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ABSTRACT: Time series anomaly detection is crucial in finance, healthcare, and industrial monitoring. However,
traditional methods often face challenges when handling time series data, such as limited feature extraction capability,
poor temporal dependency handling, and suboptimal real-time performance, sometimes even neglecting the temporal
relationships between data. To address these issues and improve anomaly detection performance by better capturing
temporal dependencies, we propose an unsupervised time series anomaly detection method, VLT-Anomaly. First,
we enhance the Variational Autoencoder (VAE) module by redesigning its network structure to better suit anomaly
detection through data reconstruction. We introduce hyperparameters to control the weight of the Kullback-Leibler
(KL) divergence term in the Evidence Lower Bound (ELBO), thereby improving the encoder module’s decoupling and
expressive power in the latent space, which yields more effective latent representations of the data. Next, we incorporate
transformer and Long Short-Term Memory (LSTM) modules to estimate the long-term dependencies of the latent
representations, capturing both forward and backward temporal relationships and performing time series forecasting.
Finally, we compute the reconstruction error by averaging the predicted results and decoder reconstruction and detect
anomalies through grid search for optimal threshold values. Experimental results demonstrate that the proposed
method performs superior anomaly detection on multiple public time series datasets, effectively extracting complex
time-related features and enabling efficient computation and real-time anomaly detection. It improves detection
accuracy and robustness while reducing false positives and false negatives.
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1 Introduction
Time series data is widely present in various fields such as financial markets [1–3], healthcare mon-

itoring [4,5], industrial process control [6], and geological disaster early warning [7]. Effective anomaly
detection in time series can help identify potential issues and predict system failures, thereby improving
system reliability and safety. However, time series data often exhibits complexity and diversity, which poses
significant challenges for anomaly detection [8,9].

Researchers have explored anomaly detection methods from different perspectives in response to these
challenges. Among them, unsupervised anomaly detection methods do not rely on labeled data; instead,
anomalies are detected by learning the normal patterns of the data [10]. Unlike supervised learning methods,
unsupervised learning is more versatile and especially suited for real-world applications where labeled data
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is often scarce [11]. Standard unsupervised anomaly detection methods include statistical, machine learning,
and deep learning approaches.

Traditional anomaly detection methods have several limitations when handling complex time series
data [12]. For example, statistical methods [13] depend on the statistical properties of the data but suffer from
strong assumptions, complex parameter selection, limited ability to handle non-linear patterns, and poor
performance in dealing with long-term dependencies and changing data patterns. Machine learning-based
methods [14] are less automated, requiring manual feature engineering and parameter tuning.

With the rapid development of artificial intelligence in computer science, deep learning methods [15,16]
have gradually shown advantages in anomaly detection. Studies by He et al. [17] demonstrate that regarding
anomaly detection performance, deep learning methods outperform traditional machine learning tech-
niques, such as principal component analysis, clustering, support vector machine, frequent pattern mining,
and graph mining. However, there is still room for improvement in feature extraction, anomaly detection
capabilities, time series context information utilization, and model robustness. For instance, autoencoder [18]
can identify anomalies by compressing and reconstructing data, but they often struggle to capture the
temporal dependencies inherent in time series data. Recurrent Neural Networks (RNN), particularly Long
Short-Term Memory (LSTM) networks [19] and Gated Recurrent Units (GRU) [20], are adept at handling
sequential data but often require large amounts of labeled data for training in anomaly detection tasks.
Zamanzadeh et al. [21] proposed the LSTM-AD algorithm, utilizing LSTM networks to address anomaly
detection in time series data. However, the method has limitations in capturing multi-scale temporal features,
lacks the ability to model complex data distributions, and exhibits weak generalization capability when
confronted with large-scale and diverse anomaly patterns. Variational Autoencoders (VAE) [22], which learn
the probabilistic distribution of the data for reconstruction and generation, are limited in their ability to
capture temporal dependencies and complex dynamic changes in time series data. In recent years, RNN have
often been combined with VAE and Generative Adversarial Networks (GAN) to detect multivariate time
series anomalies.

Despite the aforementioned performance improvements, the models still face several critical chal-
lenges [23]. First, the training process remains susceptible to data uncertainties and anomalous patterns,
potentially inducing overfitting issues that undermine their generalization capability. Notably, in time series
anomaly detection, the dearth of effective data augmentation techniques restricts the model’s capacity
to comprehensively learn normal patterns while accommodating the diversity and unpredictability of
anomalous data. This limitation renders the model prone to overfitting on training datasets, consequently
impairing its detection performance when encountering novel anomaly patterns unseen during training.
Such performance degradation manifests particularly in scenarios requiring robust generalization to evolv-
ing anomaly types and temporal variations. To overcome the limitations of existing methods, we propose an
unsupervised anomaly detection approach for time series data, combining β-VAE and transformer models,
integrating both strengths to design a comprehensive anomaly detection framework, termed VLT-anomaly.
The contributions of this paper are as follows:

1. We use an improved β-VAE encoder structure to encode time series data, representing local information
within a window via low-dimensional embeddings. By introducing the hyperparameter β, we enhance
the decoupling and expressive power of the latent space, allowing for better capture of the intrinsic
features of the data.

2. We employ a transformer model to process the low-dimensional embeddings generated by the encoder,
manage long-term sequence patterns, and predict the latent representations. We further leverage
bidirectional LSTM (BiLSTM) to fully utilize both forward and backward information fully, improving
the model’s ability to capture time series dependencies.
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3. We input the transformer’s prediction results into the improved β-VAE decoder structure for recon-
struction and calculate the reconstruction error. Anomalies are detected using the optimal threshold
obtained through grid search, effectively identifying anomalous points and potential anomalous regions.
The effectiveness of the proposed method is verified through comparative experiments and ablation
studies on public datasets.

The prediction module’s main advantage is its ability to handle long-range dependencies and local
context information efficiently. The transformer provides strong global information capture and supports
parallel computation, making it well-suited for long sequence data. The BiLSTM enhances the model’s ability
to perform bidirectional modeling of time series data. Combining these two models improves the model’s
representation ability and training efficiency and significantly enhances information flow and stability,
resulting in superior performance on complex time series tasks.

2 Related Work
With the rapid advancement of artificial intelligence in computer science, deep learning methods have

increasingly demonstrated significant advantages in anomaly detection. Experts have started focusing on
the research of time series anomaly detection algorithms. Among these, variational autoencoders (VAEs)
have become a primary research subject due to their ability to learn the probabilistic distribution of data
for reconstruction and generation. As a powerful generative model, VAE combines the strengths of deep
learning and probabilistic modeling, enabling it to effectively handle complex data distributions by learning
the latent representations of the data. This makes VAE a promising approach for anomaly detection tasks.
However, the aforementioned mathematical principles of VAE require modifications in specific applications.
For example, in creative generation tasks, high creativity in generated samples is required, while in anomaly
detection, the completeness of generated samples may be less critical, and it is often desirable to disregard
noisy data points. Despite VAE’s success in generative modeling and unsupervised learning, it still has
limitations in learning disentangled representations of the latent space [24]. The feedforward neural network
in VAE assumes that data at each time point is independent, and the network’s output only depends on
the current input. However, time series data exhibits important temporal dependencies. Therefore, it is
necessary to incorporate network structures into the VAE encoder and decoder to account for these temporal
dependencies. How to design appropriate encoder and decoder network structures for specific application
scenarios is an area that warrants further exploration. Fan et al. [25] introduced federated learning and
VAE for anomaly detection, improving model collaboration and privacy protection. However, these models
still struggle to capture time dependencies and dynamic changes, resulting in suboptimal performance for
time-dependent anomaly detection tasks.

In recent years, RNN have often been combined with VAE and GAN to detect multivariate time series
anomalies. RNN such as LSTM and GRU are commonly used as base models in VAE and GAN to capture
temporal dependencies in multivariate time series. VAE and GAN can jointly learn the dependencies across
feature dimensions and the complex distribution across time dimensions. As two standard generative models,
VAE and GAN focus on learning the rules or distributions of data generation. Thus, to better describe and
model the data, it is necessary to represent the implicit features of multivariate time series data. Both methods
utilize random noise during data generation and measure the discrepancy between the noise and the training
data distribution, though their modeling principles and training methods differ. Lin et al. [26] enhanced the
temporal dependency handling of the VAE model by combining it with RNN, improving its performance
in anomaly detection. Chen et al. [27] proposed a semi-supervised VAE-based anomaly detection strategy
(LR-SemiVAE) using LSTM. The model leverages VAE for feature dimensionality reduction and multivariate
time series data reconstruction, judging anomalies based on reconstruction probability scores. However, this
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model requires accurate labels for training, limiting its applicability. Chen et al. [28] proposed an LSTM-
GAN-based time series anomaly detection model. However, GAN-based approaches require identifying
the best mapping from real-time to latent space during anomaly detection, introducing new errors and
requiring longer computation time. Song et al. [29] proposed the VAE-Transformer model by combining
Variational Autoencoders (VAE) for short-term local anomaly detection and Transformer for long-term
trend analysis. The model is capable of capturing immediate anomalies and broader temporal patterns.
However, it still faces limitations in capturing bidirectional dependencies, stronger long-term dependencies,
and multi-level anomaly detection capabilities. Furthermore, the model’s ability to better understand the
interactions between past and future in time series, as well as handle complex scenarios influenced by both
future trends and past patterns, remains inadequate. He et al. [30] proposed a novel unsupervised anomaly
detection method for multivariate time series, named VAEAT, which uses VAEs as the main architecture
and creates a two-phase training strategy using the adversarial training idea. This method not only solves
the problem that VAE fails to adequately learn the underlying data distribution, but also enhances its noise
resistance. However, this paper does not thoroughly explore the relationship between time series attributes
for detecting overall abnormalities through anomalies at a single attribute.

To overcome the limitations of existing methods, we propose an unsupervised anomaly detection
approach for time series data, combining β-VAE and transformer models, integrating both strengths to
design a comprehensive anomaly detection framework named VLT-anomaly. The prediction module’s main
advantage is its ability to handle long-range dependencies and local context information efficiently. The
transformer provides strong global information capture and supports parallel computation, making it well-
suited for long sequence data. The BiLSTM enhances the model’s ability to perform bidirectional modeling
of time series data. Combining these two models improves the model’s representation ability and training
efficiency and significantly enhances information flow and stability, resulting in superior performance on
complex time series tasks.

3 Algorithm Optimization
Given a time series X = {x 1 , x2, ⋅ ⋅ ⋅ , xn}, where x i ∈ Rd represents the sample value at time i, containing

information from d distinct channels. At time t(l < t ≤ n), the model uses the past l samples, i.e., w t−l =
[x t−l , . . . , x t−1], to predict the binary output yt ∈ {0, 1}, where 0 indicates no anomaly and 1 indicates
an anomaly.

The overall framework of the proposed method consists of two key modules: the β-VAE module,
which is responsible for extracting local features from the window and reconstructing the window, and the
transformer module, which is used to estimate the long-term trends of the time series. The β-VAE module
handles the encoding and decoding tasks of the time series data, comprising an encoder and a decoder,
and utilizes CNN for feature learning and reconstruction. The transformer module is employed to estimate
the long-term temporal dependencies using the low-dimensional embeddings generated by the encoder,
facilitating the subsequent reconstruction by the decoder.

3.1 Data Preprocessing
The dataset used in this study is the NAB (Numenta Anomaly Benchmark) dataset. The NAB dataset is a

benchmark specifically designed for evaluating the performance of time series anomaly detection algorithms.
Numenta released it to provide a standardized data set to enable researchers to fairly and objectively compare
different anomaly detection methods [31]. To assess the generalization capability of the algorithm, the
selected dataset covers a range of time series data, including industrial machine temperatures, environmental
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temperatures, CPU utilization, network request latency, and taxi demand [32]. Table 1 provides a detailed
description of the datasets used, as well as the division of the training and testing sets in this experiment.

Table 1: Description of the data sets

Dataset Introduction Sample
size

Training
set size

Test set
size

Machine
temperature

system failure

The dataset captures temperature data from
industrial machines, monitoring temperature

variations over time to identify abnormal increases
or decreases. Machine malfunctions, overload

operations, or sensor issues typically cause such
anomalies. This dataset is highly relevant for

industrial equipment maintenance and predictive
maintenance applications.

22,695 10,500 12,195

Ambient
temperature

system failure

The dataset records data from ambient temperature
sensors, monitoring system temperature variations
over time to detect abnormal fluctuations, such as
those caused by sensor failures or sudden changes
in environmental conditions. It serves as a typical

application in environmental monitoring and
industrial control.

7267 3300 3967

CPU utilization
ASG misconfig-

uration

The dataset records time-series data of CPU
utilization from instances within an Auto Scaling

Group (ASG), aiming to detect abnormal spikes or
drops in CPU usage. Configuration errors or system
failures typically cause such anomalies. This dataset

is highly applicable to cloud computing resource
management and performance monitoring.

18,050 15,500 2550

EC2 request
latency system

failure

The dataset contains request latency data from
Amazon Elastic Compute Cloud (EC2) instances,
capturing changes in network performance over

time. It is designed to detect abnormal increases in
request latency, making it applicable to network

performance monitoring and service quality
assurance. It aids in the identification of network

issues or server failures.

4032 2000 2032

NYC taxi The dataset records passenger counts and trip
information for New York City (NYC) taxis,

capturing fluctuations in taxi demand over time. It
is designed to detect abnormal variations in

passenger numbers, making it suitable for urban
traffic management and intelligent transportation

systems. This dataset helps identify changes in
demand patterns and potential operational issues.

10,320 5500 4820
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(a) Data Normalization: Data normalization is performed by standardizing all data using the mean and
standard deviation of the training set. The data is normalized to follow a standard normal distribution
with a mean of 0 and a standard deviation of (1):

x′ = x − μ
σ

(1)

where μ and σ are the mean and standard deviation of the training set, respectively.

(b) Training and Testing Set Separation: The training and testing sets are separated from the given time
series to train the model unsupervised. Fig. 1 illustrates the separation process: Continuous time series
without anomalies are selected as the training data, and the remaining time series containing anomalies
are used as the testing data for model evaluation.

Figure 1: (Continued)
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Figure 1: Training-test set separation

(c) Dataset Partition and Augmentation: Ten percent of the data from the training set is extracted as a
validation set, which is completely separate from the training set for model validation and debugging.
In the β-VAE model training set, the overlapping window method generates multiple sliding windows,
thus increasing the number of training windows. Specifically, given that the original training set
contains ntrain samples and the sliding window length is l , the number of generated sliding windows is:

nwin = ntrain − l + 1 (2)

The sliding window at time t is defined as:

wt = [xt , . . . , xt+l−1] (3)

This method effectively increases the number of training windows, which helps improve the model’s
generalization ability and enhances the performance of the anomaly detection model in practical
applications.

In the training set of the transformer model, both sliding window and non-overlapping window
methods are applied to generate multiple training sequences from the time series data. The specific steps are
as follows:

(a) Generate Non-Overlapping Windows: First, fixed-length, non-overlapping windows are generated
based on the sliding window size and the number of training samples. The number of non-overlapping
windows is:

nnot = ⌊
ntrain − k

l
⌋ (4)
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where k represents the starting offset of the sliding window, and k ∈ [1, . . . , l].

(b) Generate Transformer Input Sequences: Then, the input sequences for the transformer are generated.
For each starting offset k, the number of transformer sequences generated is:

ncur = nnot − s + 1 (5)

where s is the number of sliding windows within each sequence.

(c) Combine All Sequences: All the generated transformer sequences are then combined into a complete
training sequence set, with the total number of sequences given by:

nseq =
l
∑
k=1

ncur (6)

which simplifies to:

nseq =
l
∑
k=1
(⌊ntrain − k

l
⌋ − s + 1) (7)

where the t-th sequence is defined as:

Wt = [wt , . . . , wt+(s−2)×l , wt+(s−1)×l ] (8)

By effectively utilizing the sliding window and non-overlapping window techniques and continuously
adjusting the starting offset of the window, a large number of transformer input sequences are generated,
which significantly increases the number of training sequences and enhances the model’s robustness and
generalization capability.

3.2 Model Introduction and Training
The β-VAE module consists of an encoder and a decoder. The encoder takes a local window containing

l consecutive samples in a batch as input, receiving data with shape (b, l , c), where b is the batch size, l is
the window length, and c is the number of channels. As shown in Fig. 2, after entering the encoder, the input
data undergoes a series of convolutional layers to extract key features, which are then mapped to the mean μ
and standard deviation σ parameters of the latent space as low-dimensional embeddings with q-dimensional
latent representations. These parameters are used to define the distribution of the latent variables, and a
feature vector is generated through sampling from a multivariate normal distribution.

The decoder receives the encoded feature vector or a randomly sampled latent vector as input and
reconstructs the original signal. Depending on the input window length, the decoder structure is adjusted
accordingly, employing deconvolution and transposed convolution operations for the stepwise reconstruc-
tion of the window. The final output is the reconstructed signal data with shape (b, l , c). A detailed structure
of the encoder and decoder in the β-VAE module is shown in Fig. 3.

During the training phase, the β-VAE module is first trained. For a training dataset containing ntrain
samples, nwin sliding windows are generated for training. Eq. (3) represents a window starting at time t,
containing the batch of window data input into the encoder. The resulting latent representation is then passed
to the decoder to obtain the reconstructed data.
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Figure 2: Anomaly detection process diagram

Figure 3: β-VAE encoder and decoder structure diagrams

The model iterates through the training dataset to maximize the ELBO loss and further optimize the
parameters of the β-VAE model. The ELBO loss consists of the reconstruction loss and the KL divergence loss.
The reconstruction loss evaluates the difference between the reconstructed and original signals. In contrast,
the KL divergence loss ensures that the generated latent variable distribution is close to a standard normal
distribution, promoting continuity in the latent space and efficient representation of information. To balance



852 Comput Mater Contin. 2025;84(1)

the reconstruction error and the KL divergence, the β-VAE adjusts the weight of the KL divergence term,
denoted as β, allowing for finer control over the latent variable distribution and enhancing the decoupling
ability and interpretability of features. The ELBO loss function for the β-VAE module is defined as:

LBetaVAE = Eqϕ(z∣x) [log pθ (x∣z)] − β ×KL (qϕ (z∣x) ∥ p (z)) (9)

After the β-VAE module is trained, the encoder of the trained β-VAE module is used to estimate the
embeddings for all sequences. For a training dataset containing ntrain samples, nseq sequences are generated
to train the transformer module. The latent representations obtained from the β-VAE encoder are used as
input sequences for the transformer module. The transformer module operates on the latent embeddings
from s non-overlapping windows. The input batch has the shape (s − 1, q), where s is the number of windows,
and q is the embedding size. The temporal features are extracted through positional encoding and multi-head
attention mechanisms. After several layers of the transformer are stacked, a bidirectional LSTM is employed
to capture sequence context information. The output is then passed through a fully connected layer to predict
the next step of the time series. After processing by the transformer module and the bidirectional LSTM, the
output layer uses a Lambda layer to average and fuse the outputs of the bidirectional LSTM, resulting in a final
output with the same shape as a unidirectional LSTM, specifically (s − 1, q), which serves as the predicted
embedding. The model uses Mean Squared Error (MSE) as the loss function and the Adam optimizer
for parameter optimization. During training, the model processes batches of pre-generated training and
validation data. The batch size, number of training epochs, and callback functions are set to monitor and
optimize the training process.

The Eq. (8) represents the window sequence starting at time t, and the sequence of embeddings obtained
from the encoder for an input window sequence of length s is denoted as:

Et = [e1
t , . . . , es

t] (10)

The β-VAE encoder module encodes each window in the sequence to obtain its corresponding
embedding, collectively forming the set Et , where e i

t denotes the embedding of the i-th window in Wt . To
predict the next s − 1 embeddings, we obtain the first s − 1 embeddings from the sequence Et and predict the
subsequent s − 1 embeddings as:

[ê2
t , . . . , ê s

t] = Transformer ([e1
t , . . . , es−1

t ]) (11)

Transformer module consists of transformer model and BiLSTM model. The BiLSTM model parameters
are optimized by minimizing the prediction error of the final embedding:

min ∥ ê s
t − es

t ∥2 (12)

Since the method in this paper is an unsupervised anomaly detection approach, all parameters of the
β-VAE and transformer modules are optimized without the need for anomaly labels.

3.3 Anomaly Detection Using VLT-Anomaly Models
After training, the VLT-Anomaly model can be applied for both offline anomaly detection and real-time

anomaly detection, and estimate anomalous regions. The model uses the test sequence Wt−(s−1)l to predict
whether the sample at time t and its corresponding window are anomalous, where the test sequence contains
s × l sample values. The model first uses the encoder of the β-VAE module to generate a latent representation
sequence Et−(s−1)l from Wt−(s−1)l . Then, the first s − 1 embeddings are fed into the transformer module and
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BiLSTM model to predict the next s − 1 embeddings [ê2
t−(s−1)l , . . . , ê s

t−(s−1)l], as shown in Eq. (11). Finally,
the predicted embeddings are reconstructed using the β-VAE decoder, as expressed by:

ŵt−(s−i)×l = Decoder (ê i
t−(s−1)l) (13)

where i = 2, . . . , s. When i = s, the predicted window ŵt corresponding to the window at time t is
obtained. Fig. 4 illustrates the comparison between the original data and the reconstructed data, clearly
showing significant differences near the anomalies.

Figure 4: Comparison of reconstructed and raw data

For the reconstructed windows, a scoring function dt is defined to label the anomalous behavior of the
window by accumulating the prediction errors for each window in Wt , as follows:

dt =
s
∑
i=2
∥ ŵt−(s−i)×l −wt−(s−i)×l ∥2 (14)

To detect anomalies, a threshold θ is defined on the scoring function dt , and the optimal threshold is
determined using a grid search method. If the value exceeds this threshold, an anomaly alarm is triggered
at the current time t, with yt = 1. The corresponding sequence Wt is labeled as a suspicious sequence, which
may contain anomalies and is marked as an anomalous region.

When sufficient data is available, a validation set containing normal and anomalous samples should be
used to determine θ. The threshold θ that yields the best performance (e.g., F1 score or other metrics) is
considered the optimal threshold for detecting anomalies on the g knaniven time series. In cases where data
is limited, a validation set containing only normal samples can be used to evaluate the distribution of the
scoring function and determine the appropriate percentile of this distribution as the threshold.

3.4 Advantages of the VLT-Anomaly
The VLT-Anomaly framework integrates β-VAE, transformer, and BiLSTM modules to address critical

challenges in time series anomaly detection, including long-sequence modeling, feature extraction, compu-
tational efficiency, and detection accuracy. First, the β-VAE module enhances the disentangled representation
of the latent space by introducing a hyperparameter, β, which enables the decomposition of key features in
time series data into independent controllable variables. This structured and interpretable representation
simplifies the extraction of essential data characteristics and provides a solid foundation for downstream
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modeling tasks. Second, leveraging its multi-head attention mechanism, the transformer module directly
captures global dependencies while overcoming the computational inefficiencies of traditional recurrent
models in long-sequence tasks through parallel processing. Positional encoding is incorporated to retain
sequential information, and the stacking of multiple transformer layers significantly improves the capacity
to model complex temporal dependencies. Complementing this, the BiLSTM module further enhances the
modeling of local temporal dependencies by integrating contextual information from past and future time
steps, thereby improving the detection of anomalous patterns and achieving a fine-grained balance between
short-term predictions and long-term dependencies.

To address the limitations of traditional VAE-LSTM methods in terms of reconstruction error sen-
sitivity and latent space prediction accuracy, VLT-Anomaly adopts a modular design that decouples the
transformer and BiLSTM components for independent optimization. This modular approach allows for
flexible adjustments to the number of transformer layers, attention heads, and BiLSTM hidden units, making
the framework adaptable to diverse task requirements. Additionally, techniques such as a learning rate
scheduler and dropout are employed to accelerate convergence and prevent overfitting, enhancing the overall
robustness of the model. Regarding loss design, VLT-Anomaly employs a multi-objective optimization
strategy that balances KL divergence, latent space prediction error, and reconstruction error through a
weighted combination, ensuring both stability and detection precision.

In summary, by seamlessly integrating global and local feature modeling, efficient parallel computation,
and modular optimization flexibility, VLT-Anomaly provides an efficient, accurate, and robust solution
for anomaly detection in complex time series data, establishing itself as a significant improvement over
traditional methods.

4 Analysis of Experimental Results

4.1 Evaluation Indicators
Precision, recall, and F1 score are used as evaluation metrics for anomaly detection. Specifically,

precision represents the proportion of correctly predicted anomalies among all predicted anomalies, while
recall indicates the proportion of correctly predicted anomalies among all true anomalies. The F1 score is a
balanced metric that considers both precision and recall. In the subsequent sections, precision is denoted as
P, recall as R, and F1 score as F1, with their respective formulas shown in Eqs. (15)–(17):

P = TP
TP + FP

(15)

R = TP
TP + FN

(16)

F1 = 2 × P × R
P + R

(17)

where TP (True Positives) refers to the number of correctly predicted anomalies, FP (False Positives) refers
to the number of normal samples incorrectly predicted as anomalies, and FN (False Negatives) refers to the
number of anomalies incorrectly predicted as normal.

4.2 Experimental Environment
To validate the effectiveness of the VLT-Anomaly model, the experimental process includes two parts:

a comparative experiment with other similar methods, and an ablation study on key modules. In the
comparative experiment, the number of sliding windows in the sequence s is set to 12. The model is trained
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for 20 iterations with a batch size of 32, a β value of 2, and a learning rate 0.0002. The sliding window length
l in the model can be adjusted according to the dataset.

The experiment uses the TensorFlow deep learning framework, with Python 3.6 as the programming
language. The development environment is set up with Anaconda (WSL2), and JetBrains PyCharm 2024.1
Professional Edition is used for development. The workstation runs on Windows 11 Professional (64-bit),
with hardware configurations including 32 GB of memory, an Intel Core i9-14900 HX (2.20 GHz) processor,
and an NVIDIA GeForce RTX 4060 GPU.

4.3 Comparative Experiments
The proposed VLT-Anomaly algorithm was evaluated on five real-world time series datasets containing

actual anomalous events: Ambient Temperature, CPU Utilization AWS, CPU Utilization EC2 (from Amazon
East Coast Data Center servers), Machine Temperature (industrial machinery), and NYC Taxi Passenger
Count [31]. The algorithm was compared with six commonly used time series anomaly detection algorithms:
VAE [22], LSTM-AD [21], ARMA [26], VAE-LSTM [33], LR-SemiVAE [27], LSTM-GAN [28], VAE-
Transformer [29], and VAEAT [30]. Table 2 presents the experimental results along with the sliding window
lengths. The evaluation metrics include Precision, Recall, and F1 Score, all calculated at the threshold that
yields the best F1 score.

Table 2: Comparative analysis of different datasets on different algorithms

Data sets Algorithm

VAE LSTM-AD ARMA VAE-
LSTM

LR-
SemiVAE

LSTM-
GAN

VAE-
transformer

VAEAT VLT-
anomaly

Ambient temperature

W 24 24 24 168 48 48 24 48 144
P 0.686 1.000 0.184 0.806 0.662 0.808 0.722 0.662 0.968
R 0.500 0.500 1.000 1.000 1.000 0.992 1.000 1.000 1.000
F1 0.573 0.666 0.311 0.892 0.796 0.891 0.838 0.796 0.984

CPU utilization AWS

W 24 24 24 144 48 48 24 48 48
P 0.348 0.274 0.234 0.694 0.957 0.917 0.944 0.957 0.959
R 0.500 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000
F1 0.410 0.430 0.380 0.819 0.978 0.956 0.971 0.978 0.979

CPU utilization EC2

W 24 24 24 192 48 48 24 48 144
P 0.949 1.000 0.938 0.993 0.996 0.991 0.997 0.997 1.000
R 1.000 0.436 1.000 1.000 0.852 0.802 1.000 1.000 1.000
F1 0.974 0.608 0.968 0.996 0.918 0.887 0.999 0.999 1.000

Machine temperature

W 48 48 48 288 48 48 24 48 48
P 0.211 1.000 0.142 0.559 0.918 0.932 0.916 0.918 0.934
R 1.000 0.500 1.000 1.000 1.000 0.701 1.000 1.000 1.000
F1 0.207 0.667 0.248 0.717 0.957 0.801 0.956 0.957 0.966

NYC taxi

W 24 24 24 168 48 48 24 48 48
P 0.662 1.000 0.769 0.961 0.567 0.942 0.711 0.569 0.974
R 0.800 0.200 0.400 1.000 1.000 0.994 1.000 1.000 1.000
F1 0.725 0.333 0.526 0.980 0.723 0.967 0.831 0.725 0.987

Note: Bold values indicate the best performance achieved by algorithms under the same dataset and evaluation
metrics.

The LSTM-AD method achieved high precision on most datasets but exhibited low recall, indicating that
many true anomalies were missed while detected anomalies were accurate. In contrast, VAE demonstrated
good recall but lower precision, suggesting a high number of false positives.

The proposed VLT-Anomaly algorithm achieved 100% recall across all datasets, indicating that no
anomalies were missed and that all types of anomalies were successfully detected. On all five datasets,
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the proposed algorithm outperforms the other eight algorithms in terms of F1 score, achieving the best
performance. The precision also reaches the best or second-best level across these datasets. The significant
improvement in precision indicates a lower false positive rate. The model effectively captured key features
of the signals, demonstrated strong reconstruction performance, and achieved efficient representation in
the latent space. It outperformed the baseline methods with substantial precision, recall, and F1 score
improvements. Overall, the proposed algorithm demonstrates superior performance across all metrics
compared to the other baseline algorithms. Fig. 5 provides a more intuitive visualization of the comparison
experimental results.

Figure 5: Comparison of algorithms by evaluation metrics for different datasets

4.4 Ablation Experiment
To further verify the effectiveness of each improved module, the VAE algorithm and its four variants are

used in this section: (1) VAE algorithm. This algorithm only contains the standard VAE algorithm and has the
function of data reconstruction. (2) VAE-A algorithm. Based on the VAE algorithm, the LSTM algorithm is
introduced to predict the coding results of the VAE encoder, and the processing and memory ability of long
time series, namely VAE-LSTM, is considered. (3) VAE-B algorithm. Based on the VAE-LSTM algorithm, the
results of forward and reverse bidirectional time series prediction are fused to enhance further the processing
and memory function of long time series, namely VAE-BiLSTM. (4) VAE-C algorithm. Based on the VAE-
LSTM algorithm, the super parameter β is introduced to redefine the ELBO loss function and regulate the
weight ratio of reconstruction loss and KL divergence term, namely the β-VAE-LSTM algorithm. (5) VAE-D.
It is the VLT-Anomaly algorithm proposed in this paper. The parameters of each variant algorithm take the
same value.
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The results of the VAE algorithm and four variants of the algorithm are shown in Table 3. The
experimental results show that VAE-A has significantly improved compared with VAE as a whole, mainly
because VAE-A introduces the network structure LSTM considering time series. Based on VAE-A, VAE-B
effectively improves the detection ability of the model by combining the forward and reverse time series
prediction results and fusing them. From the experimental results of the three indicators, 10 of the 15
comparisons have been further improved or equivalent, which verifies the effectiveness of this part of the
improvement. Based on VAE-A, VAE-C retains the framework of the original VAE model, redesigns its
internal network to make it more suitable for anomaly detection, and introduces the hyperparameter β to
optimize the weight ratio of reconstruction loss and KL divergence in ELBO loss. From the experimental
results of the three indicators, 14 of the 15 comparisons have been further improved or equivalent, which
verifies the effectiveness of this part of the improvement.

Table 3: Ablation experiment

VAE VAE-A VAE-B VAE-C VAE-D

Ambient temperature
P 0.686 0.806 0.885 0.968 0.968
R 0.500 1.000 0.882 1.000 1.000
F1 0.573 8.892 0.884 0.984 0.984

CPU utilization AWS
P 0.348 0.694 0.957 0.774 0.959
R 0.500 1.000 1.000 0.995 1.000
F1 0.410 0.819 0.978 0.870 0.979

CPU utilization EC2
P 0.949 0.993 1.000 0.997 1.000
R 1.000 1.000 0.997 1.000 1.000
F1 0.974 0.996 0.998 0.999 1.000

Machine temperature
P 0.211 0.559 0.918 0.918 0.934
R 1.000 1.000 1.000 1.000 1.000
F1 0.207 0.717 0.957 0.957 0.966

NYC taxi
P 0.662 0.961 0.567 0.999 0.974
R 0.800 1.000 1.000 1.000 1.000
F1 0.725 0.980 0.724 0.999 0.987

Note: Bold values indicate the best performance achieved by algorithms under the
same dataset and evaluation metrics.

The detection effect of VAE-D algorithm is further improved compared with VAE-B or VAE-C.
Even compared with the VAE-A algorithm and the VAE algorithm, the best results were obtained in 15
comparisons. Generally, this study uses VAE to reduce the feature dimension and reconstruct the time series
data. In addition, the transformer and BiLSTM are integrated into the encoder and decoder of VAE, and
then the abnormal state of the entity is recognized based on the reconstruction error score. The model can
capture the time dependence of time series data more effectively. These improvements not only enhance the
model’s performance, but also verify the effectiveness of the proposed algorithm.

5 Conclusions and Outlook
This study introduces VLT-Anomaly, a novel unsupervised anomaly detection framework designed to

address the challenges of time series data, including its inherent diversity, complex temporal dependencies,
and the scarcity of labeled data. By integrating β-VAE, Transformer, and BiLSTM, the framework overcomes
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limitations of traditional VAE-based models, such as insufficient modeling of temporal dependencies, limited
disentangled representation learning, and poor sensitivity to reconstruction errors. By redesigning the
encoder and decoder structures and optimizing the ELBO loss function, β-VAE enhances the quality of
latent space representations, enabling more interpretable and disentangled feature extraction. Including a
BiLSTM module further strengthens the framework’s ability to model temporal dependencies, leveraging
bidirectional context to improve the accuracy and robustness of anomaly detection. This integration forms
a cohesive structure that combines the strengths of β-VAE’s representation learning, Transformer’s global
feature modeling, and BiLSTM’s local dependency extraction.

In practice, the VLT-Anomaly framework demonstrates excellent adaptability to a variety of time series
scenarios, supported by preprocessing techniques such as data augmentation to enhance performance on
datasets with limited sample sizes. The method achieves accurate anomaly detection and localization by
optimizing the reconstruction error threshold using grid search, enabling offline and real-time applications.
Experimental results confirm the effectiveness of VLT-Anomaly across diverse datasets, where it not only
detects anomalies with high precision but also adapts seamlessly to different types of time series data,
offering robust solutions for real-time monitoring and historical anomaly mining. However, the study also
reveals certain limitations inherent to deep learning models, including challenges in model interpretability
and the complexity of hyperparameter tuning, both of which stem from the sophisticated structure of the
proposed framework.

There are several promising directions for future work. First, improving the interpretability of the
framework is essential. Additionally, automated hyperparameter optimization techniques, such as Bayesian
optimization or grid search, could alleviate the difficulties of tuning the framework’s parameters and further
improve its usability. Moreover, testing the generalization capabilities of VLT-Anomaly on real-world time
series data, particularly from production environments, is another critical step to refining its performance.
Real-world data often introduces additional challenges, such as noise and domain-specific constraints, which
the framework must address to ensure its robustness and reliability.

Another important direction is extending the framework to handle multi-modal and high-dimensional
time series data offers exciting potential for anomaly detection in complex systems. Many real-world
scenarios involve multi-source data, such as sensor readings, logs, and images, requiring the framework to
integrate and process diverse data streams effectively.
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