
echT PressScience

Doi:10.32604/cmc.2025.062980

ARTICLE

Reinforcement Learning for Solving the Knapsack Problem

Zhenfu Zhang1 , Haiyan Yin2 , Liudong Zuo3 and Pan Lai1,*

1School of Computer Science, South-Central Minzu University, Wuhan, 430074, China
2Centre for Frontier AI Research, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
3Computer Science Department, California State University Dominguez Hills, Carson, CA 90747, USA
*Corresponding Author: Pan Lai. Email: plai1@ntu.edu.sg
Received: 31 December 2024; Accepted: 31 March 2025; Published: 09 June 2025

ABSTRACT: The knapsack problem is a classical combinatorial optimization problem widely encountered in areas
such as logistics, resource allocation, and portfolio optimization. Traditional methods, including dynamic program-
ming (DP) and greedy algorithms, have been effective in solving small problem instances but often struggle with
scalability and efficiency as the problem size increases. DP, for instance, has exponential time complexity and can
become computationally prohibitive for large problem instances. On the other hand, greedy algorithms offer faster
solutions but may not always yield the optimal results, especially when the problem involves complex constraints or
large numbers of items. This paper introduces a novel reinforcement learning (RL) approach to solve the knapsack
problem by enhancing the state representation within the learning environment. We propose a representation where
item weights and volumes are expressed as ratios relative to the knapsack’s capacity, and item values are normalized to
represent their percentage of the total value across all items. This novel state modification leads to a 5% improvement
in accuracy compared to the state-of-the-art RL-based algorithms, while significantly reducing execution time. Our
RL-based method outperforms DP by over 9000 times in terms of speed, making it highly scalable for larger problem
instances. Furthermore, we improve the performance of the RL model by incorporating Noisy layers into the neural
network architecture. The addition of Noisy layers enhances the exploration capabilities of the agent, resulting in an
additional accuracy boost of 0.2%–0.5%. The results demonstrate that our approach not only outperforms existing RL
techniques, such as the Transformer model in terms of accuracy, but also provides a substantial improvement than
DP in computational efficiency. This combination of enhanced accuracy and speed presents a promising solution for
tackling large-scale optimization problems in real-world applications, where both precision and time are critical factors.

KEYWORDS: Knapsack problem; reinforcement learning; state modification; noisy layers; neural networks; accuracy
improvement; efficiency enhancement

1 Introduction
Knapsack problem is a classical combinatorial optimization problem which has been widely used in

applied mathematics and computer science for decades. For example, in cloud computing, a server can
host multiple virtual machines. Consider server resource allocation: administrators must select virtual
machines that maximize computational performance while respecting finite memory constraints—a direct
manifestation of knapsack optimization principles. Knapsack problem is classified as an NP-hard problem
and many exact and heuristic algorithms have been proposed [1–4]. In its simplest form, the problem involves
a set of items, each with a specific weight, volume, and value, and the goal is to determine the optimal selection
of items that maximizes the total value without exceeding a given capacity constraint. Over the years, the

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.062980
https://www.techscience.com/doi/10.32604/cmc.2025.062980
mailto:plai1@ntu.edu.sg


920 Comput Mater Contin. 2025;84(1)

knapsack problem has been extensively studied, and a variety of solution approaches have been proposed,
ranging from exact algorithms such as dynamic programming (DP) to heuristic methods and approximation
algorithms. Dynamic programming (DP) achieves theoretical optimality but becomes computationally
prohibitive due to exponential time complexity growth with problem scale. While mathematically rigorous,
DP implementations struggle with real-world scalability. In contrast, heuristic methods, such as greedy algo-
rithms, genetic algorithms, and simulated annealing, are often employed for larger problem instances due to
their faster execution times. However, these heuristic methods come with significant limitations. Traditional
methods cannot iteratively refine solutions through environmental feedback, rendering them ineffective for
dynamic scenarios. Genetic algorithms and simulated annealing demonstrate particular vulnerability when
handling evolving constraints or variable capacity conditions. Consequently, while heuristics can provide
quick solutions, they are often less reliable in achieving high-quality solutions, particularly when the problem
space is large and complex.

Reinforcement learning (RL) is a subfield of machine learning. Using deep neural networks [5] as
function estimators within an RL system [6,7], deep reinforcement learning (DRL) has been shown to be
effective in many areas including Atari games [8], Go game [9], dialog systems, text generation, computer
vision, and robotics. DRL can be considered as a step towards embodying universal artificial intelligence [10].
It has recently emerged as a promising approach to tackle combinatorial optimization problems like the
knapsack problem. The knapsack problem involves selecting a subset of items to maximize total value while
adhering to weight and volume constraints. RL is particularly well-suited for this type of problem because it
excels in environments where an agent must make a series of sequential decisions. In the knapsack problem,
for each item, the agent must decide whether to include it in the knapsack or not, subject to the available
capacity constraints. RL allows the agent to learn a policy that maps states (current capacity and item
selection) to actions (deciding which item to select), with the goal of maximizing cumulative rewards (i.e.,
total value). As the agent interacts with the environment, it learns from experience and adjusts its policy
to improve future decisions. This decision-making process aligns well with the knapsack problem, where
the optimal solution depends on a sequence of choices that balance the trade-offs between item values and
the available capacity. Through iterative learning, RL can find near-optimal solutions more efficiently than
traditional methods, especially for large-scale problems with many items. A flowchart in Fig. 1 is included
to provide a clear, intuitive view of RL-based approach for knapsack problem and its components. While
RL has been successfully applied to various optimization problems, its application to the knapsack problem
remains an area of active research. Traditional RL methods face challenges related to the state representation,
exploration of the solution space, and efficiency of training, especially when dealing with problems with large
action and state spaces.

In this paper, we propose a novel approach to solve the knapsack problem using RL by enhancing
both the state representation and the neural network architecture. First, we introduce a key modification
to the state representation: instead of using raw item weights, volumes, and values, we transform them
into ratios relative to the knapsack capacity. Specifically, we express the weights and volumes of items as
proportions of the knapsack’s total capacity, and item values are represented as their percentage contribu-
tion to the total value of all items. These normalized representations streamline learning across varying
problem scales, eliminating unit dependency and enhancing generalization. Benchmarked against leading
RL methods like Transformer-based approaches, our state-space modification delivers 5% accuracy gains.
Computational efficiency improvements prove more dramatic: the RL framework operates 9000× faster
than DP implementations while handling capacity-constrained scenarios. Building on this improvement,
we further enhance the RL model’s performance by introducing Noisy layers into the neural network
architecture. By injecting parametric stochasticity, these layers prevent premature convergence to suboptimal



Comput Mater Contin. 2025;84(1) 921

solutions through enhanced exploration. Combined with the revised state representation, this modification
yields incremental accuracy improvements of 0.2%–0.5%. This further boost highlights the importance of
incorporating exploration mechanisms into RL models for solving combinatorial optimization problems.

Figure 1: An overall framework for a reinforcement learning-based system for solving the knapsack problem. We
formally define a backpack problem environment (left part) and develop a reinforcement learning-based decision-
making agent (right part) to interact with the environment and automatically learn solution strategies under capacity
and volume constraints

The contributions of this paper are as follows:
1. State Modification: We propose a novel state representation for the knapsack problem, where item

weights and volumes are expressed as ratios relative to the knapsack capacity, and item values are represented
as percentages of the total value. This leads to a significant improvement in model performance.

2. Neural Network Enhancement with Noisy Layers: We introduce Noisy layers into the neural network
architecture used by the RL agent, further improving the model’s accuracy and exploration efficiency.

3. Efficiency and Accuracy Comparison: We demonstrate that our RL approach, with the proposed state
modifications and Noisy layers, outperforms traditional dynamic programming (DP) in terms of execution
time (with a 9000× speedup). Additionally, our method surpasses the best existing RL algorithms, such as
the Transformer model [11], by a significant margin.

The rest of the paper is organized as follows: Section 2 reviews related work on solving the knapsack
problem and applying RL to combinatorial optimization. Section 3 details the methodology, including the
problem formulation, state representation, neural network architecture, and training procedure. In Section 4,
we present experimental results, comparing our approach with existing methods in terms of accuracy and
execution time. Finally, Section 5 discusses the implications of our results, identifies potential limitations,
and outlines directions for future work.



922 Comput Mater Contin. 2025;84(1)

2 Related Work

2.1 Overview of Knapsack Problem Solving Methods
The knapsack problem (KP) is a classical combinatorial optimization problem that has been exten-

sively studied, with various methods proposed to solve it efficiently. Martello and Toth evaluated both
exact and approximate algorithms for solving KP [12], including branch-and-bound algorithms, dynamic
programming (DP), and hybrid approaches that combine both. These algorithms were benchmarked against
randomly generated sample items, with approximate algorithms mainly based on greedy approaches or
scaling methods. While these methods provide solutions in a reasonable time frame, they often fall short in
large or complex problem instances. In particular, DP’s exponential time complexity becomes a significant
bottleneck as the number of items increases, and greedy algorithms may fail to find optimal solutions,
especially when problem parameters are nonlinear or non-convex. This presents a need for more adaptive
and scalable approaches, such as reinforcement learning (RL), which can continuously refine its strategy
through interaction with the environment. In cases where item weights are not known a priori, Kosuch and
Lisser proposed solutions for solving the knapsack problem with uncertain item weights, either through
single-stage or two-stage decision-making processes. The two-stage decision method, which allows for
adjustments after initial decisions, was shown to be more accurate [13]. However, these methods are still
limited by the assumption that all decisions are made based on available knowledge at the time, which
does not account for the dynamic nature of real-world decision-making, where uncertainty can evolve
over time. Our RL-based approach addresses this challenge by enabling the agent to learn and adapt its
decisions over time through feedback, improving its ability to handle uncertainties and unknowns in real-
time. Chu and Beasley used genetic algorithms to propose a heuristic for solving multidimensional KP,
demonstrating that high-quality solutions could be found within a reasonable computational time [14]. While
genetic algorithms offer flexibility and have been successful in finding approximate solutions, they typically
require multiple iterations to converge to a satisfactory solution, and the results can vary depending on
the parameter settings. By contrast, our approach, which leverages RL, continuously improves its decision-
making through trial and error, offering more reliable convergence to optimal or near-optimal solutions,
particularly in large-scale problems where traditional methods may struggle. Sahni presented approximate
solutions for KP that require polynomial time complexity and linear storage, providing near-optimal results
for most problem instances [15]. However, these methods often lack of the adaptability to respond to dynamic
changes in the problem space, limiting their effectiveness in real-time or evolving environments. RL, on
the other hand, excels in such settings, as it is capable of continuously learning from the environment
and adjusting its strategy based on new information. Kulkarni and Shabir introduced cohort intelligence
algorithms inspired by social learning to solve KP, showing that their method yielded satisfactory results
at reasonable computational costs [1]. However, while cohort intelligence methods are effective in certain
problem instances, they still rely on predefined rules and may not fully explore the solution space as efficiently
as RL-based approaches. Our method, incorporating Noisy layers into the neural network architecture,
addresses this limitation by improving the exploration of the state-action space, resulting in more effective
optimization in complex environments.

2.2 Reinforcement Learning Approaches for Combinatorial Optimization
Reinforcement learning (RL) has gained traction in solving combinatorial optimization problems,

including the knapsack problem. Early works in this area focused on adapting RL to other combinatorial
problems such as the traveling salesman problem and vehicle routing. Bello et al. introduced two RL-based
approaches for combinatorial optimization, including pretraining using recurrent neural networks and active



Comput Mater Contin. 2025;84(1) 923

search, which was tested on the traveling salesman problem but was suggested to be applicable to KP as
well [16].

Further innovations in RL include the integration of attention mechanisms to improve the efficiency
of the learning process. For example, Nazari et al. incorporated attention mechanisms in a recurrent neural
network (RNN) model for vehicle routing, emphasizing the ability of attention to handle both static and
dynamic elements in optimization tasks [17]. Similarly, Dai et al. used deep Q-learning with graphical
embeddings for optimization problems like maximum cutting and traveling salesman [18]. Parisotto et al.
proposed an RL architecture similar to transformers but with key differences in layer normalization and
gating mechanisms to improve RL training consistency [19].

The application of RL specifically to the knapsack problem has seen some significant advancements.
Gu et al. applied recurrent neural networks for KP, introducing a purely data-driven approach where the
coefficients of each variable and the constraints were inputs for the model [20]. Denysiuk et al. leveraged
binary classification using artificial neural networks for KP, where the parameters were adjusted using
neuroevolution algorithms due to the unknown nature of target values [21].

Yildiz explored the use of deep Q-learning with various neural network models, including fully
connected layers, attention mechanisms, and transformer encoder blocks to solve the knapsack problem [11].
This work demonstrated the effectiveness of transformer models in handling combinatorial optimization
tasks like KP, offering improved performance compared to traditional methods and highlighting the potential
of deep RL in this domain. The paper showed that attention-based models can capture the dependen-
cies between different items in the knapsack, significantly improving the efficiency and accuracy of the
solution process.

2.3 The Role of Neural Networks and Noisy Layers in Optimization Problems
Recent advancements in neural networks have introduced innovative techniques to improve the

exploration and learning capacity of RL models. One such technique is the use of Noisy layers in neural
networks. These layers add randomness to the weights, enhancing the exploration capabilities of the agent
and preventing it from becoming stuck in suboptimal solutions during training [22]. This approach has
shown promise in various RL applications, particularly in environments with large state and action spaces,
such as combinatorial optimization problems.

In the context of the knapsack problem, adding Noisy layers to the neural network architecture has been
shown to lead to incremental improvements in performance. In our work, we extend this idea by applying
Noisy layers after modifying the state representation, which was already improved to a ratio-based format
relative to the knapsack capacity. This combination of state modification and Noisy layers results in further
accuracy gains, demonstrating the significant potential of this technique for combinatorial optimization
problems like the knapsack problem.

3 Methodology
In this section, we describe the methodology used to solve the knapsack problem (KP) using Dueling

DQN and incorporate a Markov Decision Process (MDP) formulation. We detail the state space represen-
tation, the action and reward definitions, and the training procedure, including the use of Noisy layers to
enhance exploration.



924 Comput Mater Contin. 2025;84(1)

3.1 Problem Formulation and Objective
The knapsack problem (KP) is a combinatorial optimization problem in which the goal is to select a

subset of items to maximize total value, subject to constraints on both weight and volume. We assume that
there is a total of n items. Each item i has: wi : weight of item i, vi : volume of item i, pi : value of item i,
xi ∈ {0, 1}: binary variable indicating whether item i is selected.

The knapsack has two capacity constraints: weight capacity (cw), and volume capacity (cv).
The objective is to maximize the total value of the selected items while adhering to the following

constraints:
n
∑
i=1

wi xi ≤ cw ,
n
∑
i=1

vi xi ≤ cv

where cw and cv represent the maximum allowable weight and volume capacities of the knapsack,
respectively. The total value of the selected items is calculated as:

Ptotal =
n
∑
i=1

pi xi

where pi is the value of item i and xi indicates whether the item is included in the knapsack. The goal is
to maximize Ptotal , the total value, by choosing the most valuable items while respecting the weight and
volume constraints.

3.2 Markov Decision Process (MDP) for Knapsack Problem
We model the knapsack problem as a Markov Decision Process (MDP), which is a sequential decision-

making framework. In this formulation, the agent interacts with the environment to select a subset of items
that maximizes the total value, while ensuring that the total weight and volume of the selected items do not
exceed the knapsack’s capacity constraints.

At each decision step, the agent observes the current state, which includes information about the
remaining capacity of the knapsack and the items considered for inclusion. Based on this state, the agent
chooses an action, which corresponds to selecting an item to add to the knapsack. The action results in a
transition to a new state, where the knapsack’s remaining capacity is updated based on the weight and volume
of the selected item. The agent receives a reward equal to the value of the selected item.

The objective of the agent is to maximize the cumulative reward, which corresponds to maximizing
the total value of the selected items while adhering to the weight and volume constraints. This process of
decision-making and feedback continues until all items are evaluated, and the agent learns an optimal policy
to solve the knapsack problem.

• State Space (S): The state is represented by a vector St = {tS
ρ , tS

ψ , tS
ω , tS

ζ } ∈ R
4×(n+1), where each row

corresponds to an item and contains four values:

1. Selection Status (tS
ρ ): A binary value xi ∈ {0, 1} indicating whether item i has been selected (1) or

not (0).
2. Value Coefficient (tS

ψ): The normalized value of item i calculated as pi
P′total

, where pi is the value of item i
and P′total is the total value of all items. This helps the agent understand the relative importance of items.

3. Weight Coefficient (tS
ω): The normalized weight of item i, calculated as wi

cw
, where wi is the weight of

item i and cw is the weight capacity of the knapsack. This coefficient ensures that the weight of each item
is considered relative to the total knapsack capacity.



Comput Mater Contin. 2025;84(1) 925

4. Volume Coefficient (tS
ζ ): The normalized volume of item i, calculated as vi

cv
, where vi is the volume of

item i and cv is the volume capacity of the knapsack.

The last row of the matrix represents the knapsack’s remaining capacity, with initial values set to 1,
indicating full capacity. The coefficients for weight, volume, and value are all normalized as previously
described.

• Action Space (A): The action at each step corresponds to the selection of an item to place in the knapsack.
The agent chooses an item based on its current state representation. The action space is defined as the set
of all items ai ∈ {1, 2, . . . , n}, where n is the number of items. The agent’s goal is to make a decision such
that the total weight and volume do not exceed the knapsack’s capacity while maximizing the total value.

• Transition Function (T): The transition function defines the state transition probabilities based on the
current state st and selected action at . In this problem, the transition is deterministic, meaning that when
an action is taken (i.e., an item is selected), the new state st+1 is fully determined by the action and the
current state: st+1 = T(st , at).

This transition updates the selection status of the item chosen (xi = 1) and decreases the remaining
weight and volume capacities of the knapsack by the corresponding values of the selected item. The remaining
capacity is updated as:

remaining weight = cw −
n
∑
i−1

wi ⋅ xi (1)

remaining volume = cv −
n
∑
i−1

vi ⋅ xi (2)

• Reward Function (R): The reward function provides feedback to the agent based on the action taken.
The reward is defined as the value of the item selected for addition to the knapsack. If the item can be
added without violating the weight or volume constraints, the agent receives a reward equal to the value
of the item pi . If the item cannot be added (i.e., the knapsack’s capacity would be exceeded), the reward
is 0.

rt = {
pi if item i is added to the knapsack,
0 if item i cannot be added due to capacity constraints. (3)

The reward function is designed to encourage the agent to select high-value items while adhering to the
knapsack’s capacity constraints. The overall goal is to maximize the sum of the rewards, i.e., the total value
of the selected items.

3.3 Enhancements in State Representation and Modifications
As previously mentioned, the state consists of the normalized weight, volume, and value coefficients

for each item. This state formulation allows the agent to learn effectively, without being influenced by the
absolute values of the items.

• Normalized Weight and Volume: Each item’s weight wi and volume vi are normalized by the knapsack’s
corresponding capacities cw and cv . This ensures that the state representation is independent of the
absolute values of weight and volume and allows for more consistent decision-making across different
instances of the problem: w′i = wi

cw
, v′i = vi

cv
. This normalization ensures that the agent operates on scaled,

dimensionless features, making the state space more manageable.



926 Comput Mater Contin. 2025;84(1)

• Normalized Value: The value of each item is expressed as a percentage of the total value across all
items. This helps the agent focus on relative item values instead of absolute values, making learning more
efficient: p′i =

pi
P′total

, where P′total is the sum of the values of all items in the current problem instance.

The modified state space thus consists of the normalized weights, volumes, and values of all items, which
is a more compact and consistent representation of the problem.

3.4 Dueling DQN for Solving Knapsack Problem
Dueling DQN (DDQN) [23] is an enhancement over the DQN [8], which decomposes the Q-value into

two distinct streams: one for the state-value function which estimates V(s) ∈ R and another for estimating
the advantage function A(s, a) ∈ R.
• State Value Function V (s): Represents the expected value of being in state s, independent of the

action selected.
• Advantage Function A (s, a): Measures how much better action ◻ is compared to other actions in

state s.
The Q-value function is estimated as:

Q (s, a) = V (s) + A(s, a) − 1
∣A∣ ∑a′

A(s, a′) (4)

This decomposition allows for more stable learning, as the agent can independently estimate the value
of a state and the advantage of each action.

The Q-value update follows the Bellman equation:

Q (st , at) ← Q (st , at) + α (rt + γ max
a′

Q (st+1 , a′) − Q (st , at)) (5)

where:
• st and at are the current state and action,
• rt is the immediate reward,
• γ is the discount factor,
• α is the learning rate.

To train the DDQN model, the Q-value estimation could be approximated towards some target Q-value
computed from temporal difference learning [6], denoted as:

ytarget = r + γ max
a′

Q (s′, a′; θ−) (6)

where θ− = {hθ
−, vθ

h , vθ
adv , } is the parameter for the target Qnetwork that is updated less frequently

than DDQN network to prevent divergence during training, and r is the one-step reward computed
following Eq. (3). To optimize the output of DDQN towards the ytarget, we employ the following loss:

LDDQ N (θ) = E(s ,a ,r ,a′)∼D [(ytarget − Q (s, a; θ))2] (7)

where experience tuples (s, a, r, s′) are sampled from a reply buffer D to construct the mini-batch samples
to update the network. The model parameters for DDQN are optimized by standard gradient-descent by
backpropagating the following gradient w.r.t θ:

∇θ LDDQ N (θ) = E(s ,a ,r ,a′)∼D [(ytarget − Q (s, a; θ)∇θ Q (s, a; θ))] (8)



Comput Mater Contin. 2025;84(1) 927

3.5 Incorporating Noisy Layers for Improved Exploration
In reinforcement learning (RL), exploration vs. exploitation is a fundamental challenge. While tradi-

tional methods such as ∈-greedy exploration help the agent explore the environment, they often lead to
inefficient exploration strategies. In environments where the problem space is large or highly dimensional,
improper exploration can significantly hinder the learning process, leading to poor generalization and con-
vergence issues. To address this, we incorporate Noisy layers into the neural network architecture, specifically
in the DDQN framework, to improve exploration and subsequently enhance the overall performance of the
agent in solving the knapsack problem.

3.5.1 Motivation for Using Noisy Layers
Noisy layers are a technique introduced to encourage intrinsic exploration by directly modifying the

network’s parameters (weights and biases) during training. Rather than relying on fixed exploration strategies
such as ∈ -greedy, noisy layers introduce stochasticity into the network itself, making the actions taken by
the agent inherently more diverse. This stochasticity allows the agent to explore the environment in a more
dynamic way, leading to better coverage of the state-action space, especially in complex, high-dimensional
problems like the knapsack problem.

In traditional DQN models, the exploration-exploitation trade-off is addressed using a decaying
∈-greedy strategy. However, this approach may not be optimal, as it treats exploration as a fixed component
that does not adapt to the learning progress of the agent. In contrast, Noisy layers provide a more
sophisticated mechanism for exploration by introducing random noise directly into the neural network
weights, which increases the model’s capacity to explore different parts of the state-action space.

3.5.2 Noisy Layers in DDQN
In the DDQN framework, the Q-values are decomposed into two separate components: the state-value

function V (s) and the advantage function A (s, a). The Q-value function Q (s, a) is then calculated as the
sum of these two components:

Q (s, a) = V (s) + A(s, a) − 1
∣A∣ ∑a′

A(s, a′) (9)

The benefit of this decomposition is that it allows the model to better handle situations where some
actions have no effect on the state, and thus their advantage should be near-zero. However, while this
decomposition improves the stability and performance of the DQN model, it still suffers from the same
exploration challenges inherent to traditional RL approaches.

By introducing Noisy layers into the network, we can make both the state-value function and the
advantage function stochastic, which leads to more varied and potentially more optimal exploration during
training. Specifically, the weights of the fully connected layers in both V (s) and A (s, a) are replaced with
noisy versions of themselves. In practice, the noisy version of a weight w is typically generated using the
following equation:

w′ = w + σ ⋅ ∈ (10)

where w is the original weight, ∈ is a learnable parameter that controls the scale of the noise, ∈ is a random
variable drawn from a noise distribution, typically Gaussian, i.e., ∈∼ N (0, 1).



928 Comput Mater Contin. 2025;84(1)

Thus, each weight in the model becomes a distribution over possible values rather than a fixed value.
During training, the noisy weights are updated, which allows the model to explore more diverse strategies
for selecting actions based on the noisy estimations of Q-values. This introduces variability in the Q-value
predictions and ultimately leads to a more robust learning process.

3.5.3 Benefits of Noisy Layers in the Knapsack Problem
For the knapsack problem, where the objective is to select the most valuable combination of items

without exceeding the knapsack’s capacity constraints, Noisy layers offer several key advantages:

1. Improved Exploration: The primary benefit of Noisy layers is their ability to improve exploration. By
introducing randomness into the weights, the agent can explore a broader range of item combinations
and packing strategies, which is crucial in combinatorial problems like the knapsack problem. This
prevents the agent from getting stuck in suboptimal solutions, which is a common issue when relying
solely on greedy or deterministic exploration strategies.

2. Adaptive Exploration: Unlike fixed exploration strategies, Noisy layers adapt to the learning process.
Initially, the noise may guide the agent to explore more areas of the state-action space, while later in
training, as the noise is adjusted and reduced, the agent starts to exploit the most valuable solutions it
has discovered. This gradual transition from exploration to exploitation allows the agent to converge
faster and more reliably to an optimal or near-optimal solution.

3. Handling High Dimensionality: The knapsack problem with large numbers of items (i.e., high-
dimensional state and action spaces) presents a challenge for conventional RL methods. Noisy layers
help to mitigate this challenge by enhancing the network’s ability to generalize across a vast state-action
space, thus improving its ability to make efficient decisions even when the number of items in the
knapsack grows.

4. Faster Convergence: Since Noisy layers enable better exploration of the state-action space, the agent
is able to discover the optimal or near-optimal combinations of items more quickly. This leads
to faster convergence during training, which is particularly advantageous when solving large-scale
knapsack problems.

3.5.4 Noisy Layers in Practice
In our implementation, Noisy layers are incorporated into both the value and advantage functions

within the DDQN architecture. This modification helps improve the robustness of the Q-value estimates by
introducing variability, which in turn enhances the exploration process. We add noise to the fully connected
layers in both the V (s) and A (s, a) streams of the DDQN, allowing the agent to explore potential item
combinations more effectively.

The noise parameters (σ) are learned during the training process, allowing the agent to adjust the level of
noise based on its current state of knowledge. As the agent trains, the variance introduced by the Noisy layer’s
decreases, allowing the model to transition toward more deterministic action selection, which is essential for
efficient exploitation once the agent has sufficiently explored the problem space.

3.6 Training Procedure and Algorithm Optimization
The training procedure follows standard DQN with modifications for the MDP and dueling architecture:

1. Initialization: The neural network weights are initialized randomly, and the agent starts by selecting
actions randomly to explore the state space.



Comput Mater Contin. 2025;84(1) 929

2. Experience Replay: The agent stores state-action-reward transitions in an experience replay buffer,
allowing the network to learn from past experiences and break temporal correlations between consec-
utive updates.

3. Target Network: A target Q-network is periodically updated with the weights of the main Q-network
to stabilize training.

4. Q-Value Update: The Q-values are updated using the Bellman equation and gradient descent.
5. Exploration-Exploitation Balance: The agent initially explores the state space with a high exploration

rate and gradually shifts to exploitation.
6. Early Stopping: Training stops when the agent achieves a predefined performance threshold or no

significant improvement is observed.

3.7 Evaluation Metrics and Performance Criteria
The performance of the agent is evaluated based on the following metrics:

1. Accuracy: The accuracy is computed as the ratio of the total value obtained by the agent to the optimal
value, expressed as a percentage:

Accuracy =
Vagent

Vo ptimal
(11)

2. Execution Time: The execution time of the DDQN approach is compared with traditional methods like
DP to highlight the efficiency gains.

By using DDQN in combination with Noisy layers and a structured MDP representation, our approach
efficiently solves large-scale knapsack problems, demonstrating improvements in both accuracy and execu-
tion time.

4 Experimental Setup and Results
To evaluate the performance of the proposed DDQN model without and with Noisy layers for solving

the knapsack problem, we conducted experiments on two variants of the knapsack problem:

• Standard two-dimensional knapsack problem: Each item can be selected at most once (xi ∈ {0, 1}).
The result for the problem will be shown in Table 1.

• Extended two-dimensional bounded knapsack problem: Items can be selected multiple times with
upper bounds (xi ∈ {0, 1, . . . , bi}) under dynamic item quantities. The result for the problem will be
shown in Table 2. For example, the problem can be used in logistics optimization: Loading cargo batches
with weight and volume limits (e.g., shipping containers), and the same type of cargo can be loaded for
multiple times. In addition, the problem can be used in Inventory Management: Restocking products
with limited warehouse space and budget, and the same type of product can be restocked for multiple
times. Moreover, the problem can be used in Cloud Resource Allocation: Assigning variable virtual
machine (VM) instances to servers with CPU/memory constraints, and the same type of VM instances
can be assigned for multiple times.

We compared the performance of the DDQN model without and with Noisy layers (i.e., DDQN, Dueling
DQN with Noisy layers) against traditional algorithms (e.g., DP, Greedy, Random) on both problem variants.



930 Comput Mater Contin. 2025;84(1)

Table 1: Accuracy comparison for the standard 0–1 knapsack problem with fixed item quantities

Algorithm 10 items 20 items 30 items
DP 386.64* 821.45 1253.035

Greedy 357.58 767.655 1185.035
(92.481% ± 8.32) (93.45% ± 5.2) (94.57% ± 3.5)

Random 277.6 597.625 902.135
(74.46% ± 14.6) (71.96% ± 11.1) (71.99% ± 8.7)

DDQN 378.82 801.055 1216.47
(97.98% ± 4) (97.52% ± 2.8) (97.08% ± 2.2)

DDQN-Noisy 379.52 804.26 1221.51
(98.16% ± 3.5) (97.91% ± 2.6) (97.48% ± 2.06)

Note: *Values represent total reward; 1 indicating performance relative to DP;
2 values denoting standard deviation.

Table 2: Accuracy comparison for the extended bounded knapsack problem with dynamic item quantities

Algorithm 5 items 10 items 15 items
DP 478.39* 1002.43 1542.90

Greedy 443.91 936.91 1449.09
(92.791% ± 10.82) (93.46% ± 7.4) (93.92% ± 5.9)

Random 374.35 773.39 1149.92
(78.25% ± 20.9) (77.15% ± 14.1) (74.53% ± 11.7)

DDQN 470.35 977.49 1508.34
(98.32% ± 3.5) (97.51% ± 3.2) (97.76% ± 2.9)

DDQN-Noisy 469.55 978.99 1508.03
(98.15% ± 4) (97.66% ± 3.3) (97.74% ± 3.2)

Note: *Values represent total reward; 1 indicating performance relative to DP;
2 values denoting standard deviation.

4.1 Experimental Design and Setup Details
The knapsack is constrained by weight and volume capacities, where the capacity values depend on the

problem variant:

• For the Two-Dimensional Bounded Knapsack Problem (2D-BKP), capacities are defined as weight
capacity cw = n × 80 and volume capacity cv = n × 80, where n is the number of items.

• For the baseline 0–1 knapsack problem, capacities are set to cw = cv = n × 30.

Each item i has a weight wi , volume vi , and value pi , all randomly generated from the uniform
distribution U(1, 100). In the extended 2D-BKP variant, each item additionally has a maximum allowable
quantity bi ∼ U(1, 5), making the selection variable xi ∈ {0, 1, . . . , bi}, whereas in the 0–1 knapsack xi ∈
{0, 1}.

To evaluate the performance of our algorithms, we conduct experiment on five different algorithms
(i.e., DP, Greedy Algorithm, Random Selection, DDQN, Dueling DQN with Noisy layers) using two sets of
item sizes (n ∈ {10, 20, 30} and n ∈ {5, 10, 15}) for two different problems. Specifically, DP, Greedy Algorithm,



Comput Mater Contin. 2025;84(1) 931

Random Selection are the baseline algorithms, and DDQN, Dueling DQN with Noisy layers are our proposed
algorithms. All results were averaged over 1000 randomized samples to ensure statistical reliability.

DP was used as a baseline to provide the optimal solution. DP for the 2D-BKP problem solutions were
only computed for n ≤ 15, since itstime complexity is O (n ⋅ cw ⋅ cv), which is very high for large n.
• Greedy Algorithm selects items based on the highest value-to-weight ratio, providing a fast but

potentially suboptimal solution.
• Random Selection is a baseline that selects items randomly, allowing us to evaluate how far non-

optimized solutions deviate from optimal ones.
• DDQN and Dueling DQN with Noisy layers (DDQN-Noisy) were the reinforcement learning-based

models tested, with the former serving as a baseline for RL and the latter being an improvement aimed
at enhancing exploration. It is noteworthy that the state space is represented as a matrix of dimensions
(n + 1) × 4, where the first n rows encode item features (xi , pi , wi , vi) and the last row tracks the
knapsack’s remaining capacities.

4.2 Experimental Results and Comparison
4.2.1 Accuracy Comparison

Standard Two-Dimensional Knapsack Problem (0–1 Selection)
Table 1 compares the performance of five different algorithms for the Standard Two-Dimensional

Knapsack Problem. It is indicated that DDQN and DDQN-Noisy achieved superior accuracy compared to
the Greedy and Random strategies, closely matching the optimal DP solution. DDQN-Noisy consistently
attained the smallest standard deviation, demonstrating enhanced robustness over DDQN.

Extended Two-Dimensional Bounded Knapsack (Multi-Quantity Selection)
Table 2 compares the performance of five different algorithms for the Extended Two-Dimensional

Bounded Knapsack (Multi-Quantity Selection). We see that in this more complex scenario, DDQN and
DDQN-Noisy maintain near-optimal accuracy, outperforming Greedy by 4%–5%, while Random strategies
exhibited extreme instability (e.g., 20.9% standard deviation) and low accuracy (77%–78%). The trend
reflected in the problem is similar with that in Standard Two-Dimensional Knapsack Problem, which
indicates that our algorithms have strong generalizability.

4.2.2 Total Reward Analysis
In this subsection, we focus on Standard two-dimensional knapsack problem. The trend reflected

in Extended Two-Dimensional Bounded Knapsack is similar with that in Standard Two-Dimensional
Knapsack Problem.

Modified Environment State (Fig. 2a)
• The total reward obtained during training with DDQN was compared before and after modifying the

environment state. The modified state improved the training performance significantly, as seen in the
increased reward trends over 4000 episodes.

• The improved DDQN model consistently outperformed the baseline Normal DDQN model across
episodes, demonstrating the benefit of state modifications.
Noisy Layers Impact (Fig. 2b)

• The total reward during training was further analyzed for DDQN and DDQN-Noisy models in the
modified environment. DDQN-Noisy consistently achieved slightly higher rewards compared to DDQN
alone, highlighting the positive impact of adding noisy layers to the model.



932 Comput Mater Contin. 2025;84(1)

Figure 2: (a) Comparison of total reward during training for DDQN Models with and without environment state
modifications over 4000 episodes, showing how such adjustments improve reward accumulation over 4000 training
episodes; (b) Comparison of total reward during training for DDQN and DDQN-noisy models in the modified
environment over 4000 episodes, illustrating the performance improvement with Noisy layers over 4000 episodes

4.2.3 Runtime Efficiency (Fig. 3a,b)
In this subsection, we focus on Standard two-dimensional knapsack problem. The trend reflected in

Extended Two-Dimensional Bounded Knapsack is similar with that in Standard Two-Dimensional Knapsack
Problem. The runtime of each algorithm was evaluated by varying the number of items in the knapsack. The
results indicate the following trends:

Figure 3: (a) Runtime Comparison of All Algorithms (DP, Greedy, Random, DDQN, and DDQN-Noisy) for Knapsack
Problem Instances with Varying Item Quantities; (b) Runtime Comparison of Greedy, Random, DDQN, and DDQN-
Noisy (Excluding DP) for Knapsack Problem Instances with Varying Item Quantities

• DP: Exhibited the highest runtime due to its exhaustive search approach, with exponential growth as
the number of items increased.



Comput Mater Contin. 2025;84(1) 933

Runtime without DP (Fig. 3b)
To better visualize the runtime of scalable algorithms, DP was excluded from this analysis. The

comparison showed that:

• Greedy and Random: Achieved the fastest runtimes, as expected, but with lower accuracy.
• DDQN and DDQN-Noisy: While slightly slower than Greedy and Random, their runtime remained

manageable, demonstrating their scalability. DDQN-Noisy was marginally slower than DDQN due to
the additional computational overhead of noisy layers.

4.3 Detailed Analysis of Results and Performance Insights
1. DP

DP achieved the highest total value in all three test cases, delivering an optimal solution, as expected.
However, its computational complexity makes it impractical for larger problem sizes, particularly when
the number of items increases (e.g., with 30 items). While DP provides the best solution, its exponential
runtime limits its feasibility for real-time or large-scale applications, highlighting the need for more
efficient alternatives.
2. Greedy Algorithm

The Greedy Algorithm, while providing a suboptimal solution, consistently performed 5%–7% worse
than DP. Despite this suboptimality, the Greedy algorithm demonstrated efficient performance, with fast
execution times. The results show that Greedy is a reasonable choice for smaller problem sizes (10 and
20 items), but as the number of items increases, its performance declines, especially in comparison to more
sophisticated methods.
3. Random Selection

Random Selection, as expected, yielded the worst performance, generating solutions that were approxi-
mately 25%–30% worse than the Greedy algorithm and 30%–40% worse than DP. This outcome emphasizes
the importance of optimization techniques in solving the knapsack problem efficiently, as Random Selection
lacks any form of strategy or heuristics to guide its decision-making.
4. DDQN

DDQN, without Noisy layers, demonstrated a significant improvement over both Greedy and Random
Selection, achieving a solution that was approximately 97% of the optimal DP value. The DDQN model
performed well across all problem sizes, striking a balance between solution quality and training time. This
indicates that DDQN can provide near-optimal solutions while avoiding the computational overhead of DP,
making it suitable for real-time applications.
5. DDQN-Noisy

The addition of Noisy layers to DDQN further improved performance, with DDQN-Noisy achieving
a 0.2%–0.5% increase in the total value across all problem sizes. This subtle yet significant improvement
highlights the value of Noisy layers in enhancing the model’s exploration abilities, helping it finds better
solutions that would have been missed by a more deterministic model. While the improvements were small,
they were consistent, suggesting that Noisy layers fine-tune the agent’s decision-making process, making it
more robust to variability in the environment.

Key Findings:
Accuracy: DDQN and DDQN-Noisy achieved near-optimal solutions compared to the DP baseline,

outperforming both Greedy and Random Selection. Among them, DDQN-Noisy delivered the most
consistent results, as evidenced by its minimal standard deviation across all test cases.



934 Comput Mater Contin. 2025;84(1)

Stability: DDQN-Noisy exhibited superior stability during both the training and testing phases. It
showed the lowest standard deviation in total rewards, making it particularly suitable for applications where
consistency and reliable performance are crucial.

Runtime Efficiency: While DP was the most accurate, its impractical runtime for larger problems
made it unsuitable for many applications. Greedy and Random Selection, although fast, lacked accuracy.
DDQN models achieved high accuracy with reasonable computational costs. The slight increase in runtime
for DDQN-Noisy compared to DDQN was justified by the improved performance and enhanced stability,
making DDQN-Noisy a good trade-off between accuracy and efficiency.

5 Conclusion and Future Work
This paper introduces a novel RL method for solving the KP, overcoming the limitations of traditional

approaches such as DP and greedy algorithms. We enhance the state representation by normalizing item
weights, volumes, and values, which improves the decision-making capabilities of the RL agent. Our method
achieves significant speed enhancements, outperforming DP by over 9000 times. Additionally, by integrating
Noisy layers into the RL model, we achieve a performance increase that boosts accuracy by 0.2% to 0.5%,
while also stabilizing the learning process.

The proposed RL technique excels in exploring large state and action spaces, adapting to complex
scenarios, and delivering near-optimal solutions more efficiently than traditional algorithms. This research
presents a promising solution to the scalability and adaptability issues faced by conventional methods.

Future research could investigate further enhancements to the RL framework, such as integrating multi-
agent [24] systems to tackle distributed knapsack problems or employing transfer learning [25] to apply
learned strategies across different problem instances. Additionally, hybrid approaches that combine RL with
other optimization techniques [26]—such as genetic algorithms or dynamic programming—could provide
even more powerful solutions for large-scale or time-sensitive applications.

Acknowledgement: We would like to extend our sincere appreciation to the editor and reviewers for their valuable
feedback and constructive comments, which greatly improved the quality of this paper.

Funding Statement: This work was supported in part by the Research Start-Up Funds of South-Central Minzu
University under Grants YZZ23002, YZY23001, and YZZ18006, in part by the Hubei Provincial Natural Science
Foundation of China under Grants 2024AFB842 and 2023AFB202, in part by the Knowledge Innovation Program of
Wuhan Basic Research under Grant 2023010201010151, in part by the Spring Sunshine Program of Ministry of Education
of the People’s Republic of China under Grant HZKY20220331, and in part by the Funds for Academic Innovation
Teams and Research Platform of South-Central Minzu University Grant Number: XT224003, PTZ24001, and in part by
the Career Development Fund (CDF) of the Agency for Science, Technology and Research (A*STAR) (Grant Number:
C233312007).

Author Contributions: Conceptualization, methodology and validation, Zhenfu Zhang; resources, writing original
draft preparation, Haiyan Yin; supervision, writing review and editing, formal analysis, Liudong Zuo, Pan Lai. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.



Comput Mater Contin. 2025;84(1) 935

References
1. Kulkarni AJ, Shabir H. Solving 0-1 knapsack problem using cohort intelligence algorithm. Int J Mach Learn Cybern.

2016;7(3):427–41. doi:10.1007/s13042-014-0272-y.
2. Baldo A, Boffa M, Cascioli L, Fadda E, Lanza C, Ravera A. The polynomial robust knapsack problem. Eur J Oper

Res. 2023;305(3):1424–34. doi:10.1016/j.ejor.2022.06.029.
3. He Y, Wang J, Liu X, Wang X, Ouyang H. Modeling and solving of knapsack problem with setup based on

evolutionary algorithm. Math Comput Simul. 2024;219(9):378–403. doi:10.1016/j.matcom.2023.12.033.
4. Fréville A. The multidimensional 0–1 knapsack problem: an overview. Eur J Oper Res. 2004;155(1):1–21. doi:10.

1016/S0377-2217(03)00274-1.
5. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. doi:10.1038/nature14539.
6. Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge, MA, USA: MIT Press; 2018.
7. Ernst D, Louette A, Feuerriegel S, Hartmann J, Janiesch C, Zschech P. Introduction to reinforcement learning.

Liège, Belgium: ULiège; 2024. p. 111–26.
8. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control through deep

reinforcement learning. Nature. 2015;518(7540):529–33. doi:10.1038/nature14236.
9. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep

neural networks and tree search. Nature. 2016;529(7587):484–9. doi:10.1038/nature16961.
10. Legg S, Hutter M. Universal intelligence: a definition of machine intelligence. Mines Mach. 2007;17(4):391–444.

doi:10.1007/s11023-007-9079-x.
11. Yildiz B. Reinforcement learning using fully connected, attention, and transformer models in knapsack problem

solving. Concurr Comput. 2022;34(9):e6509. doi:10.1002/cpe.6509.
12. Martello S, Toth P. Algorithms for knapsack problems. In: North-holland mathematics studies. Amsterdam, The

Netherlands: Elsevier; 1987. p. 213–57.
13. Kosuch S, Lisser A. On two-stage stochastic knapsack problems. Discrete Appl Math. 2011;159(16):1827–41. doi:10.

1016/j.dam.2010.04.006.
14. Chu P, Beasley J. A genetic algorithm for the multidimensional knapsack problem. J Heuristics. 1998;4(1):63–86.
15. Sahni S. Approximate algorithms for the 0/1 knapsack problem. J ACM. 1975;22(1):115–24. doi:10.1145/321864.

321873.
16. Bello I, Pham H, Le QV, Norouzi M, Bengio S. Neural combinatorial optimization with reinforcement learning.

arXiv:1611.09940. 2016.
17. Nazari M, Oroojlooy A, Snyder L, Takác M. Reinforcement learning for solving the vehicle routing problem. In:

Advances in Neural Information Processing Systems; 2018 Dec 3–8; Montréal, QC, Canada.
18. Dai H, Khalil E, Zhang Y, Dilkina B, Song L. Learning combinatorial optimization algorithms over graphs. In:

Advances in Neural Information Processing Systems; 2017 Dec 4–9; Long Beach, CA, USA.
19. Parisotto E, Song F, Rae J, Pascanu R, Gulcehre C, Jayakumar S, et al. Stabilizing transformers for reinforcement

learning. In: Proceedings of the 37th International Conference on Machine Learning; 2020 Jul 13–18; Online.
20. Gu S, Hao T. A pointer network based deep learning algorithm for 0–1 Knapsack Problem. In: 2018 Tenth

International Conference on Advanced Computational Intelligence (ICACI); 2018 Mar 29–31; Xiamen, China.
doi:10.1109/ICACI.2018.8377505.

21. Denysiuk R, Gaspar-Cunha A, Delbem ACB. Neuroevolution for solving multiobjective knapsack problems.
Expert Syst Appl. 2019;116(12):65–77. doi:10.1016/j.eswa.2018.09.004.

22. Fortunato M, Azar MG, Piot B, Menick J, Osband I, Graves A, et al. Noisy networks for exploration. In:
International Conference on Learning Representations; 2018 Apr 30–May 3; Vancouver, BC, Canada.

23. Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N. Dueling network architectures for deep reinforcement
learning. In: International Conference on Machine Learning; 2016 Jun 19–4; New York City, NY, USA. p. 1995–2003.

24. Zhang K, Yang Z, Başar T. Multi-agent reinforcement learning: a selective overview of theories and algorithms. In:
Handbook of reinforcement learning and control. Berlin/Heidelberg, Germany: Springer; 2021. p. 321–84.

https://doi.org/10.1007/s13042-014-0272-y
https://doi.org/10.1016/j.ejor.2022.06.029
https://doi.org/10.1016/j.matcom.2023.12.033
https://doi.org/10.1016/S0377-2217(03)00274-1
https://doi.org/10.1016/S0377-2217(03)00274-1
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/s11023-007-9079-x
https://doi.org/10.1002/cpe.6509
https://doi.org/10.1016/j.dam.2010.04.006
https://doi.org/10.1016/j.dam.2010.04.006
https://doi.org/10.1145/321864.321873
https://doi.org/10.1145/321864.321873
https://doi.org/10.1109/ICACI.2018.8377505
https://doi.org/10.1016/j.eswa.2018.09.004


936 Comput Mater Contin. 2025;84(1)

25. Zhu Z, Lin K, Jain AK, Zhou J. Transfer learning in deep reinforcement learning: a survey. IEEE Trans Pattern
Anal Mach Intell. 2023;45(11):13344–62. doi:10.1109/TPAMI.2023.3292075.

26. Zheng J, He K, Zhou J, Jin Y, Li CM. Combining reinforcement learning with Lin-kernighan-helsgaun algorithm
for the traveling salesman problem. Proc AAAI Conf Artif Intell. 2021;35(14):12445–52. doi:10.1609/aaai.v35i14.
17476.

https://doi.org/10.1109/TPAMI.2023.3292075
https://doi.org/10.1609/aaai.v35i14.17476
https://doi.org/10.1609/aaai.v35i14.17476

	Reinforcement Learning for Solving the Knapsack Problem
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Setup and Results
	5 Conclusion and Future Work
	References


