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ABSTRACT: Rail surface damage is a critical component of high-speed railway infrastructure, directly affecting train
operational stability and safety. Existing methods face limitations in accuracy and speed for small-sample, multi-
category, and multi-scale target segmentation tasks. To address these challenges, this paper proposes Pyramid-MixNet,
an intelligent segmentation model for high-speed rail surface damage, leveraging dataset construction and expansion
alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms. The encoding net-
work integrates Spatial Reduction Masked Multi-Head Attention (SRMMHA) to enhance global feature extraction
while reducing trainable parameters. The decoding network incorporates Mix-Attention (MA), enabling multi-scale
structural understanding and cross-scale token group correlation learning. Experimental results demonstrate that the
proposed method achieves 62.17% average segmentation accuracy, 80.28% Damage Dice Coefficient, and 56.83 FPS,
meeting real-time detection requirements. The model’s high accuracy and scene adaptability significantly improve
the detection of small-scale and complex multi-scale rail damage, offering practical value for real-time monitoring in
high-speed railway maintenance systems.

KEYWORDS: Pyramid vision transformer; encoder–decoder architecture; railway damage segmentation; masked
multi-head attention; mix-attention

1 Introduction
The rapid expansion of global high-speed rail networks has created an urgent need for advanced damage

detection systems to maintain operational safety and infrastructure integrity. While rail surfaces inevitably
develop critical defects like cracks, pitting, and corrugations due to extreme operational stresses [1], current
manual inspection methods remain labor-intensive, subjective, and incapable of real-time monitoring.
This creates significant safety risks, as undetected damage may lead to catastrophic failures. The technical
challenges are substantial: complex operating environments with variable lighting and weather conditions
interfere with detection, while the diverse morphology of defects-ranging from microscopic cracks to
extensive spalling—complicates automated segmentation. Furthermore, the scarcity of annotated training
data for rare damage types and the inherent trade-off between model complexity and generalization perfor-
mance continue to hinder practical solutions. These limitations highlight the urgent need for an intelligent
inspection system that combines computational efficiency with robust defect recognition capabilities.

While digital image processing has advanced rail surface inspection, traditional methods remain
limited. Classical computer vision techniques, though effective for plain-background railways, often require
specialized feature engineering for broader infrastructure applications. Yuan et al. [2] used an improved
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Ostu algorithm for damage segmentation, but it lacks generality due to scene-specific threshold adjustments.
Cao et al. [3] combined laser sensors with an enhanced dynamic detection algorithm and digital railway
surface alignment, suitable only for online inspections. Kundu et al. [4] deployed acoustic emission sensors
and wavelet transform for damage localization, yet faced real-time performance issues, environmental
interference, and blind spots. These methods are limited by their reliance on handcrafted features and their
inability to adapt to the complex and dynamic environments of high-speed railways, resulting in poor
generalization and high false positive rates.

Recent years have witnessed deep learning become the predominant approach for rail defect identifica-
tion, owing to its superior feature representation and end-to-end learning capabilities. Notable innovations
include: Guo et al. [5] enhanced Deeplabv3+ optimizing the accuracy-efficiency trade-off for surface
defects, and Wu et al. [6] proposed RBGNet leveraging rail boundary-rail surface complementarity for
improved detection robustness. Zhang et al. [7] demonstrated residual CNNs’ effectiveness in vibration-
based defect characterization, Si et al. [8] put up the Rail-STrans addresses small-defect segmentation
through transformer-enhanced feature learning. While deep learning-based methods have made remarkable
progress in railway damage detection and segmentation, they still face limitations including heavy reliance
on large annotated datasets, high computational complexity, and insufficient generalization across diverse
real-world scenarios.

To address the difficulty of segmenting discrete damage on high-speed railway surfaces, we present
a unique approach that combines deep learning Transformer and semantic segmentation networks with a
variety of attention strategies. This comprehensive technology not only offers immediate damage location
and segmentation, enabling maintenance professionals to analyze and intervene more rapidly, but also when
applied to rail surface damage segmentation, it improves detection speed and accuracy, reduces operational
costs, and boosts the level of automation in the inspection process. The paper’s primary contributions are:

1. A new end-to-end, encoder-decoder and effective convolutional network for railway rail damage
segmentation is proposed, which achieves the precise location and detailed description of the important
parts in rail damage.

2. The encoding network includes a progressive shrinking pyramid, a Spatial-Reduction Attention (SRA)
and a Masked Multi-Head Attention (MMHA). These capabilities enable the fusion of features across
diverse scales, effectively consolidating global information within the input sequence, which not only
diminishes redundant computations but also enhances the model’s flexibility and scalability.

3. The decoding network includes Mix-Attention (MA), which is able to capture the correlation between
different scales simultaneously, which improves the computational speed and generalisation ability of
the model.

4. By adopting transversal connections between encoder and decoder levels as feature queries for the atten-
tion module, we deviate from conventional jump connection methodologies, elegantly harmonizing the
integration of high-level semantic information with low-level structural details and refining the model’s
capacity to cohesively understand and represent complex data patterns.

5. By using a hybrid loss model that combines the Dice and Focal loss functions, the significant issue of
data imbalance is resolved, and segmentation accuracy and speed are increased.

2 Related Work
Semantic segmentation has evolved through distinct methodological phases. The breakthrough of

Fully Convolutional Networks (FCNs) [9] established an end-to-end paradigm for pixel-wise prediction,
replacing traditional patch-based approaches. Subsequent innovations like U-Net [10] and pyramid pooling
modules [11] addressed scale variability but remained constrained by local receptive fields. The DeepLab
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series [12,13] mitigated this via dilated convolutions, yet inherent limitations persisted in modeling long-
range dependencies—a critical requirement for complex scenes such as railway infrastructure. While CNNs
excel at hierarchical feature extraction, their inductive biases (e.g., translation equivariance) may hinder
adaptability to irregular structures or occlusions common in real-world environments.

Originally developed for machine translation, Transformers have demonstrated remarkable success
in computer vision through Vision Transformers (ViTs). By leveraging self-attention mechanisms, ViTs
excel at modeling long-range dependencies and handling variable input sizes, outperforming traditional
CNNs in various visual tasks. Liu et al. [14] introduced a Bridge Transformer (BrT) for 3D object detection,
enhancing accuracy across visual and point cloud data. Guo et al. [15] proposed RailFormer, a Transformer-
based network with overlapped patch merging and Criss-Cross attention, achieving state-of-the-art mIoU
for rail surface defect detection on RSDD datasets. Chen et al. [16] developed RailSegVITNet, a vision
transformer-based encoder-decoder model for rail track segmentation, maintains its lightweight architecture
while achieving comparable or higher segmentation performance. Despite their remarkable performance in
computer vision, Vision Transformers face significant challenges when applied to railway defect detection–a
demanding real-time application with constrained resources.

The integration of CNN’s local feature extraction with Transformer’s global modeling capabilities has
emerged as a transformative approach for semantic segmentation. Representative works demonstrate distinct
architectural innovations: SETR [17] pioneers pure-Transformer segmentation via sequence-to-sequence
prediction, while SegFormer [18] combines hierarchical Transformers with lightweight MLP decoders for
efficiency. Pyramid Vision Transformer [19] and Twin-Svt [20] further optimize computational overhead
through pyramid structures and spatially separable attention, respectively. Mask2Former [21] advances this
trend with unified masked attention for panoptic segmentation. CNN-Transformer hybrid architectures
synergize CNN’s local feature extraction with Transformer’s global contextual modeling, enabling both
precise identification of micrometer-scale rail surface cracks and robust handling of complex scenarios such
as ballast occlusion.

3 Implementation Details

3.1 Overall Architecture
As shown in Fig. 1, the overall structure of the proposed Pyramid-MixNet is a U-shaped hierarchical

network with lateral links between the encoder and decoder. Specifically, given an input image of size H ∗
W ∗ 3, we first divide it into HW

42 patches, each of size 4 ∗ 4 ∗ 3. Then, we send these flattened patches

to a linear projection to obtain embedded patches of size HW
42 ∗ C1. Afterwards, the embedded patches are

passed through the Transformer encoder at layer L1 along with the positional embedding, and the output is

reshaped into a feature map F1 of size H
4
∗ W

4
∗ C1. Similarly, using the feature maps from the previous stage

as inputs, the corresponding feature maps can be obtained at each stage: F2, F3, and F4, which are relative
to the input image in steps of 8, 16 and 32 pixels, respectively. The encoder uses an incremental compression
technique to manage the feature map scale via the patch embedding layer, which allows for flexible scaling of
the feature maps at every stage. For feature reconstruction, the proposed decoder also consists of four stages,
each step generating fine features D4−i+1 by performing a hybrid attention sequence, where the features of
the query x i

q are equal to the respective lateral encoder feature maps. The features of key and value x i
kv

are given by encoder and decoder level mixing. It is worth noting that our decoder reflects the dimensions
of the encoder-level output. The decoder features are upsampled using bilinear interpolation to match the
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height and width of Di . Finally, the spliced features are subjected to MLP processing to predict a semantic

segmentation map of H
4
∗ W

4
∗ C1.
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Figure 1: Pyramid-MixNet overall architecture

3.2 Pyramid Transformer Encoder
Pyramid Vision Transformer (PVT) [19] uses an asymptotic shrinkage approach to adjust the scale

of the feature maps through patch embedding layers. Here, Pi is used to denote the patch size of stage i,
and Ci is the number of channels output from stage i. At the beginning of stage i, the input feature map
Fi−1 ∈ RHi−1×Wi−1×Ci−1 is first uniformly partitioned into Hi−1 Wi−1

P2
i

blocks, and then each block is flattened and
projected into the Ci dimensional embedding. After linear projection, the shape of the embedded block can
be viewed as Hi−1

Pi
× Wi−1

Pi
× Ci , where the height and width are Pi times smaller than the input. In this way,

as shown in Fig. 2, the scaling of the feature mapping can be flexibly adjusted at each stage so that a feature
pyramid can be constructed for the Transformer.

Figure 2: Pyramid-MixNet encoder architecture

3.3 Masked Multi-Head Attention
The Transformer encoder for stage i is comprised of Li encoder layers, each incorporating both an

attention layer and a feedforward layer. Given that the Pyramid Vision Transformer (PVT) necessitates
processing high-resolution feature maps, we propose the integration of a Masked Multi-Head Attention
(MMHA) layer to supplant the conventional Multi-Head Attention (MHA) layer within the encoder
architecture. The network connectivity in the figure below is the Masked Saled Dot-Product Attention layer.
SRMMHA takes as input a query Q, a key K and a value V and outputs a fine-grained feature. The difference
is that SRMMA reduces the spatial scale of K and V prior to the attention operation. As shown in Fig. 3 below,
this significantly reduces the memory overhead. The SRMMHA for each stage is represented as follows.
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SRMMA (Q , K , V) = Concat (A0, . . . , AH)W o , (1)
Ah = Attention (QW Q

h , SR (K)W K
h , SR (V)W V

h ) , (2)

where Concat(⋅) is the join operation, h = {1, 2, . . . , H} is the header index, and dmod e l is the size of each
query, key and value, dk = dv = dm od e l

H , Ah ∈ Rdmod e l×dk , W Q
h ∈ R

dmod e l×dk , W K
h ∈ Rdmod e l×dk , W V

h ∈ Rdmod e l×dk .
It can be seen that the outputs of all the heads are concatenated and linearly projected through the weight
matrix W O

h ∈ RHdv×dm od e l obtained from learning to form the final output of the SRMMHA module. Residual
concatenation is applied from the inputs to the outputs of the SRMMHA module, followed by frame-by-
frame layer normalisation. SR(⋅) is a dimensionality reduction operation on the spatial dimension of the
input sequence (i.e., K or V), which can be written as:

SR (x) = Concat (Reshape(x , Ri)W S) . (3)

x ∈ RHi Wi×Ci denotes an input sequence, Ri denotes the shrinkage rate of the layer of interest at stage
i. Reshape(x , Ri) denotes the reshaping of the input sequence x into a sequence of size Hi Wi

R2
i
× (R2

i Ci).
W S ∈ R(R2

i Ci)×Ci is an operation that downscales the input sequence down to a linear projection of Ci .
Norm(⋅) is layer normalisation and Attention(⋅) is denoted as:

Attention (Qh , Kh , Vh) = Softmax
⎛
⎝

M +
QKhT

h√
dk

⎞
⎠

Vh , (4)

where Qh ∈ RL×dk , Kh ∈ RL×dk , Vh ∈ RL×dk , M ∈ RL ,L is used to mask similarities including future frames and
ensure causality. Since the latter operation is a Softmax function, masking is performed by adding −∞. After
the masking process, each row of the sequence similarity matrix is transformed into a probability distribution
through the application of the Softmax activation function, ensuring that the values sum to one and lie within
the range of 0 and 1. Ultimately, a novel representation is derived through the computation of the dot product
of the normalized similarity matrix with Vh . With these formulations, SRMMHA is less computationally
expensive and it is capable of handling larger input feature maps even when resources are limited.

Figure 3: Spacial reduction masked multi-head attention
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3.4 Mix-Attention
The traditional cross-attention approach uses two independent sets of features: xq and xkv , each

originating from a different source (See Fig. 4). This technique, while useful in many situations, may neglect
the potential benefits of combining information at many sizes or degrees of detail. In contrast, our proposed
hybrid attention mechanism offers a more subtle approach, using a mix of xkv features from several multi-
scale stages. This method allows queries to seek matches not only at their current scale, but also across a range
of contextual granularities. This capacity considerably improves the functional refining process by allowing
for a more in-depth knowledge and exploitation of contextual information, enhancing the model’s overall
performance and flexibility [22].

The selected segmentation of the feature set Fi for decoder stage i ∈ {1, . . . , N} is of the following form:

Fi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{E j}
N
j=1 , i f i = 1

{E j}
N−i+1
j=1 ∪ {D j}

N
j=N−i+2 , otherwise

(5)

where in the initial stage of the decoder (i= 1), we choose all of the encoder’s characteristics. In the subsequent
decoder stage, the previously computed decoder output will be propagated by substituting the corresponding
horizontal encoder features in Fi . To ensure that the spatial dimensions of the features in Fi are aligned, we
use spatial approximation:

F̂ i
j = Linear(C j , C j)(F̂ i

j),∀ j ∈ {1, ..., N − 1}, (6)

where F i
j represents the jth element in the feature set Fi , and pr j indicates the pooling ratio corresponding to

the alignment size with the minimum feature mapping F i
N . To establish spatial consistency, these alignment-

processed features are joined along the channel dimensions, yielding a new feature vector xkv that contains
both key and value information.

x i
kv = Concat({F̂ i

j}
N−1
j=1
∪ {F i

N}). (7)

The cross-attention module is replaced with a hybrid attention module using layer normalisation (LN)
and feed-forward networks (FFN), as illustrated in Fig. 5, and the output of Decoder-Stage(i) is computed as
follows:

Ai = LN(Mix − Attention. (LN(X i
kv , X i

q)) + LN(X i
q)), (8)

Decoder-Stage(i) = DN−i+1 = FFN(Ai) + Ai . (9)



Comput Mater Contin. 2025;84(1) 1573

Figure 4: Mix attention

Figure 5: Pyramid-MixNet decoder architecture

3.5 Loss Function and Evaluation Metrics
For enhancing the efficiency of semantic segmentation on the dataset and successfully address the severe

data imbalance problem, we use a hybrid loss model that incorporates the Dice and Focal loss functions. The
Dice loss function is built around the definitions of precision and recall, and its formula is illustrated in (10).
It is worth mentioning that Dice loss, a popular segmentation evaluation metric, and direct optimisation
can considerably increase the model’s performance. This method not only addresses the imbalance between
categories, but also improves the model’s capacity to identify samples from a limited number of categories,
hence enhancing the overall segmentation result. The accuracy of Pyramid-MixNet model segmentation is
maximum when θ takes the value of 1.

Dice(Precision, Recal l) = 1 − (1 + θ2) Precision ∗ Recal l
θ2 ∗ Precision ∗ Recal l

. (10)

Focal loss establishes a criterion for measuring the categorical focal loss between the true and predicted
values, where σ takes the value of 0.25 and τ takes the value of 2.

Focal(GroundTruth, Predicted) = −GroundTruth ∗ σ ∗ (1 − Predicted)τ ∗ log(Predicted). (11)

The final loss function formulation is as follows:

TotalLoss = DiceLoss + FocalLoss. (12)
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4 Experiment and Result Analysis

4.1 Data Preparation
With the support of the relevant departments, our team obtained a total of 545 rail surface damage

images by using a high-speed rail camera to acquire a specific cross-section of high-speed rail for on-site
shooting of visible light images of the damage, and then constructed an initial dataset of rail surface damage
images by segmenting the collected images, adjusting them to a fixed size, and then labelling them. From
the 500 clear datasets, 400 images were selected and manually labelled at the pixel level, and then these
images were subjected to data expansion in the form of flipping, scaling, panning and cropping. In this
investigation, 3000 rail surface damage images were gathered. To ensure the effectiveness of model training
and the accuracy of evaluation, these images were divided into three sets: training, test, and validation, in
proportions of 60%, 20%, and 20%, respectively. The dataset covers only two main categories: defects and
backgrounds, which account for 7.3 % and 92.7% of the dataset. In the samples taken from the data, there are
several types of defects on the rail surface, such as scratches, dents, abrasions, breaks or surface corrosion,
oxidation and rust, but we have united these types of defects into one type of surface damage. All data
collection processes strictly adhere to national confidentiality laws and regulations. This dataset involves
confidential information, thus its usage has restrictions and will not be shared public. Fig. 6 depicts part of
the self-constructed dataset. The pre-processed images were labelled using EISeg software and the labels were
divided into two categories: background and damage. Fig. 7 shows one image of the dataset and the image
after being labelled.

Figure 6: Partial presentation of the dataset created in this paper. (a) Scratches. (b) Paint loss. (c) Scuffs. (d) Holes. (e)
Peeling

Figure 7: (a) A single image from the dataset. (b) Label image

4.2 Experiment Setup
The methodology described in this paper is based on the PyTorch 1.3 framework, which is developed in

Python. All experiments and tests were conducted on the Windows 10 operating system on NVIDIA Tesla
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P40 GPUs (with 24 GB of RAM and a single-precision performance of 12 teraflops) and the MMSegmentation
platform. Throughout the training stage, the initial rate of learning was set at 0.001, and the model parameters
were modified using the Adam optimisation algorithm, with a weight decay coefficient of 0.0005. In addition,
a cosine recession approach was employed to adjust the learning rate. The input data was preprocessed
uniformly before entering the model by scaling the image to 224 × 224 pixels.

4.3 Result Analysis
4.3.1 Ablation Experiments

In this paper, a complete series of ablation experiments were carried out to rigorously test the efficacy
of the proposed algorithm. These trials demonstrated the critical role of essential modules such as MMHA
(Masked Multi-Head Attention), Mix-Attention, and SRMMHA (Spatial Reduction Mixed Multi-Head
Attention) in improving the algorithm’s performance. The comprehensive trial results, thoroughly described
in Table 1, provide light on the influence of each module and its synergistic combinations. The table displays
a variety of network topologies along with their associated assessment metrics, which include Params
Size, mAcc (mean accuracy), mDice (mean Dice coefficient), Background Accuracy, Damage Accuracy,
Background Dice Coefficient, and Damage Dice Coefficient. As a baseline, the original Pyramid_unet
architecture is characterized by an encoder with a Pyramid Vision Transformer-Medium backbone network
that is seamlessly coupled with a U-Net-based code network.

Table 1: Ablation experiments show the effectiveness of various attention mechanisms and structures

Model Params (M) mAcc/% mDice Background Damage Background dice Damage dice
coefficient/% Acc/% Acc/% coefficient/% coefficient/%

U-Net 7.76 50.31 69.25 96.65 66.94 98.72 50.22
Pyramid_unet 51.96 53.37 74.85 97.03 68.41 98.89 61.28

MMHA 78.36 56.48 79.39 97.28 70.81 99.04 65.92
SRMMHA 70.55 58.81 85.19 98.21 76.88 99.25 69.38

MA 84.29 54.32 83.18 97.94 73.59 99.08 70.22
MMHA +MA 87.76 60.93 88.84 99.16 79.27 99.52 75.36

Pyramid-MixNet 80.93 62.17 89.05 99.32 83.41 99.68 80.28

The results of ablation experiments demonstrate the importance of MMHA (Masked Multi-Head
Attention), SRMMHA (Spacial Reduction Masked Multi-Head Attention) and MA (Mix-Attention). By
replacing the original Pyramid Vision Transformer with SRMMHA and MA in conjunction with the codec
network in U-Net, it is possible to not only improve the generalisation ability of the model but also the mAcc
and mDice coefficients.
(a) Effectiveness of MMHA

After using Masked Multi-Head Attention instead of Multi-Head Attention, the model mAcc is
improved by 2.33% and the damage dice coefficient is improved from 61.28% to 65.92%. Experiments show
that MMHA is able to capture more details, effectively improve feature extraction, and retain detailed
information of the input image. This is mainly due to the fact that MMHA combines the mechanisms of
Multi-Head Attention and Masked Attention, which is able to deal with missing values or information that
needs to be ignored in the sequence data, which is essential for semantic segmentation tasks that need to
accurately identify and locate the damage boundaries in an image.
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(b) Effectiveness of SRMMMHA
After inserting the Spatial Reduction module into the decoder and coupling it with the Masked Multi-

Head Attention, the model’s mAcc increased dramatically to 58.81%. This strategy not only achieves great
segmentation performance, but it also significantly decreases computational complexity and improves the
model’s robustness to changes in input images. In particular, the technique indicates some advantages when
dealing with multi-scale data, demonstrating its potential and relevance in actual applications.
(c) Effectiveness of Mix-Attention

Mix-Attention is an innovative variant of the attention mechanism that achieves multi-dimensional
attention to the input data by combining multi-head attention and other types of self-attention mechanisms,
thereby enhancing the expressive and comprehension capabilities of the model and significantly improving
its performance. By adding Mix-Attention to the decoder, the Damage Dice Coefficient is improved to
70.22%. When used with MMHA, the performance of the model was better and the mAcc reached 60.93%,
providing new ideas and methods for model optimisation and improvement.
(d) Pyramid-MixNet Performance

The Pyramid-MixNet design improves performance by combining three important modules: Multi-
column Mixed-Head Attention (MMHA), Spatial Reduction (SR), and Multi-column Attention (MA). The
synergistic combination of SR, MMHA, and MA greatly improves the model’s performance. Specifically,
integrating SR with MMHA and MA is critical to improving the system’s overall performance with 62.17%
mAcc and 80.28% Damage Dice Coefficient, which results in more accurate segmentation of rail damage,
better generalisation capability and robustness.

4.3.2 Comparison Experiments
In order to objectively evaluate the practicality of Pyramid-MixNet, we conducted comparative exper-

iments with five widely-used semantic segmentation models: the classical U-Net, SegNet, Mask R-CNN,
PSPNet, and DeepLabv3+. These models represent distinct technical approaches and architectural designs
in semantic segmentation: U-Net excels in medical image segmentation with its symmetric encoder-decoder
structure and skip connections; SegNet achieves efficient feature reconstruction through its encoder-decoder
architecture with pooling indices; Mask R-CNN combines object detection and instance segmentation for
multi-task learning in complex scenarios; PSPNet captures multi-scale contextual information via pyramid
pooling modules; while DeepLabv3+ enhances segmentation precision while maintaining high-resolution
features through atrous convolution and encoder-decoder structures. Using identical datasets, we system-
atically compared these models’ performance across multiple metrics including segmentation accuracy,
computational efficiency, parameter count, and robustness under different scenarios. The comparative
experiments not only validate the superiority of our proposed model but also provide valuable references
for future research, particularly regarding application potential in complex environments and multi-task
learning. The experimental results are presented in Table 2.

Table 2: Results of comparative experiments

Method FPS mAcc/% mIoU Damage dice coefficient/%
U-Net 40.49 56.37 62.94 73.28
SegNet 48.61 60.91 67.89 76.54

Mask R-CNN 58.77 59.46 64.26 75.78
PSPNet 64.82 61.73 66.38 77.65

(Continued)
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Table 2 (continued)

Method FPS mAcc/% mIoU Damage dice coefficient/%
DeepLabv3+ 52.88 60.52 65.93 79.33

Pyramid-
MixNet

56.83 62.17 68.62 80.28

It can be seen that the FPS of Pyramid-MixNet, although not the highest, this speed still meets the
real-time demand for surface damage detection on high-speed railways; the average accuracy is the highest,
reaching 62.17%, with the best overall classification performance; the mIoU reaches 68.62, reflecting the
model’s best segmentation results on all categories; the Damage Dice Coefficient comparison with these
networks is also the highest. The enhancement of the proposed model in mAcc and Damage Dice Coefficient,
especially in small-scale damage detection, can effectively reduce the leakage rate and improve the reliability
of the detection results. In summary, the proposed model is more practical in practical applications because
it not only meets the speed requirement of real-time detection, but also provides a more reliable and
efficient solution for surface damage detection of high-speed railway through higher accuracy and stronger
scene adaptability.

In addition, the visualisation results obtained using different segmentation networks are shown in Fig. 8.
From the segmentation results, we find that the two models, U-Net and SegNet, from the actual segmentation
effect, the boundaries between the damaged regions are not clear and definite, and it is difficult to accurately
define the scope of different damages. The Mask R-CNN model improves the boundary delineation to a
certain extent, but its segmentation effect is still unsatisfactory for the defective regions that are in patches.
PSPNet performs relatively well for the segmentation of the first three rail damage images, but once the
specific element of the rail seam appears in the image, the rail seam is segmented as well, leading to inaccurate
segmentation results. The prediction of DeepLabv3+ shows a better performance on the source image,
suggesting that appropriate processing techniques may help improve the segmentation results of this model,
but it also misses some small damages and over-segmentation. Our proposed Pyramid-MixNet is able to
accurately focus on the global region of interest, presenting the damage to be close to the original shape.

At last, we conducted cross-dataset testing and diversity data enhancement experiments. Firstly, we
tested the performance of the model on a publicly available railway surface damage dataset (RSDDs).
The experimental results show that the proposed model achieves a mAcc of 60.12% and a Damage
Dice Coefficient of 78.45% on Rail-Dataset, which is comparable to the performance on the original
dataset, proving the model’s adaptability in different environments. Secondly, we introduced diverse data
enhancement techniques during the training process, including random light changes, noise addition and
background replacement, to simulate railway surface damage under different environments and conditions.
By comparing the experimental results before and after enhancement, we find that data enhancement
significantly improves the model’s performance on complex backgrounds and small-scale damage, with a
2.3% increase in mAcc and a 1.8% increase in Damage Dice Coefficient.
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Figure 8: Visualized results of railway surface damage samples with different models. (a) Original damage image. (b)
Ground-truth labeling. (c) U-Net. (d) SegNet. (e) Mask R-CNN. (f) PSPNet. (g) DeepLabv3+. (h) Pyramid-MixNet

5 Conclusion and Future Work
In this paper, we propose a method called Pyramid-MixNet, which combines Pyramid Vision Trans-

former (PVT) with U-Net segmentation network for the first time and incorporates multiple attention
mechanisms. The integration of Spacial Reduction Masked Multi-Head Attention within the encoder
effectively addresses the challenge of disregarded sequential data information, thereby enhancing the model’s
capability to process and understand complex sequence patterns. Complementarily, the introduction of
Mix-Attention in the decoder facilitates a multi-dimensional focus on the input sequences, ensuring a
more comprehensive extraction of pertinent features from diverse perspectives. Furthermore, the innovative
application of lateral connection strategy within the encoder-decoder network architecture and the selection
of self-made extended dataset as training samples play a pivotal role in accomplishing the segmentation
task for surface defects on high-speed railways. By evaluating the accuracy and other indicators of the
proposed method, the results show that the detection accuracy of our model reaches 62.17% while keeping
the number of parameters. Compared with the mainstream segmentation detection algorithms nowadays,
Pyramid-MixNet is more flexible and scalable, and has achieved satisfactory results in high-speed railway
damage segmentation.

Nevertheless, our network is a preliminary implementation of automated rail surface damage detection
and has several limitations, including a limited number of damage categories in the dataset, inability to
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effectively detect covered rails, and slower inference time compared to lighter models. Future plans include
expanding the damage image dataset to cover more complex scenarios, enhancing round segmentation capa-
bilities, and exploring compression techniques to improve real-time performance and deployment flexibility.
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