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ABSTRACT: Although conventional object detection methods achieve high accuracy through extensively annotated
datasets, acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world
applications. Few-shot object detection presents a new research idea that aims to localize and classify objects in
images using only limited annotated examples. However, the inherent challenge in few-shot object detection lies in
the insufficient sample diversity to fully characterize the sample feature distribution, which consequently impacts
model performance. Inspired by contrastive learning principles, we propose an Implicit Feature Contrastive Learning
(IFCL) module to address this limitation and augment feature diversity for more robust representational learning.
This module generates augmented support sample features in a mixed feature space and implicitly contrasts them
with query Region of Interest (RoI) features. This approach facilitates more comprehensive learning of both intra-class
feature similarity and inter-class feature diversity, thereby enhancing the model’s object classification and localization
capabilities. Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,
1.8%, and 2.3% on 10-shot of three Novel Sets compared to the baseline model FPD.
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1 Introduction
Object detection constitutes a core computer vision task that combines localization and classification

of objects within images with deep learning-based approaches, demonstrating significant advancement in
recent years [1–4]. The essence of object detection is to identify and locate the target by discriminating the
features of image data. Region of Interest(RoI) can help the model narrow the detection range and focus
on the key areas to enhance detection accuracy and efficiency. However, Conventional object detection
methodologies require substantial annotated datasets to achieve optimal performance. This requirement
poses considerable challenges in real-world applications where limited availability, high costs, or practical
difficulties often constrain data acquisition. These limitations have catalyzed the emergence of Few-Shot
Object Detection (FSOD).

FSOD is designed to achieve two critical tasks: classifying target objects and precisely localizing
them with only a few annotated samples. The inherent scarcity of feature space makes FSOD particularly
challenging. The paradigm assumes abundant samples for base classes, whilst novel classes only have a few
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examples. Therefore, the main research direction in the field of FSOD focuses on training highly generalizable
detection models using limited labeled samples.

There are three primary types of FSOD methods: Transfer learning-based methods [5–7], which
leverage pre-trained models from large-scale datasets to augment task-specific learning efficiency. These
methods employ parameter freezing [8–10] and gradient decoupling techniques [11,12] during fine-tuning to
adapt to few-shot scenarios whilst mitigating overfitting. Data augmentation-based methods [13,14] augment
model generalization capabilities. Meta-learning-based methods [8,15–17] follow the ‘learning to learn’
paradigm by training task-level meta-learners to acquire optimal initial parameters for rapid adaptation to
novel tasks.

This paper studies meta-learning-based FSOD, aiming to learn the feature relationship deeply through
implicit contrast learning modules and augment the feature diversity by using feature mixing, which has
solved the problem of sparse feature space in FSOD.

Our research identifies feature aggregation as an implicit contrastive learning method. As illustrated
in Fig. 1, contrastive learning is a feature learning approach that constructs positive and negative sample pairs
to learn feature relationships, thereby enhancing model discriminative capability. The feature aggregation
approach illustrated in Fig. 2 performs comparisons by selecting both same-class and different-class samples
from the support images relative to each query image. This process minimizes distances between same-class
samples whilst maximizing distances between different-class samples in feature space, thereby improving
model discrimination. This feature aggregation method aligns with the fundamental principles of contrastive
learning, allowing us to conceptualize the feature aggregation of positive-negative samples with query RoI
as an implicit contrastive learning approach. Furthermore, the amount of training samples constrains the
ability of the model to learn the richness and high diversity of feature representations, which leads to the
object detection ability not being good enough. To help models learn powerful feature representations, Meta
R-CNN [16] employs a straightforward class-specific aggregation method, aggregating the ROI with support
sample features from the same class. Variational Feature Aggregation(VFA) [17] designs a class-agnostic
aggregation approach that aggregates RoI features with randomly selected support sample features to reduce
class bias. Fine-grained prototype distillation(FPD) [18] further develops this concept through its Balanced
Class-Agnostic Sampling (B-CAS) strategy, which simultaneously aggregates RoI features with a pair of
support samples. This approach prevents the potential pitfalls of random sampling and ensures that the model
focuses on critical positive prototypes. However, object detection typically requires a denser feature space to
capture the diversity of object appearances, scales, and backgrounds to improve accuracy. When the amount
of samples is insufficient, the model cannot learn rich semantic information from a sparse feature space,
severely compromising its performance. Therefore, in few-shot scenarios, we argue that the feature space
defined by a single positive and negative sample pair is too sparse to learn robust feature representations,
resulting in suboptimal performance.

Figure 1: Contrastive Learning paradigm: push similar images closer and push different images away
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Figure 2: Feature Aggregation method: generate positive and negative samples from the support samples and perform
feature aggregation with the query RoI

We propose an Implicit Feature Contrastive Learning (IFCL) module to handle this limitation and
help the model learn feature representations. This novel approach incorporates feature mixing techniques
to generate augmented features and construct positive-negative sample pairs within an augmented feature
space. The subsequent aggregation of these pairs with RoI features strengthens the diversity and robustness
of feature representations, effectively improving model performance in few-shot scenarios.

Our contributions are as follows:
1. In this study, inspired by contrastive learning, we analyze the feature aggregation method and find that

it can essentially be viewed as an implicit contrastive learning approach. Constructing positive and negative
sample pairs and making comparisons helps the model more effectively distinguish novel classes, thereby
significantly improving classification and detection performance.

2. We propose a new approach called Implicit Feature Contrastive Learning. Firstly, we employ feature
mixing techniques to generate augmented positive and negative sample features. These features are then
implicitly contrasted, through feature aggregation, with RoI features in the mixed feature space. The
goal is to learn robust feature relationships. Ultimately, this helps the model improve classification and
detection accuracy.

3. Through experiments on the widely used PASCAL VOC dataset for object detection, we have proved
the efficacy of the proposed method in FSOD tasks. The experimental results demonstrate superior accuracy
relative to existing methods. These experiments validate the theoretical analysis and offer experimental
evidence for advancing FSOD, showcasing the potential advantages of implicit contrastive learning and
feature mixing.

2 Related Work

2.1 Few-Shot Object Detection
FSOD presents more significant challenges compared to few-shot image classification. Current

two-stage few-shot object detection methodologies predominantly encompass three categories: data
augmentation-based, transfer learning-based, and meta-learning-based methods [19].

2.1.1 Data Augmentation Based Methods
These methods address the limited sample issue by expanding the dataset to augment model general-

ization. For object detection tasks, two augmentation strategies are employed: those requiring bounding box
modifications (e.g., cropping, rotation) and those that are not (e.g., color transformation, noise injection). Wu
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et al. [20] augmented data diversity through multi-scale positive samples within feature pyramid networks.
Zhang et al. [21] improved performance under extreme data scarcity using virtual samples, whilst Riou
et al. [22] implemented sample replication. In addition, semantic embedding [23,24] and augmentation
techniques [25–27] have been successfully integrated into a few-shot detection framework.

2.1.2 Transfer Learning Based Methods
Compared to data augmentation-based methods, the transfer learning method does not require

additional data collection, has a simple training strategy, and can be used as an effective FSOD method.
It does not need to design training tasks but to transfer the base-class-trained detection model to novel
classes via fine-tuning. This method does not require a strong correlation between tasks and emphasizes the
performance of the new tasks transferred. Combining the advantages of the single-stage detection model
SSD [2] and the two-stage detector Faster R-CNN [28], Chen et al. propose a few-shot transfer detector
LSTD [29], which can be used to detect unseen objects. Wang et al. proposed TFA [5], which uses a classifier
based on cosine similarity to fine-tune the last layer using only new samples to achieve results comparable to
other methods. Qiao et al. proposed DeFRCN [7] that uses gradient decoupling technology under the Faster
R-CNN framework and refines classification results, improving performance.

2.1.3 Meta-Learning Based Methods
Meta-learning is an encouraging research framework for FSOD. The FSRW [8] proposed by Kang

et al. uses a reweighted vector to reweight the YOLOv2 feature map along channel dimensions, which
can highlight relevant features. Yan et al. proposed Meta R-CNN [16], which uses the R-CNN framework
to construct a twinning network based on double branches. It aggregates queries and supports images to
generate RoI features and class prototypes, then fuses them. Han et al. [30] built a meta-classifier through
feature alignment and nonlinear matching to replace the conventional softmax-based classifier. It assesses
the similarity between the query and support features to produce binary classification outcomes on unseen
classes. Zhang et al. [31] designed the Meta-DETR model, which operates at the image level and does not rely
on region proposals, thereby avoiding the limitation of inaccurate bounding boxes commonly encountered
in FSOD frameworks. The model also processes several support classes simultaneously in a single forward
propagation to get inter-class correlations between different classes. However, introducing transformers
for constructing the encoder and decoder results in significant computational overhead. Wang et al. [32]
designed a fine-tuning-based FSOD framework that aligns visual features with class names and replaces
linear classifiers with semantically similar classifiers. Multi-modal feature mixing is introduced to augment
visual language communication so that trained similar base classes can explicitly support novel classes, and a
maximum marginal loss of semantic perception is proposed to prevent class confusion. Han et al. proposed
that VFA [17] further improves the performance of Meta-R-CNN by introducing variational feature learning
into it. Wang et al. proposed that FPD [18] improves model performance by refining fine-grained prototypes
to utilize the relationships between features.

Because of its effectiveness, the two-stage detection framework has been widely adopted in meta-
learning-based FSOD methods. In the base training stage, many base class samples are used to train the
model. In the fine-tuning stage, the model is fine-tuned with only K samples for each base and novel class.
Meta-learning-based methods exhibit a high degree of flexibility and extensibility, enabling them to adapt
easily to the introduction of novel classes. They can also be integrated with various meta-learning methods to
improve performance further. These advantages make the meta-learning-based FSOD methods very effective
in practical applications. Therefore, our method is based on the meta-learning method FPD, and we propose
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to aggregate positive sample features and fuse negative sample features of the same class to improve the
model’s feature learning capability in the case of sample scarcity.

2.2 Contrastive Learning
Contrastive learning is a feature learning that aims to learn efficient representations by maximizing the

similarity between same-class samples and the difference between different-class samples. The main idea is
to train the model by comparing the relationships between different samples or between different views of
the samples to extract differentiated feature representations. Contrastive learning can be categorized into
unsupervised (UCL) and supervised (SCL) variants based on label dependency, differing in their utilization
of annotated data [33].

2.2.1 Unsupervised Contrastive Learning
Unsupervised contrastive learning aims to learn meaningful representations from unlabeled data or

classes. InstDisc [34] is an individual discriminant method that aims at self-supervised learning by treating
each image as an independent class. This method uses a neural network to encode images into low-
dimensional features. It optimizes these features to be separated as far as possible in the feature space,
and negative samples are extracted from the Memory bank to augment feature differentiation. Based on
the InstDisc, MoCo [35] replaces the Memory bank with a queue and proposes a momentum update
encoder to improve the accuracy further. Simsiam [36] learns a more discriminative feature representation
by minimizing the distance between predicted and real features.

2.2.2 Supervised Contrastive Learning
Supervised contrastive learning is a method of contrastive learning using labeled data. SupCon [37]

generalizes the self-supervised batch contrastive paradigm to fully-supervised scenarios, enabling more
effective utilization of label data. This paper optimizes the embedding space by attracting same-class
clusters while repelling different clusters, enhancing inter-class separability and intra-class feature clustering.
Chen et al. [38] incorporated a properly-weighted class-conditional InfoNCE loss and a class-conditional
autoencoder into SupCon. The model performance is further improved. Contrastive Learning with Stronger
Augmentations (CLSA) [39] uses the distribution between augmented images over the representation bank
to supervise the retrieval of strongly augmented queries from the pool of instances.

Contrastive learning relies on substantial positive-negative sample pairs to enhance its performance in
downstream tasks. We analyze existing contrastive learning-based object detection methods. CAReD [40]
just proposed a contrastive learning network to supervise the training process, while VFA [17] introduced
class-agnostic contrastive learning. However, since all support classes may be treated as negative, the
contrastive effect is suboptimal. FPD [18] employed class-aware contrastive learning, but it only includes a
single positive-negative sample pair, resulting in limited contrastive effectiveness. None of these methods
addresses the sparsity of the feature space in few-shot scenarios. Our approach proposes generating mixed
features to increase the amount of positive and negative sample pairs, alleviating feature space sparsity and
enhancing model performance.

3 Method
In this section, we initially present the overall architecture of the task definition and model. Sub-

sequently, we will delve into implicit contrastive learning and feature mixing, exploring their roles and
implications in our framework.
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3.1 Task Definition
In this work, we follow the standard few-shot object detection setting [8], utilizing two types of training

datasets: base classes Cbase with extensive information and novel classes Cnov e l with limited samples. The
objective is to develop a detection model capable of recognizing novel objects during testing by effectively
transferring information from the base classes.

3.2 The Model Architecture
Based on FPD, we propose an Implicit Feature Contrastive Learning method (IFCL), which consists

of two parts: an implicit contrastive learning strategy and a mixed feature sampling method. By fusing the
query feature and support feature, the implicit contrastive learning method implicitly learns the features of
different-class samples so that the features of similar images are close in the feature space, and the features
of dissimilar images are far away in the feature space. The mixed feature sampling method uses the mixup
method to generate the mixed features for feature augmentation, which helps the model learn a more
powerful feature representation.

As shown in Fig. 3, the framework employs a dual-branch siamese structure for joint query-support
processing. First, the first three stages of the backbone network ResNet101 are used to extract the query
features and support images. Then, the feature aggregation aggregates the support features into the query
features. Next, we use the backbone network’s fourth (final) stage to extract the high-level features of the two
branches, which generate RoI features and support sample features, respectively. Finally, we use the IFCL
module to generate mixed features and extract augmented positive and negative prototype features from the
support sample features. These data are further processed by the feature fusion module and then fed into the
detection head for final prediction.

Figure 3: The overall architecture of our method (2-way 2-shot). IFCL is proposed to improve performance, whereas
‘Classify’ means grouping support samples based on annotation information to generate positive and negative samples.
‘RS’ means random selection to generate a positive sample, and ‘FM’ means feature mixing to generate a negative sample
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3.3 Implicit Contrastive Learning
Inspired by contrastive learning, we analyze the feature aggregation method and find that it can be

regarded as a contrastive learning strategy. The core idea of contrastive learning is to generate positive
and negative sample pairs using data augmentation. These pairs are then compared, enabling the model to
understand the relationships between samples better. This process also improves the model’s generalization
ability on unseen samples. The feature aggregation method, on the other hand, works by aggregating support
sample features with query sample RoI features. By having the model learn the aggregated features, the
intra-class and inter-class relationships are implicitly learned, thus improving the model’s performance. This
implicit contrastive mechanism makes feature aggregation not just a simple feature integration but a deep
feature relationship learning.

With this implicit contrast, the model can learn the relationships between samples more efficiently in the
feature space. This learning process improves the ability of the model to recognize samples of the same class.
It also strengthens the ability of the model to distinguish between samples of different classes. In addition, this
method belongs to the category of contrastive learning. It uses positive and negative sample features selected
from the support features and aggregates them with the query features. This reflects an implicit property of
contrastive learning.

3.4 Feature Mixing
In order to obtain augmented sample features, we first increased the amount of support samples for

each epoch input model to carry out the same class sample mixing. As shown in Fig. 4, among the support
samples, all the samples ( f1 and f2) that are of the same class as the query sample fq are extracted, and then
one of them is randomly selected as the positive sample Spos , while the negative sample Sne g is mixed by
randomly selecting two samples ( f3 and f4) from the remaining support samples with λ as the weight. Finally,
a positive sample Spos and a negative sample Sne g are obtained, which are subsequently aggregated in parallel
with the RoI features. The mixing can be formulated as follows:

Sne g = λ ∗ f3 + (1 − λ) ∗ f4 (1)

Considering that fusion of the average weight characteristics leads to dilution of important feature
information (When α = β = 0.5, the two features are mixed with equal weight. There is almost no change
in the experimental result), we choose to use the beta distribution to generate weight coefficients as in the
formula:

f (λ; α; β) = λα−1 ∗ (1 − λ)β−1

B(α, β)
(2)

In the base training stage, S1 and S2 are the same class as Q. S3 and S4 belong to the same class and are
not the same class as Q. f3 and f4 are the features of the same class as shown in Fig. 4, which can better retain
the consistency of the characteristics of this class and reduce the influence of noise from different classes.
In the fine-tuning stage, only K samples (K ≤ 10) for each class fine-tune the model. In order to increase the
diversity and richness of features, f2, f3, and f4 are the features of the different classes as shown in Fig. 5.
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Figure 4: Based training mixed features sampling (2-way 2-shot). In the base training stage, Spos is selected at random
from two features with the same class, and Sne g is generated by mixing two features with the same class

Figure 5: Fine-tuning mixed features sampling (4-way 1-shot). In base training stage, Sne g is generated by mixing two
features selected from three different classes

4 Experiments

4.1 Datasets/Benchmark
We evaluate our method on a widely-used FSOD standard dataset, PASCAL VOC [41], using precisely

the same class partitions and few-shot examples as in [5].
PASCAL VOC. We adopt the PASCAL VOC benchmark with 20 classes partitioned into 15 base classes

and 5 novel classes. There are three different class splits for a more comprehensive evaluation. The model
is trained on combined VOC2007 and VOC2012 train/val sets and evaluated on the VOC2007 test set.
Performance is measured using IoU = 0.5 (mAP50) in multiple few-shot configurations K = {2, 3, 5, 10} shot.
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4.2 Implementation Details
Our method is implemented with MMDetection [42]. We adopt ResNet-101 [43] pretrained on

ImageNet [44] as the backbone. The single scale feature map is used for detection without FPN [45].
All experiments are conducted using an NVIDIA RTX 3090 GPU, employing SGD optimization

(momentum = 0.9), batch size = 4. The base training stage comprises 30,000 iterations on PASCAL VOC
(initial learning rate = 0.005). During fine-tuning, we adopt a lower learning rate (learning rate = 0.001)
while maintaining identical loss functions to Meta R-CNN. Evaluation metrics focus on novel class detection
performance (nAP).

4.3 Comparison with the State-of-the-Art Methods
We present the results of a single experiment on the PASCAL VOC dataset in Table 1. It can be seen

that IFCL is significantly better than previous methods, achieving state-of-the-art (SOTA) performance in
most cases. Specifically, under the three Novel Sets of K = 10, IFCL is 3.2%, 1.8%, and 2.3% higher than the
baseline, respectively.

Table 1: FSOD results on the PASCAL VOC dataset three Novel Sets (AP50)

Method/Shots Backbone Novel Set 1 Novel Set 2 Novel Set 3 Avg.
2 3 5 10 2 3 5 10 2 3 5 10

FSRW [8] YOLOv2 15.5 26.7 33.9 47.2 15.3 22.7 30.1 40.5 25.6 28.4 42.8 45.9 31.18
MetaDet [15] VGG16 20.6 30.2 36.8 49.6 23.1 27.8 31.7 43.0 23.9 29.4 43.9 44.1 33.64

Meta R-CNN [16] ResNet-101 25.5 35.0 45.7 51.5 19.4 29.6 34.8 45.4 18.2 27.5 41.2 48.1 35.16
TFA w/cos [5] ResNet-101 36.1 44.7 55.7 56.0 26.9 34.1 35.1 39.1 34.8 42.8 49.5 49.8 42.03

MPSR [20] ResNet-101 42.5 51.4 55.2 61.8 29.3 39.2 39.9 47.8 41.8 42.3 48.0 49.7 45.74
Retentive [46] ResNet-101 45.8 45.9 53.7 56.1 27.8 35.2 37.0 40.3 37.6 43.0 49.7 50.1 43.89

FSCE [47] ResNet-101 43.8 51.4 61.9 63.4 29.5 43.5 44.2 50.2 41.9 47.5 54.6 58.5 49.19
Meta FR-CNN [30] ResNet-101 54.5 60.6 66.1 65.4 35.5 46.1 47.8 51.4 46.4 53.4 59.9 58.6 53.85

Meta-DETR [31] ResNet-101 51.4 58.0 59.2 63.6 36.6 43.7 49.1 54.6 45.9 52.7 58.9 60.6 52.86
FCT [48] ResNet-101 57.1 57.9 63.2 67.1 34.5 43.7 49.2 51.2 54.7 52.3 57.0 58.7 53.88
VFA∗ [17] ResNet-101 55.1 57.9 62.5 64.0 42.5 47.5 50.7 52.0 44.6 51.4 55.8 58.5 53.54
FPD∗ [18] ResNet-101 52.8 58.1 63.9 64.3 39.9 46.4 49.1 50.1 45.2 52.5 58.6 59.0 53.33

ICFL(Ours) ResNet-101 58.6 60.5 65.8 67.5 42.5 47.7 48.3 51.9 51.2 54.4 60.3 61.3 56.67

Note: ‘*’ represents that the results are obtained by averaging over multiple replications. Bold and underlined indicate
the best and the second-best results.

Furthermore, during the fine-tuning stage with a sample size of K = 2, our method demonstrates
significant improvements in Novel Set 1 and Novel Set 3, outperforming the baseline FPD by 5.8% and
6.0%, respectively. This performance is highly competitive among comparable methods: compared to the
meta-learning-based Meta-DETR, our method achieves substantial advantages across all three Novel Sets.
Although Meta-DETR can rapidly adapt through task-level meta-training, its performance relies heavily on
the distributional consistency between training and testing tasks. When faced with poor sample quality or
significant inter-class feature variations, its generalization capability markedly declines, ultimately affecting
detection accuracy. In contrast, our method employs a feature mixing approach that yet effectively expands
the feature space, enhancing the model’s discriminative ability. This makes the model learn robust feature
representations even with an extreme lack of samples (K = 2). However, the performance improvement
on Novel Set 2 is less pronounced compared to the other two Novel Sets. Although our method remains



1624 Comput Mater Contin. 2025;84(1)

comparable to VFA under the 2-shot condition, it does not exhibit a clear superiority. By analyzing the per-
class accuracy of Novel Set 2 during fine-tuning (as shown in Table 2), we find that the detection accuracy
of the “bottle” class significantly drags down the overall performance. As illustrated in Fig. 6, half of the
“bottle” fine-tuning samples suffer from excessively small or incomplete objects, and the diversity in bottle
shapes further complicates the ability of the model to learn effective features. Notably, this issue is more
severe in Faster R-CNN-based methods. This is because the Meta Faster R-CNN-based method is highly
sensitive to the target scale during the feature extraction stage. When confronted with small or incomplete
objects, its Region Proposal Network (RPN) struggles to generate high-quality proposals, ultimately leading
to suboptimal performance. In contrast, our method leverages implicit contrastive learning and feature
mixing strategies. Fusing features across samples augments the feature representation capability for small
objects, while the feature mixing implicitly improves the model’s adaptability to shape diversity, thereby
partially mitigating this issue.

Table 2: Results for each class on the PASCAL VOC dataset Novel Set 2 (AP50). The accuracy of the bottle class severely
affects the overall accuracy

Class/Shot Novel Set 2

2 3 5 10
Aeroplane 47.6 55.8 55.9 56.7

Bottle 9.1 11.6 12.7 19.0
Cow 56.9 54.7 55.8 62.0

Horse 62.6 64.9 61.9 65.0
Sofa 36.8 51.3 55.2 57.0
Avg. 42.5 43.0 48.3 51.9

Figure 6: Bottle class samples from Novel Set 2, where half of the general picture suffers from too small a scale or
incomplete object

Under 5-shot and 10-shot conditions, IFCL underperforms compared to VFA. This is because VFA
employs a class-agnostic feature aggregation strategy, treating all support samples as negative samples to
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construct contrastive learning tasks. Although this design sacrifices some inter-class discriminability (e.g.,
Meta-DETR achieves 6% higher accuracy than VFA at K = 10), it effectively mitigates data bias issues.
In contrast, our feature mixing strategy may introduce class bias. Overall, as shown in the “Avg.” column
of Table 1, our method achieves an average precision of 56.67%, surpassing existing state-of-the-art methods.
The advantages in extremely few-shot scenarios, such as 2-shot and 3-shot settings, further validate the
effectiveness of our implicit feature contrastive learning framework.

4.4 Analytical Experiment
4.4.1 Effect of Beta Distribution Parameters

In the process of generating augmented features by mixing samples, weight coefficients have a significant
influence on the detection accuracy of the model. Beta distribution is a continuous probability distribution
defined in the interval [0, 1], λ defined by two shape parameters α and β that control the distribution’s shape
and degree of concentration. As in Fig. 7, when considered α = β, λ ≈ 0.5, it will lead to mixed sample features
of equal weight coefficients, which dilutes important feature information. Moreover, at that time ∣α − β∣ →
∞, the weight coefficients λ → 1, in this case, will form one feature as the main and another feature as a
supplement, not only to avoid feature dilution but also to effectively improve the representation of features.
The accuracy of (α, β) at different values, as shown in Fig. 8, when (α, β) takes the value of (12, 1), the detection
accuracy is the highest. This result shows that using the weight coefficient λ generated in the case of (12, 1)
can achieve the best results in increasing feature diversity and preventing the dilution of important features.
In other cases, the detection accuracy is higher than the baseline, which proves the effectiveness of using
Beta distribution to generate sample weights.

Figure 7: Beta distribution image, different curves have different probabilities of obtaining different weight coefficients.
When α = β, the value of λ always falls near 0.5
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Figure 8: Analytical experiments on the selection of Beta distribution parameters, the average weight sample mixing
results have basically no improvement in accuracy

4.4.2 Effect of Support Samples
In the base training stage, in order to mix the same class samples and, at the same time, ensure the

condition that one feature is dominant and another feature is supplemented. We increased the amount of
support samples input into the model for each iteration of base training from 15way 1shot to 15way 2shot,
which ensures that the negative sample features are generated from a mixture of the same class sample
features during the training process and achieve better results.

Also, because there is a sufficient amount of labeled data for each class in the base training process, we
wondered if we could get better results if we increased the support samples to 15way Kshot (2 < K < 5) again
and then randomly select two samples from K same class samples for feature mixing. Based on this idea, we
do the following experiment, as shown in Fig. 9. The model detection accuracy is highest when the support
sample is 15way 2shot. Increasing the support samples again leads to lower accuracy instead. We believe that
increasing the amount of support samples again will increase the diversity of hybrid features. Since hybrid
features are negative sample features, this feature diversity will interfere with the ability of the model to focus
on the most critical positive samples, which will hurt performance.

In the fine-tuning stage, there are 20 classes of support samples, of which 15 classes are base classes, 5
are novel classes, and only N samples (N ≤ 10) have labeled information in each class. In order to mix the
same class of samples, we performed the same operation as the base training, increasing the 20-way 1-shot to
the 20-way 2-shot. The result is shown in Fig. 10. The results of mixing the same class samples to generate the
negative sample feature in the fine-tuning stage are worse. We analyze that this is due to insufficient samples
in the dataset in the fine-tuning stage. Mixing the same class samples instead reduces the diversity of the
features, which consequently influences the model’s performance.
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Figure 9: Analytical experiment of different amounts of samples for each class

Figure 10: Analytical experiment of different amounts of samples for each class. ‘⋆’ means mixed same class sample
feature, ‘◻’ means mixed different class sample feature

4.4.3 Computational Efficiency Analysis
To evaluate the practicality of our approach, we contrast IFCL with other approaches in terms of

computational time during the training and testing stage (using data from Novel Set 1). All experiments are
conducted under identical hardware (NVIDIA RTX 3090 GPU) and software (PyTorch 1.12.0) environments
to ensure fairness. We record the training time for each method on the three data splits of the PASCAL
VOC dataset, including both base-training and fine-tuning stages. As shown in Table 3, both VFA and
FPD methods are improved versions of the Meta-R CNN framework. Our IFCL further improves the
FPD method based on this framework. The results show that VFA and FPD have similar training and
inference times, slightly longer than Meta R-CNN. Compared to FPD (0.40 and 0.38 s/epoch), IFCL requires
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marginally more training time (0.46 and 0.39 s/epoch) due to the additional computational overhead from
feature mixing and implicit contrastive learning. During inference, the average processing time per image
for IFCL differs by no more than 7.2 ms/image compared to FPD. Although IFCL introduces additional
computational costs in training and testing, its performance improvements in few-shot object detection
tasks (as shown in Table 1) justify these costs. Furthermore, IFCL’s computational efficiency will improve
passively as computer hardware advances, while its algorithmic advantages in feature mixing will maintain
long-term value.

Table 3: The inference time of the model during the training and testing stages

Methods Novel Set 1

Base-training (s/e) Fine-tuning (s/e) Test (s/i)
Meta R-CNN 0.35 0.33 5.35 ∗ 10−2

VFA 0.39 0.35 5.78 ∗ 10−2

FPD 0.40 0.38 5.82 ∗ 10−2

IFCL(Ours) 0.46 0.39 6.54 ∗ 10−2

4.5 Ablation Experiment
Compared with the FPD approach, we propose an implicit feature contrastive learning module that

improves the ability of the model to learn feature representations by generating augmented features. To
verify the effect of this module on the experimental, we conduct relevant ablation experiments for the base
training and fine-tuning stage on Novel Set 1, and the results are listed in Table 4. It can be seen that the
effect of applying the IFCL module only in the base training stage is higher than that of applying the IFCL
module only in the fine-tuning stage. This is because the goal of the base training stage is to let the model
learn the basic feature representation. At this stage, the introduction of the IFCL module can help the model
better capture important features, improve the feature discrimination ability by using a lot of training data,
promote the optimization of the model in an effective direction, and enhance the diversity and robustness
of features. Make the model perform better when learning different class boundaries, thereby improving
overall performance. In contrast, in the fine-tuning stage, the limited annotation data makes the feature
representation learned by the model less targeted, leading to poor results. In general, the use of the IFCL
module in both stages has played a positive role in the detection of small sample targets.

Table 4: Ablation experiment on implicit feature contrastive learning module

Methods/Shots IFCL Novel Set 1

BT FT 2 3 5 10
Baseline × × 52.8 58.1 63.9 64.3

Ours × ✓ 54.3 58.8 64.4 64.7
Ours ✓ × 58.2 60.0 65.4 65.9
Ours ✓ ✓ 58.6 60.5 65.8 67.5

Note: ‘BT’ means the Base-Training stage, and ‘FT’ means the
Fine-Tuning stage.
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5 Conclusion
Aiming at the problem of sample scarcity in few-shot learning in order to help the model learn a more

powerful boosted representation, we propose a new concept of implicit contrastive learning by analyzing
the connection between contrastive learning and feature aggregation methods and further propose an
implicit feature contrastive learning module introducing hybrid feature sampling for generating augmented
features. The sound performance on the PASCAL VOC dataset proves the effectiveness of the implicit feature
comparison learning module. In addition, in the analysis experiments, we find that completely average mix
features will dilute the important feature information, which is not conducive to the model learning feature
representation. In contrast, introducing a small amount of other sample features into a sample feature can
improve the feature diversity while retaining the important feature information, which can effectively help
the model learn useful feature representations.

Despite the results achieved in this study, there are still shortcomings. Firstly, we introduced the feature
mixing method, which improved the model complexity and increased the training time; in the future, we may
consider designing a more lightweight model structure to reduce the model complexity. Secondly, there is still
room for improvement in the model’s ability to recognize classes where some sample objects are incomplete
or too small, and the introduction of a more complex implicit contrastive learning strategy may be considered
in the future. In addition, the experiment only uses the PASCAL VOC dataset, and future work will extend
to more domains and datasets for validation. Finally, the hyper-parameter settings for the beta distribution
for implicit feature contrastive learning and their impact on model performance have not been explored in
depth in this study. Future research will focus on optimizing to improve the model’s performance further.
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