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ABSTRACT: The 3GPP standard defines the requirements for next-generation wireless networks, with particular
attention to Ultra-Reliable Low-Latency Communications (URLLC), critical for applications such as Unmanned Aerial
Vehicles (UAVs). In this context, Non-Orthogonal Multiple Access (NOMA) has emerged as a promising technique
to improve spectrum efficiency and user fairness by allowing multiple users to share the same frequency resources.
However, optimizing key parameters–such as beamforming, rate allocation, and UAV trajectory–presents significant
challenges due to the nonconvex nature of the problem, especially under stringent URLLC constraints. This paper
proposes an advanced deep learning-driven approach to address the resulting complex optimization challenges. We
formulate a downlink multiuser UAV, Rate-Splitting Multiple Access (RSMA), and Multiple Input Multiple Output
(MIMO) system aimed at maximizing the achievable rate under stringent constraints, including URLLC quality-of-
service (QoS), power budgets, rate allocations, and UAV trajectory limitations. Due to the highly nonconvex nature
of the optimization problem, we introduce a novel distributed deep reinforcement learning (DRL) framework based
on dual-agent deep deterministic policy gradient (DA-DDPG). The proposed framework leverages inception-inspired
and deep unfolding architectures to improve feature extraction and convergence in beamforming and rate allocation.
For UAV trajectory optimization, we design a dedicated actor-critic agent using a fully connected deep neural network
(DNN), further enhanced through incremental learning. Simulation results validate the effectiveness of our approach,
demonstrating significant performance gains over existing methods and confirming its potential for real-time URLLC
in next-generation UAV communication networks.

KEYWORDS: Deep learning; quality-of-service (QoS); rate-splitting multiple access (RSMA); unmanned aerial vehicle
(UAV); ultra-reliable low-latency communication (URLLC)

1 Introduction
As 5G has inspired widespread research efforts, ultra-reliable and low-latency communications

(URLLC) will be crucial in driving the future of wireless industrial automation and are designed to support
critical applications that require highly reliable communication [1,2]. By the 3rd Generation Partnership
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Project (3GPP) standard, the implementation of URLLC needs to ensure that data packets are delivered
in a few milliseconds with the target reliability of 99.999% or higher [3]. However, this result can be
obtained through a combination of advanced network technologies like non-orthogonal multiple access
(NOMA). When NOMA is applied, data is decoded sequentially based on its power levels. This approach
facilitates improved interference management and ensures that users with high reliability demands receive
more consistent and reliable data [4]. Moreover, NOMA-based beamforming can meet the specific needs
of URLLC communications by adapting networks to constantly changing conditions and varied applica-
tion requirements [5,6]. Although NOMA has several benefits for URLLC communications, it comes up
against problems of great complexity and unsatisfactory effect when multiple antennas are introduced for
transmission [7]. Consequently, Rate-Splitting Multiple Access (RSMA) [8–10] has recently been suggested
as an appropriate approach to achieve a more general and robust transmission framework than NOMA
Systems [11–13], particularly in environments where users have different expectations when it comes to
transmission rates. The main idea is to split user messages into two parts, a common part and a private
part. Thus, the common parts and the private parts are encoded separately in a common data stream and
private data streams, respectively [9]. Noting that interference generated by other users is partially decoded
and treated as noise [14]. During reception, the signals are successively decoded. First, the user subtracts
the common data stream and decodes their own private data stream, followed by the decoding of their
own private data stream [15]. Applied in this context, RSMA could offer great spectral efficiency and reduce
interference between users. RSMA flexibility can better control the problems inherent in NOMA by adapting
the undercoats to suit channel conditions and user requirements. In the URLLC, the time and reliability
requirements can hardly be met by a single communication link [16]. To overcome this challenge, a new
support system architecture should be designed.

Joint optimization of beamforming vectors, rate allocation, and UAV trajectory under URLLC con-
straints forms a highly non-convex problem that cannot be solved efficiently using conventional optimization
techniques [17]. Existing approaches typically address these components separately, leading to suboptimal
solutions that fail to meet URLLC’s real-time processing requirements. For instance, the alternating opti-
mization method proposed in [18] requires iterative updates that introduce unacceptable latency (≥2.5 ms)
for true URLLC applications. While Deep Reinforcement Learning (DRL) has shown promise for wireless
resource allocation [19], current single-agent frameworks lack the capability to simultaneously handle the
continuous action space of beamforming/rate allocation and the discrete nature of trajectory planning.
The work in [20] demonstrates this limitation, where a 23% performance degradation was observed when
applying single-agent DRL to similar problems. There exists a significant gap in incorporating domain-
specific knowledge from communication theory into DRL frameworks. Most existing solutions treat the
optimization problem as a black box [21], failing to leverage known mathematical structures that could
accelerate convergence and improve interpretability. This is particularly problematic for URLLC applications
where performance guarantees are essential. To this end, we study the URLLC in multiuser UAV rate splitting
multiple access to maximize the average data rate.

1.1 Motivations and Contributions
Motivated by recent advancements and the need for real-time URLLC services in multiuser UAV-aided

RSMA networks, this paper leverages state-of-the-art deep learning methodologies to address the inherent
complexities and optimization challenges. Our contributions are detailed as follows.

• First, we investigate a downlink multiuser UAV RSMA MIMO network targeting the maximization of
the achievable rate, subject to stringent URLLC quality-of-service (QoS), power budget constraints, rate
allocation, and UAV trajectory limitations. The resulting problem formulation leads to a nonconvex
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optimization challenge that is difficult to solve directly within the latency constraints characteristic of
next-generation networks.

• To effectively address the intractability of jointly optimizing beamforming vectors, rate allocations, and
UAV trajectory parameters, we propose a novel distributed deep reinforcement learning (DRL) frame-
work utilizing dual-agent deep deterministic policy gradient (DA-DDPG). This framework introduces a
sophisticated neural network architecture for beamforming and rate allocation. Specifically, we integrate
inception-like and deep unfolding mechanisms to construct the network layers, allowing multi-scale
feature extraction and accelerated convergence.

• To apply the above mechanisms, we develop a successive pseudo-convex approximation (SPCA) and
numerical solutions for rate allocation and the beamforming subproblem. To the best of our knowledge,
this work represents the first attempt at incorporating these recent deep learning advances into solving
complex optimization problems in wireless communications. Additionally, a fully connected deep neural
network (DNN) is employed for the critic network.

• Regarding UAV trajectory optimization, we utilize a fully connected DNN to build the corresponding
actor-critic-based agent, ensuring efficient learning and robust decision-making.

• We also apply an incremental learning training procedure [1] to improve model accuracy, reduce
the complexity of the deep unfolding-based model, and significantly lower the volume of required
training sequences.

• Simulation experiments conducted validate the efficacy of the proposed DA-DDPG framework.
Numerical results illustrate that our proposed method consistently outperforms existing state-of-
the-art techniques, underscoring its suitability and effectiveness for real-time URLLC-enabled UAV
communications.

2 Related Work
Over the past few years, the research community has made significant efforts to investigate the complex

and new challenges of URLLC-UAV communication based on the NOMA or the RSMA approaches [22–24].
Notably, the study in [22] proposed a model to deploy UAVs as relays between the base station and remote
devices. The aim was to overcome the poor connectivity due to the presence of obstacles. In the proposed
model, the authors targeted the maximization of the transmission rate on the backward link while satisfying
the requirement of URLLC on the forward link. More recently, the authors in [23] considered the joint
optimization problem for UAV-enabled URLLC-based mobile edge computing, which is divided into three
subproblems. The first two subproblems optimize the UAV’s horizontal and vertical locations, while the
third one optimizes the offloading bandwidths and processing frequencies. Within this framework, they
minimized the system’s computation latency under an overall resource constraint.

In [24], a global iterative algorithm based on the alternating direction method of multipliers and random
perturbation was proposed to minimize total error probability and jointly optimize blocklength allocation
and UAV deployment. These contributions have made significant efforts in the field of URLLC-assisted
UAV communication. However, the studies referred to above were carried out in the NOMA scenario, and
the RSMA has received relatively little attention in the context of URLLC-assisted UAV networks. NOMA
uses successive interference cancellation (SIC), which increases the complexity of processing in UAVs. This
additional complexity can result in delays, causing problems in URLLC scenarios where extremely low
latency is essential. In the current technical literature, only a few studies have explored RSMA-based URLLC-
assisted wireless networks, as evidenced by [25]. In [25], RSMA was introduced to achieve energy-efficient
(EE) URLLC in cell-free massive MIMO systems. In particular, the power allocation problem was formulated
to enhance the EE.
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Huang et al. introduced an artificial intelligence named RSMA-Deep Reinforcement Learning
(DRL)-based approach. The authors demonstrated that, compared to the space-division multiple access
(SDMA)-DRL protocol, the proposed method can achieve higher energy efficiency. Similarly, to maximize
transmission power at every moment under energy harvesting, the authors in [26] presented a DRL method
called the soft actor-critic algorithm. In particular, they used the Han–Powell quasi-Newton approach in
sequential least squares programming (SLSQP) to optimize the sum-rate for the specified transmission
power through DRL. The work in [27] presents a framework that integrates the Reconfigurable Intelligent
Surface (RIS) with an intelligent satellite UAV-terrestrial network. The multiple access technique used
in the communication architecture was NOMA. The authors formulated a multi-objective optimization
problem that optimizes UAV trajectory, RIS phase shift, and transmit beamforming while minimizing UAV
energy consumption and maximizing the sum rate. To solve the optimization problem, the multi-objective
deep deterministic policy gradient (MO-DDPG) technique was suggested. In simulations, better data rates,
energy consumption, and throughput were achieved when compared to systems without integrated RIS
or random phase shift systems. The authors in [28] proposed a deep learning (DL)-based RSMA system
for RIS-assisted terahertz massive multiple-input multiple-output (MIMO) systems. They presented a low-
complexity approximate weighted minimum mean square error (AWMMSE) digital precoding scheme.
Then, by combining AWMMSE with deep learning (DL), the deep unfolding [29] active precoding network
(DFAPN) scheme was performed at the Base Station (BS), while passive precoding was performed using a
transformer-based data-driven RIS reflecting network (RRN) at the RIS. Results showed that channel state
information has a better achievable rate for the worst user device when compared to corresponding SDMA-
based systems. Authors in [30] introduced the deep deterministic policy gradient (DDPG) approach to
maximize the sum rate in downlink UAV-aided RSMA systems, where the trajectory and UAV beamforming
matrix are jointly optimized. In this context, the UAV’s uniform rectangular array (URA) beamforming
design and mobility functions are considered. Unfortunately, there is currently a lack of research on the
combination of URLLC and RSMA in a wireless UAV network. Hence, it is a mathematically challenging
task to study the downlink achievable rate in UAV communication based on URLLC-RSMA.

3 System Model and Problem Formulation
In this work, a downlink multiuser UAV RSMA-URLLC system is considered, as depicted in Fig. 1,

where the UAV is equipped with M antennas and serving N single-antenna users via short-packet com-
munication (SPC), where the latency is always considered less than 1 ms, which indicates that the channel
conditions can be viewed as quasi-static since this latency is shorter than the channel coherence time. The
flying period of the UAV is divided into T time slots, with δt denoting the set of users as N = {1, 2, ⋅ ⋅ ⋅ , N}
and the locations of the UAV and the users are respectively given as Ln = (xn , yn)T , n ∈ N and qn[t] =
(xu[t], yu[t], zu[t])T . The UAV movement can be defined as

∥qu(t + 1) − qu(t)∥2 ≤ D2, t = 1, ⋅ ⋅ ⋅ , T − 1
qu(0) = q0, t = 1, ⋅ ⋅ ⋅ , T − 1 (1)
∥qu(T) − qF

u∥2 ≤ D2,

where D = δtvmax with vmax represents the maximum velocity of the UAV.
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Figure 1: Multiuser RSMA-URLLC UAV network

Since RSMA is employed, the transmitted message from the UAV to the user n is divided into a
common message wc and a private message wn . Hence, two data streams are transmitted, and performing
the precoding on these data streams, the transmitted signal at the time slot t is given as

x[t] = vc[t]ss[t] +
N
∑
n=1

vn[t]sn[t], (2)

where vc[t] ∈ CM×1 and vn[t] ∈ CM×1 are the beamforming vectors with Pc[t] = vcvH
c [t] and Pn[t] = vnvH

n [t]
denote the transmit power of the common and private streams, respectively; sc and sn are the data streams of
the common and private messages with EssH = I, and s is the total transmit data stream. The received signal
at the user n at the time slot t is given as

yn[t] = hH
u ,n[t]x[t] + ηn[t], (3)

where hu ,n ∈ CM×1 is the channel vector between the UAV and the user n and ηn ∼ CN(0, σ 2
n) is the additive

white Gaussian noise (AWGN). Based on RSMA protocol, each user first decodes the common message using
successive interference cancellation (SIC) and then decodes its own private signal. The signal-to-interference-
plus-noise ratio (SINR) of the user n decoding the common message at the time slot t is given as

γn ,c[t] =
∣hH

u ,n[t]vc[t]∣2

∑K
l=1 ∣hH

u ,n[t]vl [t]∣2 + σ 2
n

. (4)

Similarly, the SINR of the user n decoding its private message at the time slot t is given as follows:

γn , p[t] =
∣hH

u ,n[t]vn[t]∣2

∑K∑2
n

l=1, l≠n ∣hH
u ,n[t]vl [t]∣2

. (5)

To formulate the quality-of-service (QoS) constraints of URLLC, we follow the derivation in Eq. (5),
where the approximate maximum achievable rate of the user n at the time slot t and for a multi-antenna with
quasi-static flat fading channel can be expressed as follows:

r(ε)u ,n ,c[t] = log2(1 + γn ,c[t]) −
√

V(γn ,c[t])
B

Q−1(εn ,c)
ln2

, (6)
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where V(γn ,c[t]) = 1 − (1 − γn ,c[t])−2 is the channel dispersion, and B is the transmission channel block-
length, Q−1(εn ,c) is the inverse of the Gaussian Q-function, and εn ,c[t] = Q( f (γn ,c[t], B, ru ,n ,c[t])) denotes
the decoding error probability with f (γn ,c[t], B, ru ,n ,c[t]) defined as follows:

f (γn ,c[t], B, ru ,n ,c[t]) = ln2

√
B
v
(log2)(1 + γn ,c[t]) − r(ε)u ,n ,c[t]. (7)

To guarantee the decoding of the common message by the user n, the constraints ∑N
n=1 C(ε)u ,n ,c[t] ≤

min
n∈N

{r(ε)u ,n ,c[t]} is imposed.

Similarly, the achievable data rate of the user n to decode the private stream is given as

r(ε)u ,n ,c[t] = log2(1 + γn , p[t]) −
√

V(γn , p[t])
B

Q−1(εn , p)
ln2

. (8)

The achievable rate of the user n at the time slot t is defined as

R(ε)u ,n[t] = C(ε)u ,n ,c[t] + r(ε)u ,n , p[t]. (9)

Aiming at maximizing the total achievable rate of the system, we formulate our optimization problem
as follows:

max
v ,C ,Q

N
∑
n=1

R(ε)u ,n[t],

s.t.

C1 ∶
N
∑
n=1

C(ε)u ,n ,c[t] ≤ min
n∈N

{r(ε)u ,n ,c[t]} C2 ∶ ∣vc[t]∣2 +
N
∑
n=1

∣vn[t]∣2 ≤ Pmax C3 ∶ C(ε)u ,n ,c[t] ≥ 0,

C4 ∶ r(ε)u ,n ,c[t] ≥ 0, C5 ∶ εn , p ≤ εth , εn ,c ≤ εthC6 ∶ R(ε)u ,n[t] ≥ R(min)
u ,n

C7 ∶ vn[t] ≥ 0, vc[t] ≥ 0, (10)

where v = [vc , v1 , ..., vN]T ∈ C(N+1)×M and C = [r(ε)u ,n ,c , C(ε)u ,1,c , C(ε)u ,2,c , ⋅ ⋅ ⋅ , C(ε)u ,N ,c , C(ε)u ,1, p , C(ε)u ,2, p , ⋅ ⋅ ⋅ , C(ε)u ,N , p]
T
∈

R(2N+1)×1. The constraint C1 ensures the successful decoding of the common stream by all users. The
constraint C2 is the power budget. The constraints C5 and C6 are the QoS of URLLC with Rmin

u ,n representing
the minimum rate requirements.

Problem (10) is nonconvex due to the nonconvexity of the objective function and the tight coupling of
v , C, and Q. Joint optimization of the beamforming, rate allocation, and UAV trajectory is intractable. Next,
instead of directly solving the problem mathematically, we design a DRL framework to jointly optimize the
above three parameters.

In the following sections, we provide a novel deep reinforcement framework to handle the problem
in (10). The proposed framework combines inception-like mechanisms, deep unfolding, and dual-agent DRL
within the context of URLLC and RSMA-assisted UAV networks. It offers a practical and scalable DRL
framework tailored specifically for real-time wireless optimization scenarios involving multiple antennas and
stringent QoS demands.
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4 Deep Unfolding-Based Inception-like Model
The proposed model architecture incorporates an inception-like block, where the inception mechanism

is employed to enhance the design of the beamforming and rate allocation actor. The inception mechanism,
inspired by convolutional neural networks, allows the model to process different features at multiple scales
by applying several operations (e.g., different filter sizes or layers) in parallel. This increases the flexibility
and expressiveness of the model, allowing it to better capture the diverse patterns and correlations between
beamforming and rate allocation decisions. Additionally, the concept of deep unfolding is integrated into
the actor’s design [31,32]. Deep unfolding involves converting iterative optimization algorithms into neural
networks by mapping each iteration to a neural network layer. This technique allows the model to mimic
traditional optimization algorithms while leveraging the learning capability of deep neural networks. By
using deep unfolding, the beamforming and rate allocation actor is able to emulate efficient optimization
steps, improving both accuracy and convergence speed.

To build the proposed deep unfolding-based inception-like model, first, we solve the problem using a
traditional optimization method, namely, successive pseudo-convex optimization for the beamforming and
the interior point for the rate allocation. The beamforming and rate allocation subproblem is given as (we
removed [t] for simplicity)

max
v ,C

N
∑
n=1

R(ε)u ,n , (11)

s.t.
N
∑
n=1

C(ε)u ,n ,c ≤ min
n∈N

{r(ε)u ,n ,c} (11a)

∣vc ∣2 +
N
∑
n=1

∣vn ∣2 ≤ Pmax (11b)

C(ε)u ,n ,c ≥ 0, (11c)

r(ε)u ,n ,c ≥ 0, (11d)
εn , p ≤ εth , εn ,c ≤ εth (11e)

R(ε)u ,n ≥ R(min)
u ,n (11f)

vn ≥ 0, vc ≥ 0. (11g)

The problem in (11) can be further decoupled into rate allocation and beamforming. The rate allocation
subproblem is given as

max
v ,C

N
∑
n=1

R(ε)u ,n (12)

s.t. (11a), (11c) , (11d), (11e), (11f).

Following the analysis in [2], constraint (11f) can be transformed into C(ε)u ,n ,c ≥ R(min)
u ,n − r(ε)

∗

u ,n , p , assuming
that the solution r(ε)

∗

u ,n , p is given. Then, the problem is decoupled into two subproblems as follows:

C∗c = argmax
Cc

N
∑
n=1

C(ε)u ,n ,c (13)

s.t. C(ε)u ,n ,c ≥ R(min)
u ,n − r(ε∗)u ,n , p∀n ∈ N , (13a)
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C∗n , p = arg max
Cn , p

N
∑
n=1

r(ε)u ,n , p (14)

s.t. 0 ≤ r(ε)u ,n , p ≤ log2 (1 + γn , p) −

�
���V (γn , p)

B
Q−1 (εn , p)

ln 2
,∀n ∈ N , (14a)

where C∗c , C∗n , p ∈ C = [r(ε)u ,n ,c , C(ε)u ,1,c , C(ε)u ,2,c , ..., C(ε)u ,N ,c , C(ε)u ,1, p , ..., C(ε)u ,N , p]
T
∈ R(2N+1)×1. The problem in (13) is

convex and can be solved by standard optimization methods such as the interior point. For C∗c , the objective
function is linear, and the optimal solution can be expressed as follows:

C∗c =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Cmax
n ,c if γn ,c = max

l∈N
{γl ,c}

Cmin
n ,c otherwise

, (15)

where Cmax
n ,c = max {r(ε)u ,n ,c −∑N

l=1, l≠n C(ε)u ,n ,c , 0} and Cmin
n ,c = max {Rmin

u ,n − r(ε
∗)

u ,n ,c , 0}. The structure of the
proposed solution in (15) is very helpful in designing deep unfolding layers for our proposed rate allo-
cation network. However, the solution for (14) is numerical. Therefore, we use linear layers to design the
corresponding neural network of (14).

The successive pseudo-convex approximation (SPCA) has emerged as a pivotal technique in wireless
communications for transforming nonconvex optimization problems into tractable convex forms through
iterative approximations [3,33]. This approach is particularly effective for beamforming design, where the
core subproblem is formulated as

max
v

N
∑
n=1

R(ε)u ,n (16)

s.t. ∣vc[t]∣2 +
N
∑
n=1

∣vn[t]∣2 ≤ Pmax , (16a)

εn , p ≤ εth , εn ,c ≤ εth , (16b)
vn[t] ≥ 0, vc[t] ≥ 0. (16c)

Problem (16) is nonconvex due to the nonconvexity of the objective function and constraint (16b). Using
the conventional Software Communications Architecture (SCA), a surrogate function R̂(ε)u ,n is approximated
at the points v(τ)n of R(ε)u ,n is defined. Assuming that problem (10) has a closed and convex solution set V and
an optimal point V(τ), where v(τ)n ∈ V , R̂(ε)u ,n should satisfy the following technical conditions:

1. R̂(ε)u ,n is pseudo-concave for any v(τ)n ∈ V.
2. R̂(ε)u ,n is continuously differentiable in vn ∈ V and for any given v(τ)n ∈ V. Moreover, R̂(ε)u ,n is continuous in

vn ∈ V for v(τ)n ∈ V.
3. The gradients of R̂(ε)u ,n is identical to that of R(ε)u ,n for v(τ)n ∈ vn .
4. The set V is nonempty for τ = 1, ⋅ ⋅ ⋅ ,
5. The sequence {V(τ)}T

τ=1 is convergent for any convergent sequence {v(τ)}T
τ=1.

On the highlights of these technical conditions, the surrogate R̂(ε)u ,n function is defined as

R̂(ε)u ,n =R̂(ε)u ,−n (v; v(τ)) + (v − v(τ))
N
∑

l=1, l≠n
∇v R(ε)u ,n (v(τ)n ) . (17)
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Using the objective function, problem (16) can be rewritten as

max
v

N
∑
n=1

R̂(ε)u ,n (18)

s.t. (16a), (16c),

f (γ−n ,c (vc ; v(τ)c ) , B, r(ε)u ,−n ,c) + (vc − v(τ)c )
N
∑
l=1

∇vc f (γn ,c (v(τ)n ) , B, r(ε)u ,n ,c) ≤ Q−1 (εth) , (18a)

f (γ−n , p (vn ; v(τ)n ) , B, r(ε)u ,−n , p) + (vn − v(τ)n )
N
∑

l=1,l≠n
∇vn f (γn , p (v(τ)n ) , B, r(ε)u ,n , p) ≤ Q−1 (εth) , (18b)

where constraints (18a) and (18b) are transformations of constraint (16b). Applying Lagrange relaxation and
Karush-Kuhn-Tucker (KKT) conditions, the beamforming can be expressed in the following closed-form
expressions:

v(τ)n =

�
������

(β(τ)n , p + ζ(τ)n , p)Ψ2
u ,n ,1 (2β(τ)n , p − 2)

(Tr (hu ,nhH
u ,n))

6 (2 − (Θ(ε)u ,n)
2
)
− Ω(ε)u ,n

Ψ6
u ,n ,2

Tr (hu ,nhH
u ,n)Ψ2

u ,n ,3β(τ)n , p
, (19)

where Θ(ε)u ,n =
√

2
2 ln 2 e2(er f c−1(ε))2

, Ω(ε)u ,n = Q−1(ε)
ln 2 ( β(n , p τ)−1

(β(n , p τ))
2 ) with β(τ)n , p and ζ(τ)n , p denote Lagrange multipliers

associated with constraint (15). ψu ,n ,1 = ∑K∑2
l=1, l≠n Tr (hu , l hH

u , l), ψu ,n ,2 = ∑K
n=1 Tr (hu ,n hH

u ,n) + σ 2
n and ψ2

u ,n ,3 =
∑K

l=1 Tr (hu , l hH
u ,n) + σ 2

n . The proposed deep unfolding-based solution is designed using the formulas in (15)
and (19), and the solution of (13). Fig. 2 illustrates a block structure of the proposed deep-unfolding-based
neural network.

Figure 2: The structural design of a block of the proposed deep-unfolding-based neural network
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The deep unfolding-based layer in 2 is built to resemble an inception block by accommodating neurons
and layers in a mixed sequential and parallel structure to avoid the vanishing gradient problem. The block
in 2 will be used in the actor network in the proposed DA-DDPG framework in Section 4.

5 Proposed Deep Unfolding-Based DDPG Framework
This section presents a novel design of a DRL framework using the dual-agent deep deterministic policy

gradient (DA-DDPG) algorithm, and reformulates the problem as a Markov decision process (MDP). DA-
DDPG is an extension of the standard DDPG method, which incorporates two agents working in parallel.
One agent focuses on optimizing the continuous action space for beamforming and rate allocation, while
the other agent handles the UAV trajectory optimization. By using dual agents, the framework can effectively
decouple these two tasks, allowing for more specialized learning and faster convergence during training.

5.1 MDP Formulation
The traditional MDP consists of the following six-tuples: ⟨S ,A,R, T , υ⟩, which respectively stand for

the state space, action space, reward function, transition policies, and discount factor. During the learning
process, the state value Qπ(s) function is maximized to find the optimal policy π∗(s, a). The transition policy
π (a(t)∣s(t)) is mapping the state s(t) and the probability of choosing each possible action. The state-value
function Qπ(s) is defined as

Qπ (s) = Eπ [A(t)∣s(t)] = Eπ [
∞
∑
k=1

v(k)r(t+k+1)∣s(t)]∀s ∈ S , (20)

where Eπ is the expectation of the random variable when the agent follows the transition policy. A(t) =
∑∞k=1 v(k)r(t+k+1) can be considered the action that maximizes the sum discount reward obtained during the
process. The discount parameter v ∈ [0, 1] is used to weight the short-term and long-term rewards.

The state-value function Qπ(s∣a) can be written for the policy π (s(t)∣a(t))when the state value is known
to obtain the expected reward. Thus, we have

Qπ(s∣a) = Eπ [A(t)∣s(t), a(t)] = Eπ [
∞
∑
k=1

v(k)r(t+k+1)∣s(t), a(t)]∀a ∈ A. (21)

And the Bellman expectation equation can be expressed

Vπ (s) = Eπ [A(t)∣s(t)] = Qπ (s∣a)

= Eπ [A(t)∣s(t), a(t)] = Eπ [
∞
∑
k=1

v(k)r(t+k+1)∣s(t)]

= ∑
a∈A

π (a(t)∣s(t))(R(s ,a) + v ∑
s′∈S

Γ(s ,s′ ,a)Qπ (s′)) , (22)

where R(s ,a) = Eπ [r(t+1)∣s(t), a(t)] represents the reward function, and Γ(s ,s′ ,a) = P [s(t+1)∣s(t), a(t)] is the
matrix probability of the state transition.

By interacting with the environment through behaviors, the agent in DRL learns the policy and modifies
its behavior in response to rewards. The following provides a thorough explanation of the state space, action
space, and reward:
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1. State space S: The state space in our case includes two state subspaces S(t)
1 for the case of the

beamforming and rate allocation agent, and S(t)
2 for the UAV trajectory. S(t)

1 and S(t)
2 are given as

follows:

S(t)
1 = {{hu ,n[t]}N

n=1 , Pmax , a(t−1)
1 , A(t), M}, (23)

S(t)
2 = {qu[t], a(t−1)

2 , A(t), {Ln}N
n=1}, (24)

where a(t−1)
1 and a(t−1)

2 denote the actions from the last time slot for the beamforming and rate allocation
network and the UAV trajectory network, respectively.

2. Action space A: Similar to the case of the state space, the action space includes the actions from both
agents. Two action subspaces can be defined as follows:

A(t)
1 = {v[t], C[t]}, (25)

A(t)
2 = {qu[t]}, (26)

3. Reward: Following the structure of problem (10), the reward function should be built to maximize the
total achievable rate for the given constraints. Therefore, penalties are set to force the satisfaction of the
constraints while maximizing the objective function. Hence, the reward can be defined as follows:

R(t) =
⎧⎪⎪⎨⎪⎪⎩

−ρ if s is negative
∑N

n=1 R(ε)u ,n[t] otherwise
. (27)

5.2 Algorithm Description
The DA-DDPG algorithm is a reinforcement learning framework tailored specifically for continuous

optimization problems, incorporating two separate agents. The actor network creates actions depending on
the current state of each agent’s actor-critic structure, and the critic network assesses these actions to guide
policy improvements.

Specifically, each agent consists of two neural networks: a training network and a slowly updated
target network. The target networks are periodically updated using parameters from the training networks,
significantly contributing to stable and robust training by mitigating potential divergence issues common in
reinforcement learning.

The critic network is responsible for estimating the expected cumulative reward (Q-value) associated
with performing a specific action given a particular state. During training, the critic network parameters
θcr i t i c are adjusted by minimizing the temporal difference loss, which quantifies the discrepancy between the
predicted Q-value from the critic training network and the target network’s estimated Q-value. This update
is mathematically represented as

L(θtrain
cr i t i c) = (r(t) + vQ(θtar ge t

cr i t i c ∣s
(t+1), a′) − Q(θtrain

cr i t i c ∣s(t+1), a′))
2

, (28)

where r(t) is the immediate reward received after executing action a′ in state s(t), v is the discount factor
balancing immediate vs. future rewards, Q(θtar ge t

cr i t i c ∣s(t+1), a′) is the target critic network’s Q-value prediction,
and Q(θtrain

cr i t i c ∣s(t+1), a′) is the critic training network’s current Q-value estimation. The actor network aims
to find the optimal policy that maximizes expected rewards by following the policy gradient derived from
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the critic network. Its parameters are updated using the critic’s gradients concerning the action, thus directly
influencing the actions produced by the actor network to optimize the policy.

θ(t+1)
ac tor = θ(t)

ac tor − iac tor∇a Q(θtar ge t
cr i t i c ∣s

(t), a′)∇θ train
ac tor

π(θtrain
ac tor ∣s(t)). (29)

The parameters of the target networks for both the actor and critic are updated through a soft update
procedure to slowly track the training networks, helping stabilize the training process.

θtar ge t ← τθtrain + (1 − τ)θtar ge t , (30)

where τ is typically set to a small value such as 0.001. Algorithm 1 illustrates the training procedure for the
proposed DA-DDPG.

Algorithm 1: DA-DDPG training procedure
1: Initialize actor and critic networks θac tor , θcr i t i c and their target networks θtar ge t

ac tor , θtar ge t
cr i t i c

2: Initialize replay buffer B
3: for each episode do
4: Observe initial state s
5: for each timestep t do
6: Select action a = π(s∣θac tor) + noise
7: Execute action a, observe reward r and next state s′
8: Store transition (s, a, r, s′) in replay buffer B
9: Sample random minibatch of transitions from B
10: Update critic by minimizing loss:

L = (r + vQ(θtar ge t
cr i t i c ∣s′, a′) − Q(θtrain

cr i t i c ∣s, a))2

11: Update actor network using sampled policy gradient:

∇θ actor ≈
1
N ∑∇a Q(θcr i t i c ∣s, a)∇θ actor π(s∣θac tor)

12: Soft-update target networks:

θtar ge t ← τθtrain + (1 − τ)θtar ge t

13: Update state s = s′
14: end for
15: end for

The overall structure of the proposed DRL framework is given as in Fig. 3a. The network consists of two
agents, each agent has actor-critic structure for both training and target networks.

The beamforming and rate allocation actor is constructed using an inception-like deep unfolding-based
model from Section 4, while the critic is built using a fully connected deep neural network (DNN). On
the other hand, a fully connected DNN-based actor-critic architecture is used to design the UAV trajectory
network. The structure of the UAV trajectory is a DNN, as in Fig. 3b. In this architecture, the actor predicts the
optimal UAV trajectory, while the critic evaluates the predicted trajectory by calculating the value function.
The actor-critic structure ensures that the UAV trajectory network continuously improves its trajectory
decisions based on feedback from the critic, leading to more efficient trajectory optimization over time.
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Figure 3: Architectural diagrams of the proposed system: (a) The DA-DDPG framework structure and (b) The UAV
network architecture

5.3 Inference Steps and Complexity Analysis
During inference, the trained DA-DDPG algorithm executes actions based on learned policies without

further training. Initially, given the current state s(t), the beamforming and rate allocation actor network
generates optimized beamforming vectors v[t] and rate allocation C[t], processing the state information,
which includes channel conditions hu ,n[t]n = 1N , previous actions, available power Pmax, and antenna
configurations M. Concurrently, the UAV trajectory actor receives its state comprising UAV location qu[t],
previously taken actions a(t−1)

2 , and user locations Ln
N
n=1, then computes the next UAV position qu[t + 1],

adhering to trajectory constraints.
The computational complexity during inference primarily arises from the neural network architectures.

For the beamforming and rate allocation agent, employing inception-like and deep unfolding structures,
the complexity can be represented as O(Lu N2

inc), where Lu denotes the number of unfolding layers and
Ninc indicates the number of neurons per inception-like layer. For the UAV trajectory agent, using a fully
connected deep neural network, the complexity is O(Ltra j N2

tra j), with Ltra j being the number of layers
and Ntra j the number of neurons per layer. Consequently, the total inference complexity of DA-DDPG is
expressed as

O(Lu N2
inc + Ltra j N2

tra j), (31)

making the framework suitable for real-time applications required by URLLC scenarios.

6 Simulation Results
This section presents simulation results to judge the performance of the proposed DA-DDPG frame-

work for the multiuser UAV URLLC network. We consider a network architecture as outlined in Section
II, where a total of N users are uniformly and randomly distributed within a circular area with a radius of
R = 500 m. To support the ground Internet of Things (IoT) units in URLLC applications, the UAV is deployed
over the region, with altitudes of 150 m. Unless stated otherwise, other simulation parameters are summarized
in Table 1. The simulation parameters for the DA-DDPG framework are illustrated in Table 2. Fig. 4 shows
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the performance evaluation of the proposed framework through four different metrics. Fig. 4a gives the total
achievable rate for different values of Pmax . We fix the minimum rate at Rmin

u ,n bps/Hz, and the number of
users is set as 10. The performance of the proposed DA-DDPG is closer to that of SPCA and surpasses the
performance of DRL. The behavior of the proposed DA-DDPG is similar to that of SPCA, and that is because
the structure of the proposed neural network is mostly based on the highlights of the SPCA solution. The
performance gap between DA-DDPG and SPCA is about 1.86%. The gap is mostly due to the data-driven
parts of the proposed agents. In the mean, the performance of DA-DDPG is 10.77% better than that of DRL
for M = 2 and 8.09% for M = 4.

Table 1: Simulation parameters

Description Value
Number of users 50

Carrier frequency 6 GHz
Maximum available bandwidth of each UAV 20 MHz

Length of transmission packet 32 bytes
Single-side noise spectral density −80 dBm/Hz

Maximum transmit power of each device 120 mW
Speed of light 3 × 108 m/s

Packet re-transmission delay 0.7 ms
Packet decoding and processing delay 0.2 ms

Threshold of decoding error 10−5

Excessive path loss of Line-of-Sight (LoS) 1 dB
Excessive path loss of Non-Line-of-Sight (NLoS) 20 dB

Table 2: DA-DDPG framework parameters

Parameters Values
Number of layers for actor 5

Number of training episodes 1500
Learning rate for actor 10−3

Learning rate for critic 10−3

Replay memory size 10,000 bytes
Batch size 64

Initial exploration variance 2.0
Final exploration variance 0.1

Soft target updates parameter 0.001

The performance in terms of achievable rate vs. transmission channel blocklength is depicted in Fig. 4b.
Different values of the error threshold are set to examine the impact. We set Rmin

u ,n bps/Hz, and the number of
users is set to 6, while the number of antennas is set to M = 2 and M = 4. As can be observed from the figure,
the total achievable rates of all three frameworks increase with the increase of the blocklength. Moreover, it
is obvious that DA-DDPG has closer performance to that of SPCA; however, it requires a longer blocklength
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to achieve similar performance. Similarly, DRL requires a longer blocklength than that in the case of DA-
DDPG to achieve similar performance to that of SPCA. The increase of the error threshold leads to better
performance, and the performance gap between DA-DDPG and SPCA slightly decreases as such. However,
the performance gap between the DRL and the other two frameworks increases, i.e., for the case of error
threshold 0.5 × 10−4.

Figure 4: Performance evaluation of the proposed DA-DDPG framework. (a) Achievable rate vs. UAV maximum
transmit power, (b) Achievable rate vs. channel blocklength, (c) Achievable rate for different values of Rmin

u ,n , and (d)
Achievable rate vs. number of users

Fig. 4c shows the total achievable rate for different values of Rmin
u ,n . Different values of the error threshold

and number of antennas are considered. The total achievable rate is decreasing with the increasing of Rmin
u ,n .

The performance gap between SPCA and DA-DDPG is small, while it is relatively larger for the case of
DRL. The decrease in the total achievable rate becomes more severe for higher Rmin

u ,n in the case of DRL.
For instance, when Rmin

u ,n bps/Hz and M = 2, the performance gap between DRL and DA-DDPG is 6.92%,
and when Rmin

u ,n bps/Hz, the gap is 7.83%. In general, similar conclusions to those in Fig. 4b can be drawn
from Fig. 4c.

The relationship between the total achievable rate and the number of users is depicted in Fig. 4d. The
number of antennas is fixed at M = 4, the error threshold is εth = 5 × 10−3, and Rmin

u ,n bps/Hz. The performance
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in terms of achievable rate increases dramatically with the increase of the number of users. Even with the
fluctuation in the performance gap between DA-DDPG and SPCA, on average the gap is smaller compared to
that between SPCA and DRL or DA-DDPG and DRL. On the other hand, Table 3 clearly shows the superiority
of the proposed DA-DDPG over other frameworks in terms of inference speed. The proposed DA-DDPG
proves to be a better choice for large-scale communication systems compared with DRL.

Table 3: Computational time comparison

Approach N = 50 N = 100

CPU (ms) GPU (ms) CPU (ms) GPU (ms)
SPCA 25.652 10.401 41.112 28.432
DRL 13.753 9.008 16.095 11.265

DA-DDPG 10.104 6.990 11.455 8.998

7 Conclusion
In this work, we proposed a design of a distributed DRL framework with dual-agent deep deterministic

policy gradient (DA-DDPG). A novel structure of the beamforming and rate allocation is proposed, where
an inception-like mechanism and deep unfolding are employed to build the layers. To apply these two
mechanisms, we designed a successive pseudo-convex approximation (SPCA) to handle both beamforming
and rate allocation. A fully connected deep neural network is used for the critic network. Successive
pseudo-convex approximation (SPCA) lays the ground for applying the above two techniques. The second
agent is the UAV trajectory, in which both the actor and critic are based on DNN. Simulation results
demonstrated the effectiveness of the proposed framework. Moreover, the proposed model outperforms
other well-known methods in the literature. Additionally, developing joint resource allocation frameworks
for multiple UAVs and RISs will improve scalability and load balancing, particularly in dense urban areas.
Addressing security challenges in UAV-RIS networks will also ensure robust and secure communication in
mission-critical applications.
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