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ABSTRACT: The cross-modal person re-identification task aims to match visible and infrared images of the same
individual. The main challenges in this field arise from significant modality differences between individuals and the
lack of high-quality cross-modal correspondence methods. Existing approaches often attempt to establish modality
correspondence by extracting shared features across different modalities. However, these methods tend to focus on
local information extraction and fail to fully leverage the global identity information in the cross-modal features,
resulting in limited correspondence accuracy and suboptimal matching performance. To address this issue, we propose
a quadratic graph matching method designed to overcome the challenges posed by modality differences through precise
cross-modal relationship alignment. This method transforms the cross-modal correspondence problem into a graph
matching task and minimizes the matching cost using a center search mechanism. Building on this approach, we further
design a block reasoning module to uncover latent relationships between person identities and optimize the modality
correspondence results. The block strategy not only improves the efficiency of updating gallery images but also enhances
matching accuracy while reducing computational load. Experimental results demonstrate that our proposed method
outperforms the state-of-the-art methods on the SYSU-MM01, RegDB, and RGBNT201 datasets, achieving excellent
matching accuracy and robustness, thereby validating its effectiveness in cross-modal person re-identification.

KEYWORDS: Cross-modal; person re-identification; modal correspondence; quadratic graph matching; block
reasoning

1 Introduction
Person re-identification (ReID) is the task of retrieving pedestrian images captured by different

cameras. Existing ReID methods primarily focus on matching visible light images [1,2], addressing the
unimodal problem. However, conventional visible surveillance cameras cannot effectively capture pedestrian
information under poor lighting conditions [3,4]. To address this challenge, modern surveillance cameras
can automatically switch to infrared mode to capture infrared images under low-light conditions [5].
Consequently, the research on visible-infrared (VI) person re-identification has emerged, with the goal of
identifying the same person from a visible/infrared image database when given an image from the other
modality. Due to the importance of this task in nighttime intelligent monitoring and public safety, it has
recently gained widespread attention [6,7], and significant progress has been made in the VI-ReID field.

However, most existing methods [8,9] perform recognition by mapping features to a shared space, which
often results in poor performance due to feature loss—critical modality-specific attributes are suppressed
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during alignment, leading to ambiguous representations. Therefore, we aim to explore a reliable cross-
modal person re-identification solution that preserves modality-invariant identity cues without sacrificing
discriminative details.

Recently, some studies have focused on finding correspondences between different modalities [10,11].
However, most methods, as shown in Fig. 1, tend to extract common features for modality alignment, which
often leads to the loss of local information and fails to fully utilize the global information between different
identities. Additionally, regarding the issue of cluster imbalance, many methods [12,13] discard certain
clusters when correspondences cannot be found, further increasing the gap between modalities. To address
this, we propose a quadratic graph matching (QGM) method to prevent local information loss and make full
use of clustering results. This method primarily connects the two modalities through graph matching and
adopts a quadratic matching strategy to tackle the cluster imbalance problem.

Extracting common 
features

Extract visible light 
image and infrared 

image features

Feature clustering

Person Re-ID

Perform feature 
clustering

Extract visible light 
image and infrared 

image features

Graph matching and 
reasoning
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Figure 1: The difference between our method and existing methods

First, we fully leverage the relationships between different identities using graph matching, which
is processed under global constraints. This approach transforms the process of discovering cross-modal
correspondences into a bipartite graph matching problem, where each modality is viewed as a graph, and
each cluster’s representative sample is treated as a node. The matching cost between nodes is positively
correlated with the distance between clusters. By minimizing the global matching cost, graph matching
generates more reliable global correspondences rather than local feature alignments. A large body of
research [14–16] has demonstrated the advantages of graph matching in establishing correspondences
between feature sets. Inspired by this, we construct graphs for each modality and connect the same person
across different modalities.

Basic graph matching struggles to solve the cross-modal cluster imbalance problem. To address this,
we propose a quadratic matching strategy. Due to variations in camera settings, similar samples may be
assigned to different clusters, and these new clusters lack correspondences, which affects the reduction
of modality gaps. By using dynamic quadratic matching, we progressively find correspondences for each
cluster. Subgraphs of the bipartite graph in one matching process are continuously updated based on previous
matching results until each cluster finds a correspondence. Through this strategy, the same identity in
different clusters can find the same cross-modal correspondence, thereby solving the imbalance issue while
enhancing intra-class compactness.

To speed up pedestrian image retrieval and updates, we also propose a Block Reasoning (BR) module,
which can more efficiently utilize the affinity information between images. Specifically, we first partition the
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database images according to bipartite graph nodes and combine these node images to form new database
images. Furthermore, similar to most existing methods [17–19], we compute affinity matrices for query-
database and database-database pairs, and use these two matrices to adjust the measured distance. By finding
the matching nodes based on the distance, we can then identify the pedestrian’s identity based on the node’s
class. At the same time, the block structure allows for efficient updating of the database images through
image comparisons.

Our main contributions are summarized as follows:

• We propose the QGM method for mining reliable cross-modal correspondences in VI-ReID. First,
modality graphs are constructed and graph matching is performed to integrate global information
between identities. Then, a quadratic matching strategy is applied to address the cluster imbalance
problem, making the matching process more adaptive.

• We introduce the BR module, which not only enables efficient matching using the relationships between
pedestrians but also facilitates dynamic data updates.

• Comprehensive experimental results validate the effectiveness of the proposed framework. Under vari-
ous test conditions, the performance of the proposed method outperforms the state-of-the-art methods.

2 Related Work

2.1 Visible-Infrared Person ReID
The visible-infrared (VI) person re-identification task focuses on matching pedestrian images captured

by visible light and infrared cameras. Existing methods can mainly be categorized into two types based
on feature processing approaches: generative methods and non-generative methods. Generative Methods:
These methods [20] focus on reducing the style differences between modalities. The mainstream approach is
to use Generative Adversarial Networks (GANs) for modality translation. For example, MUNIT-GAN [15]
and AttGAN [21] utilize GANs to perform unsupervised image-to-image translation across multiple modal-
ities. However, these methods often increase the computational load of the model and may introduce
additional noise. In contrast, non-generative methods directly exploit raw features without data synthesis.
Recent advances include semantic-driven frameworks like CLIP-Driven [22], which align cross-modal
semantics using vision-language models but require costly text annotations; spatio-temporal aggregation
techniques [23] that enhance temporal consistency in video sequences at the expense of high computational
complexity; and multi-view clustering approaches [24,25], which complete incomplete multi-view data via
tensor decomposition or manifold learning but rely on the restrictive assumption of aligned inputs. To
address these limitations, the proposed method achieves unsupervised cross-modal alignment through
quadratic graph matching and block reasoning, eliminating the need for manual annotations or complex
fusion frameworks.

2.2 Graph Matching for Person ReID
In unimodal ReID, graph matching is mainly used in two ways: one is to divide pedestrian images

into multiple parts, treating local features as nodes in the graph and using graph matching to align features
of pedestrians under different poses and occlusion scenarios [26,27]. The other is to model pedestrian
images as a graph structure, where nodes represent feature points and edges represent the relationships
between features. Graph matching is used to analyze and compare the structural similarity between different
images [28,29]. However, in VI-ReID, the cross-modal differences are much larger than the cross-camera
differences within a single modality. Therefore, we construct a graph for each modality and use graph
matching to discover the cross-modal correspondences. Recent work [30] proposed progressive graph
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matching for VI-ReID. However, their method relies on alternating optimization between feature learning
and graph matching, which may lead to suboptimal convergence. In contrast, our quadratic graph matching
dynamically resolves cluster imbalance through iterative subgraph updates, ensuring that all clusters find
correspondences without discarding outliers. Additionally, we integrate a center search mechanism to select
representative nodes with minimal variance, further enhancing matching stability.

2.3 Inference Methods for VI-ReID
Most existing methods [31,32] perform inference using simple distance metrics, such as calculating

Euclidean or Mahalanobis distances between output features to measure similarity. Although these methods
are simple and intuitive, they treat each database image as an independent entity and ignore the potential
relationships between database images, leading to the loss of valuable affinity data, which in turn affects the
matching performance. To address this issue, the similarity inference metric proposed in [33] incorporates
the calculation of Jaccard distance between database images to optimize the matching. However, Jaccard
distance only considers the presence or absence of elements and ignores specific similarity scores, thus
limiting its effectiveness to some extent. In response, the affinity inference metric proposed in [34] considers
the similarity between database images but requires recalculating large amounts of data when querying or
updating the database images. To address this, we propose the BR module.

3 Methodology
This chapter provides a detailed description of the method we propose. The overall framework of the

method is shown in Fig. 2). We utilize the Dual Contrastive Learning (DCL) framework (on the left side
of Fig. 2) to learn discriminative features within each modality and optimize them using modality-specific
contrastive loss functions. Furthermore, based on DCL, we introduce the innovative methods presented in
this paper, focusing on the novel QGM module (in the center of Fig. 2) and the BR module during the testing
phase (on the right side of Fig. 2). The QGM module consists of two parts: the center search, which selects
representative points that are not affected by outliers by analyzing the relationships between sample points
and cluster centers using variance; and the construction of a graph to establish modality correspondence. The
BR module leverages the matching results from graph matching to partition the image gallery, calculating
the affinity distance between blocks to achieve more accurate person re-identification. Additionally, it uses
the advantages of blocks to enable fast updating of the image gallery. The detailed descriptions of these two
modules are provided in Sections 3.2 and 3.3.

3.1 Dual-Contrastive Learning Framework
To clearly describe the method, let T = {Tv , Tr} represent the training dataset of visible-infrared

images, where Tv = {xv
i ∣ i = 1, 2, ⋅ ⋅ ⋅ , N} refers to the visible dataset consisting of N visible images, and Tr =

{xr
j ∣ j = 1, 2, ⋅ ⋅ ⋅ , M} refers to the infrared dataset consisting of M infrared images. Grayscale augmentation

is a common data augmentation technique for visible light images, aiming to remove color information and
retain only brightness (intensity) information. Therefore, grayscale augmentation is suitable for the learning
process of visible light images. For infrared image learning, temperature mapping augmentation is more
appropriate, as it expands the infrared representation based on temperature values from different regions.
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Figure 2: The pipeline of our framework. Different colors indicate different pedestrians

We use AGW as our feature extraction framework, which is based on the ResNet50 backbone to extract
features from visible and infrared images, respectively. The extracted feature sets are then clustered using
DBSCAN. Subsequently, the contrastive loss functions in Eq. (1) are applied to train the model separately on
visible and infrared clusters.

Lra = yi j ⋅ D (F i
v , F j

r) + (1 − yi j) ⋅max (0, m − D (F i
v , F j

r)) . (1)

LetLra represent the unimodal loss function; F i
v denotes the feature vector corresponding to sample xv

i ,
and F j

r denotes the feature vector corresponding to sample xr
j . D (F i

v , F j
r) represents the Euclidean distance

between the two features. yi j is a binary label indicating whether the sample pair belongs to the same category
(1 for the same category, 0 for different categories). The loss function consists of two parts: when yi j = 1, we
directly minimize the Euclidean distance; when yi j = 0, we enforce a margin constraint to ensure the distance
is at least m. After completing the training, we achieve the unsupervised person re-identification clustering
task within each modality.

3.2 Quadratic Graph Matching
In the DCL module described above, we did not directly address the relationship between the two

modalities. Therefore, when the gap between the two modalities is significant, the above method cannot
be applied. To address the cross-modal correspondence problem, we propose the QGM module. Prior to
matching, we first perform center search, which serves as the foundation for graph matching. The feature
distribution results after quadratic graph matching are shown in Fig. 3.

The Center Search Module is designed to select the most representative sample points from each cluster,
overcoming the interference of outliers and enhancing the robustness of cross-modal alignment. Its core
idea is to choose the point that is most consistent with the sample distribution of the same class, based
on the stability (variance) of the distance distribution rather than just geometric distance. Compared to
traditional methods, such as using K-means to directly select centroids, this approach better adapts to noisy
data distributions.
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Figure 3: The effect of the original feature after DCL and QGM processing

First, the initial distances are calculated, and candidate points are selected. For a given cluster, we
compute the Euclidean distance from each point to the current cluster centroid and sort these distances in
ascending order. The top ten sample points with the smallest distances form the candidate point set X =
{xk}L

k=1 for the next round of filtering. If the number of points in the cluster is fewer than ten but greater than
two, the actual number of sample points is used for the next round of filtering. If the number of points in
the cluster is less than two, the variance calculation step is skipped, and only the point closest to the centroid
is selected. Next, the distance distribution between the candidate points is calculated. For each candidate
point, we compute its Euclidean distance to all other candidate points within the cluster and then calculate
the mean and variance of these distances. The specific expressions are shown in Eqs. (2) and (3).

Vk =
1

N − 1∑k≠l (D (xk , xl) −MDk)2 , (2)

MDk =
1

N − 1∑k≠l D (xk , xl) , (3)

where Vk denotes the variance of point xk . N represents the actual number of selected sample points.
D (xk , xl) represents the Euclidean distance between point xk and point xl . MDk denotes the average
distance from point xk to all other selected points. After calculating the variance for each point, we select
the point with the smallest variance as the representative point for the cluster. This is because the point with
the smallest variance best represents the position of all points in the cluster. It has the most stable distance
to other points and is less affected by outliers.

Furthermore, we construct two graphs, Gv is = (Vv is , Ev is) and Gir = (Vir , Eir), where the node sets rep-
resent the selected representative visible and infrared image features, denoted as Vv is = { f i

v ∣ i = 1, 2, ⋅ ⋅ ⋅ , K}
and Vir = { f j

r ∣ i = 1, 2, ⋅ ⋅ ⋅ , L}, respectively. The edge sets, Ev is and Eir , represent the similarity between
features. We compute the similarity matrix, S, between visible and infrared features, where the element at
the i row and j column of the matrix is denoted as si j = sim ( f i

v , f j
r ), calculated using cosine similarity.

Based on the similarity matrix, S, we traverse each row and column and select feature pairs with a similarity
greater than 0.75 as the initial matching pairs. Based on the initial matching results, we construct new graphs,
Gl ocal

v i s and Gl ocal
ir , by combining the remaining visible and infrared image features. The process of graph

construction follows the same steps as the first construction. We then recalculate the similarity between
visible and infrared features to obtain a new similarity matrix, S′, where the element at the i row and j column
of the new matrix can be represented by Eq. (4).
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s′i j = α ⋅ sim ( f i
v , f j

r ) + β ⋅ struct_sim (Gl ocal
v i s , Gl ocal

ir ) , (4)

where α and β are weight parameters, and struct_sim represents the structural similarity, specifically using
the Structural Similarity Index. Based on the updated similarity matrix, S′, we compare the number of rows
and columns. Assuming there are fewer rows, we traverse each row and select the most similar feature in
each row as a matching pair, until each row has a corresponding match. The same procedure is followed if
there are fewer columns.

After this node matching process, we assume that there are remaining nodes in graph Gv is that have
not found corresponding nodes, while all nodes in graph Gir have corresponding matches. We dynamically
rebuild a new graph, G′v is , using the remaining nodes in Gv is and the edges between them. The new edge set
G′v is and Gir are reorganized into a bipartite graph. We then reapply the node matching procedure on the
reorganized bipartite graph. At this point, there is no need to compare the number of rows and columns. If
there are remaining nodes in graph Gv is without a corresponding match, we only need to find matching pairs
for the remaining nodes in graph G′v is to conclude the task. Finally, ensure that every node in both sets Gv is
and Gir finds its corresponding match. During the entire matching process, the goal is not only to ensure that
every class finds its corresponding class but also to minimize incorrect matches and enhance the accuracy
of matching. Based on this approach, we further propose a modality association loss function, Lma , which
can be expressed as Eq. (5).

Lma =
K
∑

i

L
∑

j
max (0, γ − sim ( f i

v , f j
r )) , (5)

where γ represents a threshold for controlling the minimum similarity requirement, and sim ( f i
v , f j

r )
represents the cosine similarity between visible landmark points i and infrared landmark points j.

3.3 Block Reasoning
During the testing phase, pedestrian image matching based on Euclidean or cosine distance is quite

limited. While Euclidean distance directly measures the geometric distance between features and cosine
distance evaluates angular similarity, both approaches assume that feature relationships are independent,
ignoring contextual correlations among samples. This limitation results in reduced robustness under
modality variations. These methods often overlook the relationships between images or treat the entire
image gallery as a whole, leading to excessive computational overhead during image updates. To overcome
these limitations, we introduce the BR module, which dynamically constructs affinity groups based on the
relational structure of samples rather than relying solely on pairwise distance metrics. Specifically, we can
adjust the distance by utilizing gallery images that exhibit high affinity with the query image. BR captures the
latent affinity information between gallery images and incorporates it into the distance calculation, thereby
optimizing the matching performance. The detailed distance updating process is shown in Fig. 4.

Based on the graph matching results mentioned earlier, we group the matched nodes corresponding
to the visible and infrared datasets into blocks, ultimately forming N blocks. When the number of visible
nodes exceeds the number of infrared nodes, the number of blocks, N, represents the number of infrared
nodes. Conversely, if the number of visible nodes is fewer than the infrared nodes, N represents the number
of visible nodes. In addition, we construct two affinity matrices: one is the affinity matrix, Agv , consisting of
the matched node image sets from graph v and the query gallery g, and the other is the affinity matrix, Avv ,
constructed from the matched node image sets from graph v.
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Figure 4: Distance update process diagram

We compute the affinity matrix, Agv , between the graph-matching node image sets and the query gallery,
where each element, Agv (i , j), represents the cosine similarity between node image vi and query image g j,
the specific expression is shown in Eq. (6).

Agv (i , j) = 1 −
Fvi ⋅ Fg j

∥Fvi∥ ∥Fg j∥
, (6)

where Fvi represents the feature of the node image vi , and Fg j represents the feature of the query image
g j. Next, we compute the affinity matrix, Avv , between the graph-matching node images, where each
element, Avv ( j, k), represents the similarity between image v j and image vk , the specific expression is shown
in Eq. (7).

Avv ( j, k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 −
Fv j ⋅ Fvk

∥Fv j∥ ∥Fvk∥
j ≠ k

1 j = k
. (7)

The dual-contrastive loss aims to bring together images of the same identity while pushing away those
with low similarity. However, the associative information between low-similarity images is often too weak
to be effectively utilized and may introduce noise, which interferes with subsequent distance calculations,
leading to inaccurate results. Therefore, we need to eliminate these noise values.

To address this issue, we introduce a noise suppression mechanism to reduce the impact of inaccurate
affinity values on matching. We define a threshold, θ, and set affinity values below this threshold to zero. This
operation are applied to affinity matrix Agv and Avv . The affinity matrix after noise suppression is represented
as
∼
Agv and

∼
Avv , and for the matrix

∼
Agv , the specific noise suppression expression is shown in Eq. (8).

∼
Agv (i , j) = { Agv (i , j) Agv (i , j) ≥ θ

0 Agv (i , j) < θ . (8)

To further improve the suppression of inaccurate similarity information during the task execution and
ensure the model focuses on meaningful associations, we propose a noise suppression loss function,Lns , the
function can be represented by Eq. (9).

Lns =
K
∑

i

L
∑

j
I(pi j<ε) ⋅ (pi j)

2 , (9)
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where pi j represents the affinity value, i.e., the element at row i and column j of the affinity matrix, and
I(pi j<ε) is the indicator function, which is 1 when the condition is satisfied and 0 otherwise. Further, mean
expansion is required to reduce the distance between images. Specifically, for a given gallery image, we can
find M most similar images, and then replace the affinity values in the image with the average affinity of these
M images. This operation applies only to the affinity matrix

∼
Avv , and the specific mean expansion can be

expressed as Eq. (10).

Âvv (i , j) =
⎧⎪⎪⎨⎪⎪⎩

∼
Avv (i , j)

∼
Avv (i , j) = 0

Amean_row (i)
∼
Avv (i , j) ≠ 0

, (10)

where Amean_row (i) represents the average affinity from the M images, and Amean_row (i) = 1
M

M
∑
j=1

∼
Avv (i , j) is

the expression for the average affinity. The affinity matrix Âvv represents the matrix
∼
Avv after mean expansion.

The expansion process does not require checking whether the element is zero; instead, we find the M most
similar images and replace the affinity value with the average affinity of these images.

Initially, we use cosine similarity for Agv , which can be transformed into base distance, as represented
by Eq. (11).

d = 1 − Agv . (11)

The affinity reasoning module works such that if a query image is similar to a node image, the distance
between the query image and the similar node images should be reduced. The distance reduction depends on
the distances between the query image and the node image’s similar images. Therefore, the corrected distance
between each query image and each node image can be represented by Eq. (12).

d∗ =
∼
Agv Âvv . (12)

Finally, by subtracting the corrected distance between images from the base distance, D, the final affinity
distance between images can be obtained, which is represented by Eq. (13).

D = d − d∗. (13)

Based on the final distance, we query the two closest images for any given query image. If both images
belong to the same data block, we classify the query image under that block’s label. If the two images come
from different data blocks, we further compute the average cosine similarity between the query image and
each of the two blocks, and the block with the higher score determines the label identity for the query image.
For data updates, new data only needs to be compared with the node image dataset, and classification is done
based on the scoring results.

3.4 Training and Inference
The overall loss functionL of QGM-BR can be expressed as Eq. (14).

L = Lra +Lma + λLns , (14)

where λ is a hyperparameter used to balance the contribution of the loss term Lns .
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4 Experiments
In this section, we first introduce the datasets and experimental details. Then, experiments are

conducted on two publicly available datasets. Finally, a detailed analysis of QGM-BR is presented.

4.1 Datasets
We evaluate the proposed method on three widely used visible-infrared datasets, SYSU-MM01 [35],

RegDB [36] and RGBNT201 [37].
SYSU-MM01 Dataset. This dataset contains images of 1900 pedestrians from six different viewpoints.

Each pedestrian has images captured from two visible light viewpoints, along with one thermal infrared
viewpoint. It is one of the most challenging datasets for cross-modal person re-identification. Testing on the
SYSU-MM01 dataset is conducted under two settings: full retrieval mode and indoor retrieval mode. In full
retrieval mode, the gallery consists of visible light images, while the query set consists of infrared images. In
indoor retrieval mode, visible light images from outdoor scenes (cameras 4 and 5) are excluded.

RegDB Dataset. This dataset contains 412 identities, each with 10 RGB images and 10 thermal images.
The dataset includes 254 females and 158 males. Among the 412 identities, 156 were captured from the front,
and 256 from the back. The RegDB dataset contains two testing settings: infrared to visible light and visible
light to infrared modes.

RGBNT201 Dataset. This dataset is a pedestrian image database that includes three modalities: visible
light, infrared, and thermal imaging. According to the original data split, the training subset consists of 141
classes (3280 visible light images and 3280 infrared images), while the test subset consists of 30 classes (836
visible light images and 836 infrared images). In practice, we only use the visible light and infrared images
from each class for experimentation. Similar to the evaluation on the RegDB dataset, two retrieval modes are
used: Visible to Thermal and Thermal to Visible. In the Visible to Thermal retrieval mode, the probe set is
constructed by randomly selecting 10 visible light images from each class in the test set, while the gallery set
contains all infrared images from the test set. The Thermal to Visible retrieval mode has a similar probe and
gallery structure, but with the modality configuration reversed. For both retrieval modes, the final results
are reported as the average of ten tests.

4.2 Evaluation Protocols
4.2.1 Implementation Details

During the training phase, we use a non-local module enhanced network based on AGW [14], with
ResNet50 [38] as the feature extractor. The backbone network is initialized with pre-trained weights from
ImageNet. In each mini-batch, the number of classes P and the number of samples per class K are both set
to 8. All pedestrian images are resized to 256 × 128 pixels. The model is trained using the SGD optimizer,
with an initial learning rate of 0.1 for randomly initialized parameters and 0.01 for pre-trained parameters.
The learning rate is reduced by a factor of 10 at epochs 20 and 50. Random grayscale augmentation is
applied to visible light images. During each training epoch, DBSCAN is used to cluster images within each
modality. The maximum distance is set to 0.5 for the SYSU-MM01 dataset and 0.25 for the RegDB dataset.
The minimum cluster size for both datasets is set to 4. During clustering, the memory update rate λ is set
to 0.05, the temperature factor τ is set to 0.1, and the weight parameter μ is set to 0.5. All experiments are
conducted on an NVIDIA RTX 4090D GPU.
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4.2.2 Evaluation Metrics
During the experimental phase, we use standard evaluation metrics to assess the two datasets, including

the Cumulative Match Characteristic (CMC) curve, Mean Inverse Negative Penalty (mINP), and Mean
Average Precision (mAP) to measure the model’s recognition performance. The CMC curve reflects the
classification accuracy of the model, typically represented as Rank-n for the top n matching results. mINP
indicates the proportion of correct samples among all retrieved samples up to the last correct match. mAP
is the mean accuracy of all returned results for a given category.

4.3 Parameters Analysis
To find the optimal hyperparameters for the proposed method, we first conducted a parameter analysis

experiment to examine the impact of the weighted combination of different loss functions on the model. As
shown in Fig. 4. Our study aims to verify the impact of the proposed BR module on overall performance.
This experiment was conducted in the global mode of the SYSU-MM01 dataset, testing the model across
the parameter range {0, 0.2, 0.4, 0.6, 0.8, 1.0}. When the parameter is 0, the BR module is not used,
resulting in poor model performance. The final experimental results, shown in Fig. 5, indicate that the
proposed BR module effectively improves the model’s performance, with optimal results achieved at a specific
parameter value.

Figure 5: The impact of different λ values on the SYSU-MM01 dataset under the all-search mode

4.4 Comparison with State-of-the-Art Methods
Based on the optimal model derived in the previous section, we first evaluate the framework we

proposed using the widely used SYSU-MM01 and RegDB datasets. The comparison methods are mainly
divided into two categories: one for unsupervised cross-modal visible-infrared person re-identification
methods; and another for unsupervised single-modality person re-identification methods. The comparison
results are shown in Table 1.
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Table 1: Comparison of experimental results of different methods on the SYSU-MM01 dataset (%)

Methods Reference All search Indoor search

Rank-1 Rank-10 mAP mINP Rank-1 Rank-10 mAP mINP
SPCL [39] NIPS 2020 18.37 54.08 19.39 10.99 26.83 68.31 36.42 33.05
AGW [14] TPAMI 2021 47.5 84.39 47.65 35.3 54.17 91.94 62.97 59.23
MMT [40] ICLR 2020 21.47 59.65 21.53 11.50 22.79 63.18 31.50 27.66

ICE [41] ICCV 2021 20.54 57.50 20.39 10.24 29.81 69.41 38.35 34.32
JSIA-ReID [42] AAAI 2020 38.10 80.7 36.90 – 43.80 86.2 52.90 –

OTLA [10] ECCV 2022 29.9 – 27.1 – 29.8 – 38.8 –
ACCL [30] CVPR 2023 57.27 92.48 51.78 34.96 56.23 90.19 62.74 58.13
ADCA [11] MM 2022 45.51 85.29 42.73 28.29 50.60 89.66 59.11 55.17
H2H [43] TIP 2021 30.15 65.92 29.40 – – – – –

QGM-BR(ours) CMC 2025 58.36 93.27 52.92 40.85 57.02 90.87 63.98 57.74

As shown in Table 1, in the experiments on the SYSU-MM01 dataset, the proposed framework outper-
forms the best models on all evaluation metrics in both the full retrieval mode and indoor retrieval mode.
Specifi-cally, in full retrieval mode, the model achieves a mAP of 52.92%, improving by 1.14% compared
to the best model ACCL, and a Rank-1 accuracy of 58.36%, which is 1.09% higher than ACCL. In indoor
retrieval mode, the mAP reaches 63.98%, an improvement of 1.01% over the best model AGW, and the Rank-1
accuracy is 57.02%, 0.79% higher than ACCL.

As shown in Table 2, in the experiments on the RegDB dataset, the proposed framework outperforms
the best models in both test modes. In the Visible to Thermal mode, the mAP improves by 0.72%, and Rank-1
accuracy increases by 0.7% compared to the best model. In the Thermal to Visible mode, the mAP improves
by 1.86%, and Rank-1 accuracy increases by 1.59%.

Table 2: Comparison of experimental results of different methods on the RegDB dataset (%)

Methods Reference Visible to thermal Thermal to visible

Rank-1 mAP Rank-1 mAP
SPCL [39] NIPS 2020 13.59 14.68 11.70 13.56
AGW [14] TPAMI 2021 70.05 66.37 70.49 65.90
MMT [40] ICLR 2020 25.68 26.51 24.42 25.59

ICE [41] ICCV 2021 12.98 15.64 12.18 14.82
JSIA-ReID [42] AAAI 2020 48.50 49.30 48.10 48.90

OTLA [10] ECCV 2022 32.90 29.70 32.10 28.60
ACCL [30] CVPR 2023 69.48 65.41 69.85 65.17
ADCA [11] MM 2022 67.20 64.05 64.48 63.81
H2H [43] TIP 2021 23.81 18.87 – –

QGM-BR (ours) CMC 2025 70.75 67.09 72.08 67.76

In order to validate the model’s excellent performance across diverse datasets, in addition to conducting
experiments on the commonly used SYSU-MM01 and RegDB datasets, we also performed experiments
on the newly released RGBNT201 dataset, with the results shown in Table 3. Since this dataset is newly
introduced and unprocessed, it is not directly applicable to visible-infrared person re-identification, and
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therefore, there are few research papers reporting results on it. We selected several methods that have shown
strong performance in this context as competitors on this dataset.

Table 3: Comparison of experimental results of different methods on the RGBNT201 dataset (%)

Methods Reference Visible to thermal Thermal to visible

Rank-1 mAP Rank-1 mAP
TSLFN +HC [44] Neurocomputing 2020 26.40 22.90 18.40 22.00

DDAG [45] ECCV 2020 73.50 45.50 73.35 45.80
CM-NAS [46] ICCV 2021 75.30 43.30 75.60 45.30

AGW [14] TPAMI 2022 71.20 38.90 69.00 39.60
DTRM [47] TIFS 2022 82.00 44.50 83.90 45.10

QGM-BR (ours) CMC 2025 85.32 47.09 85.11 47.83

As shown in Table 3, in the experiments on the RGBNT201 dataset, the proposed framework outper-
formed the best model in both testing modes. In the Visible to Thermal mode, compared to the best model,
the mAP improved by 3.32%, and the Rank-1 accuracy increased by 1.59%. In the Thermal to Visible mode,
the mAP improved by 1.21%, and the Rank-1 accuracy increased by 2.03%. Overall, the proposed framework
demonstrates high competitiveness across all three datasets.

4.5 Ablation Study
This section presents an ablation study to validate the effectiveness of each component of the proposed

method. We use the DCL module described in Section 3.1 as the baseline and evaluate the performance after
adding the QGM module and the BR module, as well as the effect of the contrastive loss function.

The experimental results are shown in Table 4. The addition of any single module among the QGM
module, BR module, and contrastive loss function significantly improves the model’s performance. Pairwise
combinations of these three components also lead to notable performance improvements. When all three
components are integrated together, they complement each other, achieving the best performance. Overall,
each component positively contributes to the model’s recognition performance, and their combined usage
yields outstanding results. As shown in Fig. 6, we can also observe that the QGM and BR modules
mutually complement each other, resulting in optimal performance. Notably, when the BR module operates
independently without the QGM module, it treats each data point as an individual block due to the absence
of QGM’s matching results.

Table 4: Ablation experiments under the SYSU-MM01 dataset (%)

DCL QGM BR Lns All search Indoor search

Rank-1 mAP mINP Rank-1 mAP mINP
✓ ✗ ✗ ✗ 40.26 37.56 33.19 42.89 48.57 44.51
✓ ✗ ✓ ✗ 42.15 39.82 34.68 44.37 50.12 46.05
✓ ✗ ✗ ✓ 41.73 38.95 33.85 43.52 49.34 45.20
✓ ✗ ✓ ✓ 43.29 40.61 35.92 45.83 51.48 47.33
✓ ✓ ✗ ✗ 40.89 38.29 34.57 43.15 49.81 45.82

(Continued)
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Table 4 (continued)

DCL QGM BR Lns All search Indoor search

Rank-1 mAP mINP Rank-1 mAP mINP
✓ ✓ ✗ ✓ 44.58 41.50 36.85 46.25 52.11 49.86
✓ ✓ ✓ ✗ 50.66 47.25 40.18 53.14 60.28 54.19
✓ ✓ ✓ ✓ 58.36 52.92 40.85 57.02 63.98 57.74

Figure 6: From the ablation experiment results under the perspective of the QGM and BR modules

5 Conclusion
We propose a framework based on Quadratic Graph Matching (QGM) and Block Reasoning (BR)

to achieve reliable modality correspondence and efficient image updates. First, we transform the modality
correspondence problem into a graph matching problem and use a quadratic matching strategy to effectively
address the cluster imbalance issue. Additionally, we introduce the Block Reasoning module, which utilizes
the affinity information between classes to enhance the precision of person search while simplifying the
gallery update process. Extensive experiments demonstrate that the proposed method achieves state-of-the-
art performance across multiple datasets. However, the affinity reasoning module is currently only applied
during the testing phase, and the affinity information in the training phase has yet to be fully exploited.
Future work will focus on integrating the affinity information with graph matching in the training phase for
better performance.
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