and can learn rich and useful
textual relationship representations. The model also achieves satisfactory results in the effectiveness and controllability
of text generation and can generate long texts that match the given constraints. The ROUGE-1 F1 score of this model
is 0.243, the ROUGE-2 F1 score is 0.041, the ROUGE-L F1 score is 0.22, and the PPL-Word score is 34.303, which
gives the GSPT-CVAE model a certain advantage over the baseline model. Meanwhile, this paper compares this model
with the state-of-the-art generative models T5, GPT-4, Llama2, and so on, and the experimental results show that the
GSPT-CVAE model has a certain competitiveness.
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1 Introduction
In today’s information age, Deep Learning (DL), as one of the important branches of machine learning,

has made remarkable achievements in the fields of image recognition, speech processing, and natural lan-
guage processing (NLP). Meanwhile, text generation, as one of the key issues in natural language processing,
focuses on how to make computers generate natural, coherent, and meaningful texts. With the continuous
progress of natural language processing technology, text generation models have achieved remarkable
success in dialog systems, automatic writing, and translation. However, in practical applications, users
increasingly need to control the generated text, as traditional text generation models often lack sufficient
controllability regarding generated content, style, and tone. In this context, controlled text generation has
become a highly anticipated research direction, aiming to enhance the controllability of model-generated
text and better adapt to the specific needs of users.
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Controlled text generation (CTG) task [1] refers to the generation of natural language text that satisfies
constraints such as topic, emotion, and style while ensuring grammatical correctness. It is an essential tool
in human-computer interaction [2]. Early approaches were mainly based on templates, which could only
control the structure of the text. Thus, the generated text lacked diversity in expression. In recent years, with
the complexity of application scenarios, the demand for controllability of various aspects of text has been
increasing. To meet these flexible and diverse needs, data-driven neural network methods have become the
basic methods for controllable text generation. Large-scale pre-trained language models can generate fluent
text that meets constraints through different strategies [3] such as fine-tuning [4] and cue learning.

Control conditions in CTG can be categorized as explicit or implicit. Explicit control refers to providing
well-defined instructions through human-computer interaction, such as input prompts, to guide the model
in generating text with a specific style, like a Shakespearean or humorous tone [5]. In contrast, implicit
control ensures that the generated content adheres to certain standards even when these requirements are
not explicitly stated. This includes maintaining non-toxic, inoffensive, and nondiscriminatory language. For
example, intelligent customer service systems should consistently convey a positive and optimistic tone to
improve user experience. To meet these implicit expectations, the model needs to autonomously adjust its
output and prevent content that may cause social concerns.

Research on controlled text generation broadly encompasses three foci of interest from different
dimensions. The first focus of attention is primarily on the relationship between neighboring texts (short
text environment), such as story completion, poetry generation, etc. The main methods used are fine-tuning
based on pre-trained models [6,7], cue learning [8,9,10], conditional pre-trained language models, attribute
bootstrapping [11–14], and adversarial generative structures [15,16]; The second focus is on textual diversity
control, mainly using approaches based on sampling strategies [17,18], variational autoencoders [19,20], and
diffusion models [21,22]; The third focus of attention is then on the global relations of the text (extended
textual contexts), and the mainstream methods include multi-step generation strategies [23–26], semantic
consistency discriminators [27], and relevance-based knowledge enhancement [28–30].

2 Related Work
With the rapid advancement of Large Language Models (LLMs) and their expanding role in NLP, signifi-

cant improvements have been made in text generation quality. However, real-world applications impose more
complex and rigorous content requirements. For instance, in finance [31] and news reporting [32], models
must not only prevent misleading or biased outputs but also align precisely with specific conditions and user
preferences. These may involve mimicking a particular writing style or incorporating poetic elements. To
address such needs, Controllable Text Generation also known as Controlled or Constrained Text Generation
has emerged, ensuring generated content meets both quality standards and application specific demands.

However, LLMs excel in logical reasoning, text analysis, and problem-solving [33] but struggle with
Controlled Sentiment and Style Generation (CTG) tasks, which demand accuracy and precise sentiment-
tone alignment. A key limitation is their insufficient grasp of subtle emotional expressions; while capable
of simulating emotions, they often misjudge intensity and shifts, leading to text that may be too flat or
too strong, undermining emotional precision in contexts like customer service or literary creation [34].
Additionally, LLMs struggle with style control, as their mimicry relies on statistical patterns rather than
proper stylistic understanding. This makes them ineffective in blending complex styles, such as profes-
sionalism with humor, often producing content that fails to meet expectations. Furthermore, CTG tasks
require high context sensitivity, yet LLMs usually falter in maintaining emotional coherence in long texts
due to context misinterpretation or memory limitations. The subjective nature of CTG evaluation further
complicates optimization, as user preferences vary across cultural and individual factors, and LLMs lack
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the adaptability to these differences. Thus, CTG expands LLM applications and exposes deficiencies in
emotion, style, and context handling. Enhancing LLMs for CTG requires larger and higher-quality datasets
and advanced sentiment modeling and context management to meet its intricate demands [35].

Therefore, most researchers nowadays will use a combination of pre-trained LLM with latent variable
models, the most typical of which are VAEs [36]. However, the use of pre-trained LLM in combination
with latent variable models leads to the following two main problems: a) The encoders of large pre-trained
models such as Transformer process the text mainly in a linearized way such as linear transformations [37].
In contrast, their encoders usually use the last hidden state to generate the latent space, producing a vector
sequence [38]. The result of this is that a more comprehensive representation of the relationships between
the input texts is not available, which leads to less accurate latent representations obtained in the subsequent
hidden space; b) The latent representations received from the latent variable model fail to achieve the
expected results in terms of validity and controllability in the subsequently guided text generation after
adding the decoding process to the pre-trained model [39].

At the same time, controlled text generation faces key challenges affecting practical applications.
In automated content creation (news, blogs, novels), incomplete text representation may omit key facts,
reducing credibility. At the same time, poor potential guidance can cause deviations from user intent, leading
to unfocused blog topics. Low generation quality manifests as repetitive or unclear text, affecting user
acceptance. In education, incomplete representation may omit key concepts, poor guidance may result in
mismatched difficulty levels, and low quality can introduce grammar errors, reducing readability. In cus-
tomer service, incomplete representation leads to inaccurate responses, poor guidance prevents adaptation
to user needs, and low quality can make responses unprofessional. In healthcare, missing contextual details
in generated medical advice can mislead patients, poor guidance may cause content to deviate from the
intended topic, and low quality may result in incorrect medical terminology, reducing trust. These issues
persist in traditional generative models, as shown in Table 1.

Table 1: Generation failures of traditional generative models

Generted text Error analysis
Quantum entanglement is a new technology

that enables instantaneous communication over
infinite distances, allowing information to be

transmitted faster than the speed of light. Many
modern devices, such as smartphones and Wi-Fi

routers, already integrate quantum
entanglement for ultra-secure encryption.

The generated text contains physically incorrect
content, i.e., quantum entanglement cannot be
used for FTL communication and is not widely

used in smart devices. The model, in the absence
of explicit knowledge constraints, may generate
content that appears reasonable but is actually

wrong.
The artificial intelligence has improve diagnostic
accuracy by analyzing large amounts of datas, it

also assisting in surgeries and patient
monitoring. The deep learning algorithms are

very helps in early disease detection.

The text contains grammatical errors (e.g.,
‘datas’ should be ‘data’, ‘is very helpful’ should be

‘is very helpful’), which may be due to the
model’s failure to learn the grammar rules

correctly, or instability in the decoding phase.

(Continued)
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Table 1 (continued)

Generted text Error analysis
Renewable energy has significantly reduced

electricity costs in developing countries.
However, due to its high initial costs, it has led
to increased electricity prices for consumers.

This economic burden makes renewable energy
less accessible to rural populations, yet it

remains the cheapest option available.

The text contains contradictory logic, stating on
the one hand that renewable energy reduces the
cost of electricity, but on the other hand stating
that the high initial cost leads to an increase in

the cost of electricity, and then ultimately stating
that it is the ’cheapest option’. The model may be
locally consistent in the generation of long texts,

but the overall semantics are conflicting.

Given the current problems of controllable long text generation, the main content of the research in
this paper is the effectiveness and controllability of generating long text. The research method is to abandon
the traditional encoder structure and combine the pre-training model with the text graph-structured latent
variable model by graph-structured processing of the input text as well as modeling the graph-structured text
relations, which can not only utilize the pre-trained language model as a reliable tool for feature extraction
or a reliable tool for text decoding, it can also use the hidden space of the latent variable model to get the
comprehensive features of the text, which helps to improve the controllability of long texts.

In this paper, the GPT-2 model is chosen as the decoder for the GSPT-CVAE model because 1) GPT-2
is an autoregressive-based language model that produces text by continuously generating sequences of
words [40]. In contrast, models such as BERT are based on Masked Language Modeling (MLM), which can
only create parts of text. As a result, GPT-2 is more coherent and natural in generating text and can produce
more diverse text. 2) Compared to traditional VAE, GPT-2 adopts a parameter-sharing strategy. This means
that the parameters of the model are used in both parts of the encoder and decoder, which reduces the
number of parameters that need to be trained and improves the efficiency and generalization of the model.
3) GPT-2 is a pre-trained language model that can be used directly for generating text without additional
pre-training or fine-tuning. In contrast, models such as BERT usually require pre-training or fine-tuning on
specific tasks, which requires more time and computational resources. Therefore, GPT-2 not only meets the
requirements of GSPT-CVAE continuous text generation but also achieves a good balance between resource
utilization and performance and is thus selected as the decoder for this model.

2.1 Conditional Variational Auto Encoder
In this paper, we choose controlled long text generation based on the prompt method, i.e., generating

open-domain long text based on the input prompt text, and the hidden space of the latent variable model
C-VAE is utilized to obtain latent representations from textual relations. Fig. 1 illustrates the model diagram
of the variational autoencoder VAE, whose architecture consists of an encoder (inference network) and
a decoder (generation network), where the encoder maps the input data x to the probability distribution
qφ(z∣x , y)of the latent variable z, and then samples from this distribution are obtained, and the latent variable
z is obtained through the computation of the mean, variance, and parameters. The decoder generates the
reconstructed probability distribution pθ (x′ ∣ y, z) of the data x′, using z as input. The traditional VAE
decoder pθ(x∣y, z) is usually in autoregressive form; in this paper, we use a pre-trained GPT-2-based model
as the decoder.
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Figure 1: Diagram of the basic structure of the C-VAE model used in our GSPT-CVAE model. In controlled text
generation, x and x′ refer to prompt text and generated text, respectively. c is the condition, μ is the mean value, σ is
the variance, z is the latent variable

The goal of C-VAE training is to maximize the data log-likelihood Ex , y∼D [log pθ (x)]. However, since
posterior inference is difficult to achieve, C-VAE approximates the posterior distribution through variational
inference methods to maximize the lower bound on the marginal probability of the observed data (ELBO):

Ex , y∼D logpθ(x∣y) ≥ (1)
Ex , y∼D [Ez∼qϕ(z∣x , y)logpθ(x∣y, z)] −Ex , y∼D [KL (qϕ(z∣x , y) ∥ p(z∣y))]

Here, Ex , y∼D [KL (qϕ(z∣x , y) ∥ p(z∣y))] is the KL dispersion between the latent space distribution
qϕ(z∣x) and the prior distribution p(z) learned by the encoder, which is used to ensure the continuity and
compactness of the latent space. x is the input text, and y is the condition.

2.2 Graph Convolutional Networks (GCN) Encoder
Graph Convolutional Encoder is a model for learning graph data representation by combining a node’s

neighbor information and features to generate a low-dimensional representation of the node. The focus of
this paper is on the global relations of the text. Fig. 2 illustrates a graph convolutional encoder with a two-
layer convolutional network. Each word in the input text is treated as a node in the graph, the node features
are vector representations of the input text, and the connecting lines between the nodes are the values of the
elements in the resulting adjacency matrix A. After the text passes through the graph convolutional network,
the text features are updated to obtain a new vector representation of the text.

Figure 2: Graph convolutional encoder (with two layers of convolutional networks)

The GCN formula is as follows:

Hl+1 = σ(D̃ 1
2 ÃD̃

1
2 Hl W l) (2)
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Here Ã is the new adjacency matrix obtained by adding the unit matrix to the adjacency matrix A, D
is the degree matrix of the adjacency matrix A, W is the weight parameter matrix of the Lth layer, σ is a
nonlinear activation function, e.g., ReLU(Rectified Linear Unit). For a two-layer convolutional network, the
forward propagation formula is:

z = f (X , A) = so f tmax(ÃReLU(ÃXW0)W 1) (3)

For the loss function, the traditional cross-entropy function is chosen.
The rest of the paper is organized as follows. Section 3 details the overall architectural design of

the model proposed in this paper. Section 4 is the experimental part and comparative analysis of the
experimental results. Section 5 summarizes the work of this paper and provides an outlook on the next steps.

3 Model Architecture (GSPT-CVAE)
The overall model diagram of the GSPT-CVAE model proposed in this paper is shown in Fig. 3. The

model consists of three main modules:

• In the encoding stage, the text is graph-structured to obtain the graph-structured representation of the
text, then passes through the GCN encoder to collect text node representations, i.e., the vector sequences
of the text representations, and proceeds with the subsequent work.

• The vector sequences are combined into a single vector representation using the vector merging
layer, and this representation is then fed into the linear layer to predict both the prior and posterior
distributions, which results in the latent representation Z.

• In the decoding stage, The latent representation Z is added to the Transformer decoder through a
combination of embedding and latent attention computation to guide subsequent decoding generation.

Figure 3: Graph convolutional encoder (with two layers of convolutional networks)
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3.1 Textual Graph Structuring
After the input text data is encoded, the resulting text vector can accurately represent the nodes in the

graph, i.e., the feature matrix X. Thus, only the adjacency matrix A of the text nodes needs to be constructed.
Afterward, the feature matrix X and the adjacency matrix A are inputted into the GCN encoder with a two-
layer convolutional network to obtain new node representations containing comprehensive relationships
among the texts.

Commonly used methods for structuring text graphs include dependent syntactic analysis trees,
sentence component analysis, AMR (Abstract Meaning Representation) graphs, information extraction
graphs, knowledge graphs, etc. Still, all of these methods have some limitations. For example, sentence
component analysis may have difficulty in describing sentence components in specific languages and text
types [41]; the construction of AMR graphs relies on the subjective interpretation of manual annotators,
which may lead to inconsistency and subjectivity problems [42]; information extraction graphs usually focus
on the extraction of entities and relations, which may ignore important information in the context, etc. [43].

A filter exists in a convolutional neural network, which extracts information from an image through
a constantly moving fixed-size filter window. Inspired by the filter window, this paper proposes to design a
“sliding window” to traverse the input text. In this window, the adjacency matrix A is constructed by the
features of the text, and the word embedding of the text is used as the feature matrix X of the text, thus
completing the graph structuring of the text.

However, the sliding window approach also introduces a new problem: the relationships between texts
are far or near. When using a sliding window to obtain relationships, if the window size is too small,
the complete relationship information cannot be obtained; if the window size is too large, unnecessary
information, i.e., noise, is introduced. This affects the construction of the final graph.

In response to the new problems triggered, a dynamic sliding window can be designed to solve the
problem. The so-called dynamic sliding is based on the strength of the textual relationship, which adjusts
the window size in real time to capture the textual relationship under different relationship strengths. The
specific process is as follows: set the initial window size k (e.g., the initial size is set to 3), and then traverse
the entire text sequence, the three words within the first window, the average cosine similarity value can be
obtained after the cosine similarity is calculated using its vector representation. Set a threshold T when the
average cosine similarity is greater than the threshold T, increase the window size, and vice versa, reduce the
window (minimum of 2) until traversing the entire text sequence, and ultimately get the adjacency matrix
A, in which each element of the element matrix in the adjacency matrix A represents the strength of the
relationship between word i and word j, the larger the value indicates that the more similar the two words are
to each other, and the smaller the value indicates that the more the similarity is lower. The specific process is
shown in Fig. 4.

Traditional Transformer only relies on Positional Encoding and Self-Attention to model inter-word
relationships, which makes it easy to ignore long-distance dependencies. In this paper, the method adopts
GCN to model the text as a Graph Representation. It dynamically connects the related words through the
sliding window to enhance the global dependency modeling. In the dynamic sliding window, the strengths
and weaknesses of the relationships between the texts are further recorded, and the final graph structure
representation is improved according to the strengths and weaknesses of the relationships so that the
resulting textual relationships have better strengths and weaknesses compared to the textual relationship
representations obtained from traditional coding. The following demonstrates how the dynamic sliding
window captures strong and weak textual relations.
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Figure 4: Dynamic sliding window to construct the adjacency matrix

Now consider the set of word vectors for two windows W1 and W2, W2 >W1 and containing W2 contains
W1, and the average cosine similarity between them is:

AνgCosineSimil arity(W1 , W2) =
1

min(∣W1∣, ∣W2∣)
∑

a∈W1

∑
b∈W2

Cosine Similarity(a, b) (4)

Here, W1, W2 are the window sizes, respectively. Define a threshold T when AvgCosineSimilarity
(W1 , W2) > T , it represents a higher similarity between the two windows, which means that the textual
contexts within the two windows are similar, i.e., better textual relations can be obtained when W1 is increased
to the size of W2. Similarly, when AvgCosineSimilarity (W1 , W2) < T , which represents a lower similarity
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between the two windows, suggests that there is a large gap between the textual contexts within the two
windows, at which point the window can be narrowed down to focus on a tighter context. This proves that
this paper’s dynamic sliding window approach can better capture the semantic relationships between texts.

3.2 Vector Sequence Merge
When data is encoded, traditional Transformer models use only the last hidden state from the encoder to

generate the latent space. After the final self-attention layer, a sequence of vectors is obtained with the number
of vectors as the number of input tokens. However, the vector sequence obtained after such encoding may not
be sufficient to summarize continuous data and retain long-term knowledge, mainly due to the limitations
of the self-attention mechanism, positional encoding, etc. This paper proposes a vector sequence merging
method to merge vector sequences into a single vector through attention scores for subsequent potential
representation generation work. A single vector contains both global and local input text information, and
the single vector can better process and retain feature information than vector sequences. Also, due to the use
of Attention Score Weighted Merging, each feature is weighted and merged during vector sequence merging,
thus further emphasizing important features and weakening minor features. The following is a validation of
the methodology of this paper in terms of both weights and expectations.

First, from the point of view of weights, suppose there is an input sequence X = {x1 , x2, x3 . . . xn}, where
x denotes the xth element in the sequence. Using the self-attention mechanism, it is possible to compute a
vector Ai of attention weights at each position and then apply these weights to the original vector sequence.
This results in a weighted vector and Z, where the weighted sum for each position i is computed as follows:

Zi =
n
∑
j=1

Ai , j ⋅ x j (5)

Here, Ai , j is the attentional weight from position i to position j. To combine this sequence into a
single vector, consider weighting and summing all the positions, i.e., f inal_output = ∑n

i=1 zi rearrange this
equation and introduce attentional weights:

f inal_output =
n
∑
i=1

⎛
⎝

n
∑
j=1

Ai , j ⋅ x j
⎞
⎠

(6)

Obtained by swapping the summation order:

f inal_output =
n
∑
j=1
(

n
∑
i=1

Ai , j) ⋅ x j (7)

The portion in parentheses is the sum of all the attentional weights for position j, which can be thought
of as the composite weight for position j. The weight of position j is the sum of all the attentional weights for
position j. Let C j = ∑n

i=1 Ai , j The above equation can be simplified as:

f inal_output =
n
∑
j=1

C j ⋅ x j (8)

This equation shows that the weighted composite C j obtained through the self-attention mechanism
and the weighted sum of the original vector sequence X form the final representation. These synthesized
weights can better capture the relationships between different positions in the sequence, thus providing richer
semantic information.
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Moving on to the expectation perspective, suppose again that there is an input sequence X, denoted
{x1 , x2, . . . , xT}, of length T. Each xt is a vector. Now compute the attentional weight αt , where the attentional
weight αt is denoted:

αt =
exp(et)

∑T
k=1 exp(ek)

(9)

Here, et is some rating or score associated with xt can be computed using any appropriate mechanism
(e.g., dot product, scaled dot product, etc.). The attention-weighted average vector is then computed:

AttentionAvg =
T
∑
t=1

αt ∗ xt (10)

First, the attention weights are of the nature: ∑T
t=1 αt = 1, this is because the weights are standardized

probability distributions. Next, the expected value of the weighted average vector of attention is computed:

E[AttentionAvg] = E
⎡⎢⎢⎢⎢⎣

T
∑
t=1

αt ⋅ xt

⎤⎥⎥⎥⎥⎦

=
T
∑
t=1

E [αt ⋅ xt]

=
T
∑
t=1

E[αt] ⋅E[xt] (linear property) (11)

=
T
∑
t=1

E[αt] ⋅ xt (Definition of expectation)

=
T
∑
t=1

⎛
⎝

exp(et)
∑T

k=1 exp(ek)
⎞
⎠
⋅ xt

By normalizing αt , the weighted average vector of expected attention will be more concentrated on the
parts with higher scores et , i.e., the model will pay more attention to the tasks’ relevant parts.

3.3 Embedding Combined with Latent Attention Computation
After obtaining the potential representation Z of the potential space, Z is usually added to the subsequent

decoding and generation process by either concatenating Z with the input vectors of the decoder or
multiplication operations, etc. or by fusing Z with each layer of the decoder according to the attention
weights. In this paper, we not only use the method of concatenating Z with the input vectors but also add
Z to the K and V matrices of the attention computation to obtain new K’ and V’ matrices and compute
the attention. In this way, Z is fully integrated into the decoder generation process for better control of
text generation.

For the traditional embedding approach, the drawback is the introduction of noise in the self-attention
computation. The proof is as follows: ei , e j is defined as the marker embedding of the two inputs, and αi , j is
the attention weight of the ith and jth markers. According to the self-attention formula.

Attention(Q , K , V) = so f t max(QT K√
d
)V (12)
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The expression αi , j can be obtained as:

αi , j = (W q ei)T (W k e j) = eT
i (W q)T W k e j (13)

W q and W k are the parameter matrices used to map the input marker embedding into the query (Q)
and key (K) spaces. Denoting the right-hand side of this equation as (ei , e j), Z is embedded directly into the
tags according to the embedding, i.e.:

αi , j = [W q(ei + z)]T[W k(e j + z)] = (ei , e j) + (ei , z) + (z, e j) + (z, z) (14)

It can be noted that the resulting equation introduces a redundant term (z, z) introduces additional
noise to the attention mechanism.

To solve the problems caused by the embedding method, this paper introduces potential attention com-
putation while using the embedding method; specifically, the potential representations obtained previously
are divided into L vectors [Z1 , Z2 . . . ZL], and the potential representations are merged into the original self-
attention computation by adding the potential representations to the matrices K and V in each layer of the
attention computation.

Integrate Z into K and V to get a new K′ and V′

K′ = (ZK
K ) ∈ R

(1+l)×d V ′ = (ZV
V ) ∈ R

(1+l)×d (15)

The attention score α can be denoted as α = (Q ∗ K′), this is the first time Z is fused with the feature
vector, after which the attention score is multiplied by the new value matrix in the subsequent self-attention
computation. Attention = (α ∗ V ′), this is the second time Z is fused with the feature vector, and in this
computation, the value matrix V’ already contains information about the latent variable Z. When the
embedding method is used again, the effect of noise is resolved.

[(ei , e j) + (ei , z) + (z, e j) + (z, z)] ∗ (V ′)

= [(ei , e j) + (ei , z) + (z, e j) + (z, z)] ∗ (ZV
V ) (16)

= (ei , e j) ∗ (
ZV
V ) + (ei , z) ∗ (ZV

V ) + (z, e j) ∗ (
ZV
V ) + (z, z) ∗ (ZV

V )

It can be seen that in the results of the above equation, the noise (z, z) present in the original embedding
method is finally multiplied by a matrix that contains information about the incorporated latent variable Z.
Therefore, this item is equivalent to the weighting of the latent variable Z and is no longer noisy.

4 Results and Discussion

4.1 Dataset Selection
The datasets used in this paper are Arxiv [44], Yelp [45], WritingPrompts [46], and WikiPlots [47]. In

this paper, the Arxiv dataset is used to generate controlled text, and the Arxiv dataset is divided into a training
dataset, testing dataset, and validation dataset in the ratio of 80:10:10. Arxiv is an online dataset that extracts
abstracts from the ‘Arxiv’ articles. Arxiv is an online dataset for extracting abstracts from ‘arxiv’ articles. Arxiv
mainly searches for topic queries in arxiv and then collects article content-matching Abstracts. This paper
selects article types with keywords ‘artificial intelligence,’ ‘computer vision,’ and ‘text generation.’ Meanwhile,
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this paper experiments with the GSPT-CVAE model on WritingPrompts and WikiPlots datasets to show the
model’s performance under different data domains. On the other hand, the Yelp dataset is mainly used for
pre-experimental analysis and textual relationship validation visualization experiments.

4.2 Selection of Comparison Methods
The comparison methods chosen for this paper are as follows:

• FIST: This method is a technique for fine-tuning natural language processing models by introducing spe-
cial tokens to guide the model to focus on specific tasks or samples during the fine-tuning process [48].
These unique tokens can mark important locations or sample attributes in the input sequence, thus
making the model better adapted to the target task.

• PSA: By introducing a pseudo-self-attention mechanism into the generation process, the model can
selectively focus on different parts of the input text during the text generation process. This approach can
effectively control specific attributes or styles of the generated text, such as sentiment, theme, or tone,
leading to a more accurate text generation task.

• Fusion: this method realizes precise control of the attributes, style, and content of the generated text by
combining information from multiple input modalities (e.g., text, image, speech, etc.) and introducing
external control signals. This method can fuse multimodal details to make the generated text richer and
more diverse, which can meet the needs of different application scenarios, such as emotion generation
and theme transformation.

• Dynamic Prompting (DP) [49]: Dynamic cueing techniques control text generation by dynamically
generating cues based on context. This approach utilizes contextual information to adjust prompt words
in real time to make the generated text more coherent and aligned with expectations. It has the advantage
of being adaptive and automatically adjusting the strategy according to different generation tasks.

4.3 Evaluation Metrics
This paper evaluates the following automated metrics for the target text:

• Perplexity (PPL): complexity PPL is used to evaluate language models and is often considered a proxy for
the generation quality. All GPT -2-based models use a byte-level tokenization scheme (PPL-BPE), based
on which the models’ word-level complexity (PPL-Word) is also computed in this paper to compare
them with previous models.

• ROUGE: The ROUGE score calculates the n-gram overlap between the test-generated text and the given
target text. For completeness, ROUGE scores are computed for n-gram overlaps (ROUGE-1, ROUGE-2,
and ROUGE-L) as well as F1 scores for each precision (P) and recall (R).

• BLEU: The BLEU score considers the degree of N-gram overlap between the generated text and the
reference text. BLEU-4 is a form of the BLEU metric that evaluates the overlap of 4-grams (four
consecutive words) and normalizes these matches. The BLEU value ranges from 0 to 1, with values closer
to 1 indicating that the generated text is closer to the reference text.

• Manual Evaluation: Generated Readability, Relevance, and Completeness were manually scored (out of
10) in the model robustness experiment.

4.4 Parameter Settings
This paper uses the smallest publicly available version of GPT-2 as the model’s decoder for computa-

tional efficiency. Specifically, it has L = 12 layers, H = 12 attention heads per layer, and a model dimensionality
of d = 768 units, totaling 117 million parameters. In addition, To address the posterior collapse problem,
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we implement a cyclic annealing schedule by modifying the coefficient β before KL divergence in (2).
Specifically, we have kept β close to zero in the first half of the cyclic schedule, linearly annealed β to 1 in
the next one-fourth of the cyclic schedule and kept β = 1 in the remaining one-fourth of the cyclic schedule.
Finally, In evaluation, we generate stories using the top-k top-p random sampling scheme with k = 100 and
p = 0.95. Temperature smoothing technique is also applied with T = 0.95.

4.5 Threshold Selection
When structuring a text graph, the text similarity within the window needs to be compared with

a threshold to dynamically adjust the window size to better capture the relationships between the texts.
Therefore, the selection of the size of the threshold is critical. By choosing different thresholds for several
experiments, the results are shown in Fig. 5. As can be seen from the figure, when the threshold is too small,
almost all pairs of nodes in the graph are connected, resulting in the graph becoming too dense with nodes
connected by a large number of irrelevant edges. These edges represent texts unrelated to the context, which
can interfere with subsequent feature propagation and learning. At the same time, when the threshold is too
large, the connectivity of the adjacency matrix decreases, and too low a connectivity may lead to isolated
nodes or small isolated subgraphs, which prevents the GCN from efficiently propagating the features and,
thus, from capturing the relationships between texts.

Figure 5: Between the threshold T and the node degree distribution of the adjacency matrix

4.6 Results
4.6.1 Pre-Experiment on VAE

To assess the effectiveness of transformer-based latent variable modeling, this study initially conducted
pre-experiments using the VAE architecture on two small datasets. The prior followed a standard spherical
Gaussian distribution, N(1, I). The VAE model performed pure unsupervised learning, where unlabeled
linguistic text was encoded into a distributed representation and then decoded. The Arxiv and Yelp datasets
were chosen for the pre-experiments. The Arxiv dataset was compiled by searching for topics in Arxiv,
collecting article abstracts that matched the selected keywords: “Artificial Intelligence,” “Computer Vision,”
and “Text Generation.” The Yelp dataset, a public collection of restaurant reviews from the “Yelp” website,
was also used. In this study, reviews with ratings above three were classified as positive, while those with
ratings of three or below were considered negative.
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4.6.2 Data Visualizations
Fig. 6 illustrates the posterior z of the text in the test dataset in a two-dimensional space using t-SNE.

As can be seen from the figure, the model learns meaningful latent spaces and clusters the high-dimensional
data based on the proximity between latent codes. In the Arxiv dataset, the “Artificial Intelligence” cluster
sits between the “Computer Vision” and “Language Generation” clusters, which coincides with our under-
standing of these topics. This visualization shows the model’s excellent representation learning capabilities.

Figure 6: Pre-experiment results. (a) Arxiv: Topic are draw in different colors: red for artificial intelligence; blue for
computer vision; green for language generation; (b) Yelp: Sentiment are draw in two colors: red for negative; blue for
positive

Secondly, to illustrate the enhancement of text structure and coherence by graph structuring, this paper
conducts comparative experiments on the Yelp dataset to compare the text structure and coherence between
the original text representation and the textual relational representations after the text graph structuring
process. The results are visualized by dimensionality reduction in t-SNE. As shown in Fig. 7, graph-structured
texts (red dots) are more centrally clustered in 2D space and have firmer semantic consistency and coherence
than original texts (blue dots). This suggests that the relationship between different text parts can be
better captured through text graph structuring, thus improving the overall quality and controllability of the
generated text.
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Figure 7: t-SNE visualization: comparison of textual relational representations of raw text and graph-structured text.
The blue points represent the downscaled representation of the original text and the red points represent the downscaled
representation of the graph-structured text

4.6.3 Comparative Experiments
Figs. 8 and 9 show the experimental results, which show that the word-level PPL and byte-level PPL

of the GSPT-CVAE model are lower than those of other models, both from the beginning iteration to the
40,000th iteration and after the model has converged. In the ROUGE scoring metrics, the F1 scores of
ROUGE-1, ROUGE-2, and ROUGE-L are higher than those of the traditional model, proving that the model
in this paper has better performance, generation effectiveness, and controllability.

Figure 8: (Continued)
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Figure 8: Comparison of experimental results between the GSPT-CVAE model and other models on the PPL-Word
and PPL-BPE metrics

Figure 9: Comparison of experimental results between the GSPT-CVAE model and other models on the rouge score
and BLEU-4 metrics



Comput Mater Contin. 2025;84(1) 1367

Meanwhile, the method used in the GSPT-CVAE model was compared with the comparative method
chosen for this paper for various metrics, and the method used in the GSPT-CVAE model has better
performance than other methods used for controlling text generation. Table 2 shows the experimental results
of each method on the evaluation metrics, and Table 3 analyzes the advantages and disadvantages of the other
methods and explains the superiority of GSPT-CVAE.

Table 2: Comparison of different methods for assessing metrics for controlled text generation

Methods PPL-BPE PPL-word ROUGE-1 F1 ROUGE-2 F1 ROUGE-L F1
FIST 26.5 38.9 0.181 0.023 0.17
PSA 47.8 79.5 0.188 0.026 0.172

Fusion – 36.0 0.223 0.038 0.206
DP 34.7 34.6 0.24 0.04 0.215

GSPT-CVAE 21.786 34.303 0.243 0.041 0.22

Table 3: Analysis of the strengths and weaknesses of the methods used in other models and the superiority of the
methods used in GSPT-CVAE

Method Features and advantages Limitations Improvements of
GSPT-CVAE

FIST - Guides the model to focus
on specific tasks or samples

through special tokens -
Marks important positions or

sample attributes

- Relies solely on tokens,
making it difficult to capture

complex semantic
relationships - Limited to

specific tasks, weak cross-task
generalization

- Introduces structured text
graphs to capture global
semantic relationships -

Stronger cross-task
generalization capability

generalization
PSA - Uses pseudo self-attention to

selectively focus on different
parts of the input - Marks

important positions or sample
attributes

- Relies solely on tokens,
making it difficult to capture

complex semantic
relationships - Limited to

specific tasks, weak cross-task
generalization

- Models global semantics
using latent variables - Utilizes

CVAE to achieve
multi-attribute joint control

Fusion - Integrates multi-modal
inputs (e.g., text, images,

speech), and generates richer
and more diverse text in
multi-modal scenarios -

Provides precise control over
text attributes, style, and

content

- Performance drops in
single-modal scenarios (e.g.,

text only) - Requires
significant computational
resources for multi-modal

integration, reducing
efficiency

- Uses latent variables and
structured text graphs,

eliminating the need for
multi-modal input - Fully

captures semantic
relationships in single-modal

scenarios

Dynamic
Prompting

(DP)

- Dynamically generates
prompts based on context
with adaptive capabilities -

Ensures coherent text
generation and adapts to

various tasks

- Limited adaptability in
complex control scenarios -

Dynamic adjustments to
context prompts may lead to

instability in text control

- Stabilizes text control using
latent variables and attention

mechanisms - Provides
efficient context modeling
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Furthermore, we compare our model with T5, GPT-4, and Llama 2, representing state-of-the-art large
language models. As seen in Figs. 10 and 11, GSPT-CVAE achieves a lower word-level PPL (34.303) than
T5 (35.245) and Llama 2 (35.526), indicating its superior efficiency in controllable text generation. In terms
of BLEU-4 scores, our model maintains a stable advantage, surpassing T5 (0.065), GPT-4 (0.064), and
Llama 2 (0.063) with a final score of 0.066, demonstrating better consistency in text fluency. Regarding the
ROUGE evaluation, GSPT-CVAE outperforms T5, GPT-4, and Llama 2 across all F1-score metrics. Precisely,
in ROUGE-1, our model attains 0.243, compared to T5 (0.24), GPT-4 (0.237), and Llama 2 (0.235), confirming
its superiority in capturing relevant textual features. Similarly, ROUGE-2 F1 scores show that GSPT-CVAE
achieves 0.049, while T5, GPT-4, and Llama 2 obtain 0.047, 0.045, and 0.044, respectively, further reinforcing
our model’s ability to generate semantically rich and structurally coherent content. Lastly, for ROUGE-L F1,
our model attains 0.22, which is higher than T5 (0.215), GPT-4 (0.212), and Llama 2 (0.21), highlighting its
effectiveness in producing well-structured and meaningful long text.

Figure 10: Comparison of experimental results between the GSPT-CVAE model and other models on the PPL-Word
and PPL-BPE metrics

Finally, we conducted two more comparison experiments of the model on WritingPrompts and
WikiPlots datasets in addition to the Arxiv dataset, and the results are shown in Table 4.
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Figure 11: Comparison of experimental results between the GSPT-CVAE model and other models on the PPL-Word
and PPL-BPE metrics

Table 4: Comparison of different methods for assessing metrics for controlled text generation

Models PPL-BPE PPL-word ROUGE-1 F1 ROUGE-2 F1 ROUGE-L F1
WritingPrompts dataset

T5 23.8 28.6 0.258 0.045 0.343
GPT-4 22.9 27.9 0.262 0.048 0.348

Llama 2 23.5 28.3 0.260 0.047 0.345
GSPT-CVAE 23.1 27.8 0.265 0.049 0.350

WikiPlots dataset
T5 25.1 30.2 0.238 0.041 0.315

GPT-4 24.5 29.7 0.241 0.044 0.318
Llama 2 24.8 30.0 0.240 0.043 0.317

GSPT-CVAE 24.2 29.4 0.243 0.045 0.320

These results collectively demonstrate that GSPT-CVAE surpasses traditional controllable text genera-
tion models and maintains competitive performance against advanced large-scale models such as T5, GPT-4,
and Llama 2, particularly in controllability, generation fluency, and coherence.
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4.6.4 Robustness Experiment
To analyze the performance of GSPT-CVAE under adversarial conditions, this paper conducts robust-

ness experiments on the model in terms of noisy inputs, very short cues, and domain shifts, respectively.
Among them, noisy input is set to randomly insert noise (e.g., spelling mistakes, random symbols, missing
words, etc.) into the input text to simulate dirty data in the real world; very short cue is set to input cues of
extremely short length (less than five words); and domain transfer is set to go from the Arxiv scientific paper
dataset to the CNN/DailyMail News dataset. The experimental results are shown in Tables 5–7.

Table 5: Noisy input test

Models BLEU ROUGE-L PPL
GSPT-CVAE 18.4 42.5 26.1

T5 16.8 40.2 28.7
GPT-4 20.1 45.3 24.5

Table 6: Short prompt test

Models Readability Relevance Completeness
GSPT-CVAE 8.3 7.9 7.5

T5 7.5 7.2 6.8
GPT-4 9.1 8.5 8.7

Table 7: Cross-domain test

Models ROUGE-1 ROUGE-2 F1 ROUGE-L
GSPT-CVAE 39.2 19.5 35.1

T5 36.8 17.9 33.2
GPT-4 42.1 21.3 37.4

From the experimental results, when performing the input noise test, GSPT-CVAE outperforms T5
but is slightly lower than GPT-4. Its PPL value is relatively low, indicating it maintains good text fluency
on noisy data. Due to the use of GCN structure to model global textual relations, even if part of the input
information is corrupted, the model can still fill in the missing information by using the graph structure to
reduce semantic distortion. In the future, data enhancement methods, such as spelling correction and noise
simulation training, can be used to improve the model’s robustness further. In the very short cue test, GSPT-
CVAE can extend the short cue better and generate long text with certain contextual logic, which performs
better than T5. At the same time, the information completeness score is lower than that of GPT-4, which may
be because the latent variable relies on more contextual information. There is not enough information under
the short cue. In the future, Few-shot Learning training can be added to adapt to very short cue scenarios
or knowledge distillation can be introduced to enhance the short text generation capability of GSPT-CVAE
by borrowing the high-quality text generated by GPT-4. Finally, in the cross-domain test, the generalization
ability of GSPT-CVAE is more potent, which may be because the GCN structure can extract the global
relationship, and even if the style of the text varies a lot, it can still maintain a certain degree of contextual
consistency. The structure of the CVAE provides a more flexible control of latent variables, which is adaptable
to the contexts of different domains.
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4.6.5 Ablation Experiment
To verify that the methods used in the GSPT-CVAE model are indeed effective, this paper conducts

ablation experiments on the three methods used in the model, i.e., the structured processing of the text
map, the merging of the vector sequences, and the combination of the embedding and the potential
attention computation. It visualizes the experimental results of the assessment metrics. As shown in Fig. 12,
after eliminating the structured processing of the text map, both the F1 and BLEU scores in the ROUGE
decreased significantly, indicating the effectiveness of the structured text map. In contrast, after eliminating
the potential attention computation, the F1 score was lower than that of the GSPT-CVAE model except in
some moments. In contrast, the BLEU score was ultimately lower than the GSPT-CVAE model’s. Finally,
after eliminating the merging layer of vector sequences Finally, after eliminating the vector sequence merging
layer, the F1 scores are slightly higher than the original model in some moments. However, the overall scores
are still significantly lower than the GSPT-CVAE model. The BLEU scores are lower than the GSPT-CVAE
model in iterations and only gradually equal to the GSPT-CVAE model after the model converges.

Figure 12: Results of ablation experiments of the three methods on each evaluation metrics

The results of the above ablation experiments show that all three methods used in the GSPT-CVAE
model have enhanced the effectiveness and controllability of the model’s text generation, which also verifies
the superiority of the GSPT-CVAE model proposed in this paper in terms of controllable text generation.
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4.6.6 Generated Cases
Table 8 shows the performance of the traditional CVAE model, T-CVAE model, Bert-based CVAE

model, and the GSPT-CVAE model proposed in this paper in the actual text generation cases. From the
table, it can be seen that all models can generate the corresponding text based on the conditions when the
conditions are given. However, the text generated by the traditional CVAE model differs significantly from
the target text. The length of the generated text is relatively short compared with other models. However,
the text generated by the T-CVAE model is close to the target text in terms of sentence meaning and length,
there are many sick sentences and logical errors in the text, and even grammatical errors; Bert-based CVAE
model has a good overall performance in generating performance, but there are a few semantic ambiguities
and other problems; while the GSPT-CVAE model proposed in this paper is the closest to the target text in
terms of both text length and text quality, and there are no grammatical, logical, or semantic errors in the
generated text. It is proved that the model has excellent long-text generation capability.

Table 8: Cases generated by different models on the Arxiv test dataset

Prompt text Reactive programming in standard ML
Target text A reactive system is a system that maintains a continuous

interaction with its environment and is activated by receiving
input events from the environment and generating output events

in response. Modern programming languages specialized for
programming such systems use a paradigm based on the

concepts of transience and activation. We present a standard ML
library that provides a basic prototype for programming reactive
systems. The library is an underlying system upon which more

complex reactive behaviors can be built, and it provides a
convenient framework for prototypical extensions to existing

reactive languages.
Generted text (CVAE) We created a Python program similar to JavaScript but faster. It

supports web and mobile apps, using HTML-like elements and
functions for interactions. It can sort numbers and is

memory-efficient, though it needs more testing for long tasks.
Generted text (T-CVAE) We introduce a reactive ML language focused on dynamic

values, adding more values and operations. Our aim is a reactive
programming framework, demonstrated through an MFG tool
case. We use a simplified predicate calculus model and briefly
touch on type theory. Simplified reactive methods make this

language practical for developers.
Generted text (Bert-CVAE) We present a language based on ML’s reactive paradigm,

enabling explicit value assignments and dynamic updates. This
reactive programming form in ML allows multi-value operations

and uses specialized compilers. A case study illustrates its
dynamic features, utilizing ML within simple predicate calculus

to demonstrate functionality and provide new insights into
programming languages.

(Continued)
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Table 8 (continued)

Prompt text Reactive programming in standard ML
Generted text (GSPT-CVAE) We present a dynamic programming language based on ML’s

reactive programming paradigm, which extends ML by enabling
explicit value assignments. This language supports multiple
values, operations on values, and compiler usage. Using the

MFG tool, we implement it in ML with a first-class predicate
calculus and reformulate its type theory similarly to reactive

programming. A case study demonstrates its implementation,
yielding a type-theoretic description.

5 Conclusions
This paper presents a GSPT-CVAE model for controlled text generation. The model improves the effec-

tiveness and controllability of text generation through three innovative approaches: text graph structuring,
vector sequence merging, and combining embedding with latent attention computation. Unlike traditional
controlled text generation, the model focuses on long text generation efforts through cueing methods, i.e.,
given an input cue text, the model generates long text within the domain of that cue text. The superiority of the
GSPT-CVAE model and the veracity of the methodology used in the model are verified through experiments.
The GSPT-CVAE model is of great significance in practical applications. It can significantly improve the
efficiency and quality of content creation, especially for scenarios that require rich expression and diversified
generation, such as literary creation and news writing. The model can support personalized teaching by
generating personalized learning materials according to different topics and objectives in education. In
addition, the model is widely used for automatic report generation, for example, in business, healthcare,
and scientific research, where it can generate structured, logical, and long text reports based on input
prompts, thus significantly reducing manual editing time. These application scenarios demonstrate the
potential of the GSPT-CVAE model as an indispensable tool for text-generation tasks. The model can be
deployed as a microservices-based API, allowing developers to integrate it into existing content management
platforms, chatbots, and automated writing assistants. By leveraging a distributed inference architecture (e.g.,
deployed on a cloud-based GPU cluster or deployed at the edge using model quantization), GSPT-CVAE
can efficiently process real-time text generation requests. Additionally, a Retrieval Augmented Generation
(RAG) pipeline can be added to enable the model to access external knowledge bases, thus improving
factual accuracy and reducing illusions. Future work will focus on optimizing the inference speed of the
model, improving its robustness to brief prompts, and developing interactive fine-tuning mechanisms that
dynamically incorporate user feedback to improve the quality of the output. These advances will further
solidify the reliability and scalability of GSPT-CVAE for real-world text generation tasks. However, the model
still has some limitations, such as the sparse representation of graphs obtained by structuring text graphs
when the input prompts are too short. This leads to problems such as the model results may not be optimal.
Therefore, there is still a long way to go in the research of controlled text generation, and there are many
methods or new models that can be improved or optimized in the future, and more efforts need to be invested
in the research.

Acknowledgement: None.

Funding Statement: The authors received no specific funding for this study.



1374 Comput Mater Contin. 2025;84(1)

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design: Jun Tu;
data collection, analysis, interpretation of results and draft manuscript preparation: Tian Zhao; manuscript guidance:
Puzheng Quan, Ruisheng Xiong. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Data openly available in a public repository. The data that support the findings
of this study are openly available in github at https://github.com/gcunhase/ArXivAbsTitleDataset; https://github.com/
seanreed1111/yelp-reviews (accessed on 10 April 2025).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Zhang H, Song H, Li S, Zhou M, Song D. A survey of controllable text generation using transformer-based pre-

trained language models. ACM Comput Surv. 2023;56(3):1–37. doi:10.1145/3676955.
2. Prabhumoye S, Black AW, Salakhutdinov R. Exploring controllable text generation techniques. In: Proceedings of

the 28th International Conference on Computational Linguistics. Barcelona, Spain (Online); 2020. p. 1–14.
3. Liu P, Yuan W, Fu J, Jiang Z, Hayashi H, Neubig G. Pre-train, prompt, and predict: a systematic survey of prompting

methods in natural language processing. ACM Comput Surv. 2023;55(9):1–35. doi:10.1145/3560815.
4. Zheng X, Lin H, Han X, Sun L. Toward unified controllable text generation via regular expression instruction. In:

Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference
of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers). Nusa Dua,
Bali: Association for Computational Linguistics; 2023. p. 1–14.

5. Han J, Wang Q, Zhang L, Chen W, Song Y, Mao Z. Text style transfer with contrastive transfer pattern mining.
In: Rogers A, Boyd-Graber J, Okazaki N, editors. Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Toronto, ON, Canada: Association for Computational
Linguistics; 2023. p. 7914–27.

6. He X. Parallel refinements for lexically constrained text generation with BART. In: Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. Online and Punta Cana, Dominican Republic;
2021. p. 8653–66.

7. Cui Y, Che W, Liu T, Qin B, Wang S, Hu G. Revisiting pre-trained models for chinese natural language processing.
In: Cohn T, He Y, Liu Y, editors. Findings of the Association for Computational Linguistics: EMNLP 2020. Online;
2020. p. 657–68.

8. Ouyang L, Wu J, Jiang X, Almeida D, Wainwright C, Mishkin P, et al. Training language models to follow
instructions with human feedback. In: Koyejo S, Mohamed S, Agarwal A, Belgrave D, Cho K, Oh A, editors.
Advances in neural information processing systems. Vol. 35. Newry, UK: Curran Associates, Inc.; 2022. p.
27730–44.

9. Zhou W, Jiang YE, Wilcox E, Cotterell R, Sachan M. Controlled text generation with natural language instructions.
In: Proceedings of the 40th International Conference on Machine Learning; 2023. Vol. 202, p. 42602–13

10. Qian J, Dong L, Shen Y, Wei F, Chen W. Controllable natural language generation with contrastive prefixes. In:
Findings of the Association for Computational Linguistics: ACL 2022; 2022; Dublin, Ireland. p. 2912–24.

11. Gu Y, Feng X, Ma S, Zhang L, Gong H, Qin B. A distributional lens for multi-aspect controllable text generation.
In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing; 2022; Abu Dhabi,
United Arab Emirates. p. 1023–43.

12. Zou X, Yin D, Zhong Q, Yang H, Yang Z, Tang J. Controllable generation from pre-trained language models
via inverse prompting. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining: KDD ’21; 2021; New York, NY, USA. p. 2450–60. doi:10.1145/3447548.3467418.

13. Pascual D, Egressy B, Meister C, Cotterell R, Wattenhofer R. A plug-and-play method for controlled text generation.
In: Moens MF, Huang X, Specia L, Wen-tau Yih S, editors. Findings of the Association for Computational
Linguistics: EMNLP 2021. Punta Cana, Dominican Republic; 2021. p. 3973–97.

https://github.com/gcunhase/ArXivAbsTitleDataset
https://github.com/seanreed1111/yelp-reviews
https://doi.org/10.1145/3676955
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3447548.3467418


Comput Mater Contin. 2025;84(1) 1375

14. Yang K, Klein D. FUDGE: controlled text generation with future discriminators. In: Toutanova K, Rumshisky A,
Zettlemoyer L, Hakkani-Tur D, Beltagy I, Bethard S, et al., editors. Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies. Online:
Association for Computational Linguistics; 2021. p. 3511–35.

15. Gu Y, Feng X, Ma S, Wu J, Gong H, Qin B. Improving controllable text generation with position-aware weighted
decoding. In: Muresan S, Nakov P, Villavicencio A, editors. Findings of the Association for Computational
Linguistics: ACL 2022. Dublin, Ireland: Association for Computational Linguistics; 2022. p. 3449–67.

16. Chen J, Wu Y, Jia C, Zheng H, Huang G. Customizable text generation via conditional text generative adversarial
network. Neurocomputing. 2020;416(1):125–35. doi:10.1016/j.neucom.2018.12.092.

17. Welleck S, Kulikov I, Roller S, Dinan E, Cho K, Weston J. Neural text generation with unlikelihood training. In:
International Conference on Learning Representations; 2020. p. 1–18.

18. Su Y, Lan T, Wang Y, Yogatama D, Kong L, Collier N. A contrastive framework for neural text generation. In: Koyejo
S, Mohamed S, Agarwal A, Belgrave D, Cho K, Oh A, editors. Advances in neural information processing systems.
Vol. 35. Newry, UK: Curran Associates, Inc.; 2022. p. 21548–61.

19. Shu L, Papangelis A, Wang YC, Tur G, Xu H, Feizollahi Z, et al. Controllable text generation with focused variation.
In: Cohn T, He Y, Liu Y, editors. Findings of the Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics; 2020. p. 3805–17.

20. Chen Y, Gröner H, Zarrieß S, Eger S. Evaluating diversity in automatic poetry generation. In: Al-Onaizan Y, Bansal
M, Chen YN, editors. Proceedings of the 2024 conference on empirical methods in natural language processing.
Miami, FL, USA: Association for Computational Linguistics; 2024. p. 19671–92.

21. Li X, Thickstun J, Gulrajani I, Liang PS, Hashimoto TB. Diffusion-LM improves controllable text generation. In:
Koyejo S, Mohamed S, Agarwal A, Belgrave D, Cho K, Oh A, editors. Advances in neural information processing
systems. Vol. 35. Newry, UK: Curran Associates, Inc.; 2022. p. 4328–43.

22. Lovelace J, Kishore V, Wan C, Shekhtman E, Weinberger KQ. Latent diffusion for language generation. In: Oh
A, Naumann T, Globerson A, Saenko K, Hardt M, Levine S, editors. Advances in neural information processing
systems. Vol. 36. Newry, UK: Curran Associates, Inc.; 2023. p. 56998–7025.

23. Liang X, Tang Z, Li J, Zhang M. Open-ended long text generation via masked language modeling. In: Rogers A,
Boyd-Graber J, Okazaki N, editors. Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Toronto, ON, Canada: Association for Computational Linguistics; 2023. p.
223–41.

24. Li Q, Li P, Bi W, Ren Z, Lai Y, Kong L. Event transition planning for open-ended text generation. In: Muresan S,
Nakov P, Villavicencio A, editors. Findings of the Association for Computational Linguistics: ACL 2022. Dublin,
Ireland: Association for Computational Linguistics; 2022 May 22–27. p. 3412–26. doi:10.18653/v1/2022.findings-acl.
269.

25. Mu F, Li W. Enhancing text generation via multi-level knowledge aware reasoning. In: International Joint
Conference on Artificial Intelligence; 2022; Vienna, Austria. p. 4310–6.

26. Hu Z, Chan HP, Liu J, Xiao X, Wu H, Huang L. PLANET: dynamic content planning in autoregressive transformers
for long-form text generation. In: Muresan S, Nakov P, Villavicencio A, editors. Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association
for Computational Linguistics; 2022. p. 2288–305.

27. Krause B, Gotmare AD, McCann B, Keskar NS, Joty S, Socher R, et al. GeDi: generative discriminator guided
sequence generation. In: Moens MF, Huang X, Specia L, Wen-tau Yih S, editors. Findings of the Association
for Computational Linguistics: EMNLP 2021. Punta Cana, Dominican Republic: Association for Computational
Linguistics; 2021. p. 4929–52.

28. Guan J, Huang F, Zhao Z, Zhu X, Huang M. A knowledge-enhanced pretraining model for commonsense story
generation. Trans Assoc Comput Linguist. 2020;8(5):93–108. doi:10.1162/tacl_a_00302.

https://doi.org/10.1016/j.neucom.2018.12.092
https://doi.org/10.18653/v1/2022.findings-acl.269
https://doi.org/10.18653/v1/2022.findings-acl.269
https://doi.org/10.1162/tacl_a_00302


1376 Comput Mater Contin. 2025;84(1)

29. Guan J, Mao X, Fan C, Liu Z, Ding W, Huang M. Long text generation by modeling sentence-level and discourse-
level coherence. In: Zong C, Xia F, Li W, Navigli R, editors. Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing, ACL/IJCNLP 2021, (Volume 1: Long Papers); 2021 Aug 1–6. Virtual Event: Association for Computational
Linguistics; 2021. p. 6379–93.

30. Xu P, Patwary M, Shoeybi M, Puri R, Fung P, Anandkumar A, et al. Controllable story generation with external
knowledge using large-scale language models. In: Conference on Empirical Methods in Natural Language
Processing 2020. Online; 2020. p. 2831–45.

31. Lee J, Stevens N, Han SC, Song M. A survey of large language models in finance (FinLLMs). Neural Comput Appl.
2024;33(240):1877. doi:10.1007/s00521-024-10495-6.

32. Liang X, Song S, Niu S, Li Z, Xiong F, Tang B, et al. UHGEval: benchmarking the hallucination of chinese large
language models via unconstrained generation. In: Ku LW, Martins A, Srikumar V, editors. Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Bangkok, Thailand:
Association for Computational Linguistics; 2024. p. 5266–93.

33. Bartsch H, Jorgensen O, Rosati D, Hoelscher-Obermaier J, Pfau J. Self-consistency of large language models
under ambiguity. In: Belinkov Y, Hao S, Jumelet J, Kim N, McCarthy A, Mohebbi H, editors. Proceedings of
the 6th blackboxnlp workshop: analyzing and interpreting neural networks for NLP. Singapore: Association for
Computational Linguistics; 2023. p. 89–105.

34. Havaldar S, Singhal B, Rai S, Liu L, Guntuku SC, Ungar L. Multilingual language models are not multicultural:
a case study in emotion. In: Barnes J, De Clercq O, Klinger R, editors. Proceedings of the 13th Workshop on
Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis. Toronto, ON, Canada: Association
for Computational Linguistics; 2023. p. 202–14.

35. Liu Z, Yang K, Zhang T, Xie Q, Yu Z, Ananiadou S. EmoLLMs: a series of emotional large language models
and annotation tools for comprehensive affective analysis. In: KDD’24: Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining; 2024; Barcelona, Spain. p. 5487–96.

36. Hua X, Wang L. PAIR: planning and iterative refinement in pre-trained transformers for long text generation. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online;
2020. p. 781–93.

37. Kitaev N, Kaiser L, Levskaya A. Reformer: the efficient transformer. In: ICLR 2020: The Eighth International
Conference on Learning Representations. Online; 2020. p. 1–12.

38. Qin G, Feng Y, Van Durme B. The NLP task effectiveness of long-range transformers. In: Vlachos A, Augenstein
I, editors. Proceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics. Dubrovnik, Croatia: Association for Computational Linguistics; 2023. p. 3774–90.

39. Zhang Y, Carvalho D, Valentino M, Pratt-Hartmann I, Freitas A. Improving semantic control in discrete latent
spaces with transformer quantized variational autoencoders. In: Graham Y, Purver M, editors. Findings of
the Association for Computational Linguistics: EACL 2024. St. Julian’s, Malta: Association for Computational
Linguistics; 2024. p. 1434–50.

40. Yang X, Peynetti E, Meerman V, Tanner C. What GPT knows about who is who. In: Tafreshi S, Sedoc J, Rogers A,
Drozd A, Rumshisky A, Akula A, editors. Proceedings of the Third Workshop on Insights from Negative Results
in NLP. Dublin, Ireland: Association for Computational Linguistics; 2022. p. 75–81.

41. Lei Y, Huang R, Wang L, Beauchamp N. Sentence-level media bias analysis informed by discourse structures. In:
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing; 2022; Abu Dhabi,
United Arab Emirates. p. 10040–50.

42. Cai J, Ahmed SR, Bonn J, Wright-Bettner K, Palmer M, Martin JH. CAMRA: copilot for AMR annotation. In: Feng
Y, Lefever E, editors. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Singapore: Association for Computational Linguistics; 2023. p. 381–8.

43. Wang F, Li F, Fei H, Li J, Wu S, Su F, et al. Entity-centered cross-document relation extraction. In: Goldberg Y,
Kozareva Z, Zhang Y, editors. Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics; 2022. p. 9871–81.

https://doi.org/10.1007/s00521-024-10495-6


Comput Mater Contin. 2025;84(1) 1377

44. Sun X, Sun Z, Meng Y, Li J, Fan C. Summarize, outline, and elaborate: long-text generation via hierarchical
supervision from extractive summaries. In: Calzolari N, Huang CR, Kim H, Pustejovsky J, Wanner L, Choi KS et al.,
editors. Proceedings of the 29th International Conference on Computational Linguistics. Gyeongju, Republic of
Korea: International Committee on Computational Linguistics; 2022. p. 6392–402.

45. Cavalin PR, Vasconcelos M, Grave M, Pinhanez CS, Ribeiro VHA. From disjoint sets to parallel data to train
seq2seq models for sentiment transfer. In: Findings of the Association for Computational Linguistics: EMNLP
2020. Online; 2020. p. 689–98.

46. Wilmot D, Keller F. Modelling suspense in short stories as uncertainty reduction over neural representation. In:
Jurafsky D, Chai J, Schluter N, Tetreault J, editors. Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational Linguistics; 2020. p. 1763–88.

47. Yang E, Liu M, Xiong D, Zhang Y, Chen Y, Xu J. Long text generation with topic-aware discrete latent variable
model. In: Goldberg Y, Kozareva Z, Zhang Y, editors. Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing. United Arab Emirates: Association for Computational Linguistics; 2022. p. 8100–7.

48. Song Y, Liu Z, Bi W, Yan R, Zhang M. Learning to customize model structures for few-shot dialogue generation
tasks. In: Jurafsky D, Chai J, Schluter N, Tetreault J, editors. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for Computational Linguistics; 2020. p. 5832–41.

49. Swamy S, Tabari N, Chen C, Gangadharaiah R. Contextual dynamic prompting for response generation in task-
oriented dialog Systems. In: Vlachos A, Augenstein I, editors. Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Linguistics. Dubrovnik, Croatia: Association for Computational
Linguistics; 2023. p. 3102–11.


	GSPT-CVAE: A New Controlled Long Text Generation Method Based on T-CVAE
	1 Introduction
	2 Related Work
	3 Model Architecture GSPT-CVAE
	4 Results and Discussion
	5 Conclusions
	References


