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ABSTRACT: In the Visual Place Recognition (VPR) task, existing research has leveraged large-scale pre-trained
models to improve the performance of place recognition. However, when there are significant environmental differences
between query images and reference images, a large number of ineffective local features will interfere with the extraction
of key landmark features, leading to the retrieval of visually similar but geographically different images. To address this
perceptual aliasing problem caused by environmental condition changes, we propose a novel Visual Place Recognition
method with Cross-Environment Robust Feature Enhancement (CerfeVPR). This method uses the GAN network to
generate similar images of the original images under different environmental conditions, thereby enhancing the learning
of robust features of the original images. This enables the global descriptor to effectively ignore appearance changes
caused by environmental factors such as seasons and lighting, showing better place recognition accuracy than other
methods. Meanwhile, we introduce a large kernel convolution adapter to fine tune the pre-trained model, obtaining
a better image feature representation for subsequent robust feature learning. Then, we process the information of
different local regions in the general features through a 3-layer pyramid scene parsing network and fuse it with a tag
that retains global information to construct a multi-dimensional image feature representation. Based on this, we use
the fused features of similar images to drive the robust feature learning of the original images and complete the feature
matching between query images and retrieved images. Experiments on multiple commonly used datasets show that
our method exhibits excellent performance. On average, CerfeVPR achieves the highest results, with all Recall@N
values exceeding 90%. In particular, on the highly challenging Nordland dataset, the R@1 metric is improved by 4.6%,
significantly outperforming other methods, which fully verifies the superiority of CerfeVPR in visual place recognition
under complex environments.
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1 Introduction
With rapid advancements in fields such as panoramic navigation, autonomous driving, and virtual

reality, the demand for precise recognition and localization of specific locations within extensive and diverse
image datasets has become increasingly prominent. Consequently, Visual Place Recognition (VPR), also
referred as visual geo-localization [1], has attracted increasingly widespread attention. It is a task that searches
for the best matching result from an image database marked with geographical locations for a query image
to identify the location described in that image, and it is usually regarded as an image retrieval problem [2].
Since each image in the database is associated with a geographical identifier, such as a place name or GPS
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coordinates [3], the geographical location of a query image can be determined by representing the images
with global or local descriptors, thereby enabling effective localization through result retrieval.

Traditional VPR methods typically rely on hand-crafted algorithms to extract local descriptors, which
are subsequently aggregated into global descriptors using feature encoding techniques such as VLAD [4].
These global descriptors are then utilized to perform image-level queries through indexing mechanisms.
With the significant success of deep learning, studies have shown that image features automatically learned
by deep neural networks far surpass handcrafted local features [2,5–7], exhibiting greater robustness to
environmental changes. This has led to the emergence of a series of VPR methods that utilize Convolutional
Neural Networks (CNNs) or Transformers for local feature extraction in place recognition tasks [8–11].
Following the extraction of local features, these methods still necessitate the application of aggregation
techniques, such as NetVLAD [12] or pooling methods like generalized mean pooling (GeM [13]) to generate
global descriptors, which are subsequently utilized for place recognition via global descriptor retrieval.

In recent years, large-scale pre-trained models have achieved remarkable success in various downstream
tasks, giving rise to a new technical paradigm for visual place recognition (VPR). These models, known
for their strong representational capabilities, are used as backbones to extract local features, which are
then aggregated into global descriptors for retrieval, enabling place recognition in images. For example,
AnyLoc [14] leverages the pre-trained DINOv2 model as its backbone network, achieving significantly
superior performance and efficiency compared to traditional VPR methods based on CNNs or Transformers.
However, utilizing DINOv2 without fine-tuning may capture a considerable amount of irrelevant dynamic
elements, such as pedestrians or vehicles. To mitigate this issue, SALAD [15] fine-tunes the pre-trained
DINOv2 model on a VPR-specific dataset, concentrating on critical VPR features including architectural
structures and scene layouts. Despite these advancements, full fine-tuning remains resource-intensive and
poses the risk of catastrophic forgetting, which may undermine previously learned features. To overcome
these limitations, CricaVPR [16] proposes the application of a parameter-efficient fine-tuning technique [17]
to the pre-trained model, keeping the base model parameters frozen while integrating trainable adapters [18]
into the base architecture, thereby enhancing the pre-trained model’s adaptability to VPR tasks and bridging
the gap between the pre-trained model and VPR task.

Although methods based on large-scale pre-trained models enhance VPR performance, they face
several technical gaps in real-world location with diverse environmental conditions. On the one hand,
in terms of feature extraction, existing models, even with fine-tuning, often struggle to disentangle the
environmental-invariant features from the environmental-specific ones. For example, the pre-trained models
may capture features that are too sensitive to lighting or weather changes, which are not essential for place
recognition. This leads to sub-optimal performance when the query and reference images are taken under
different environmental conditions. On the other hand, the training datasets used in current methods are
limited. They rarely cover all possible environmental variations, such as different seasons, weather conditions,
lighting, angles, and times [19]. As a result, the models trained on these datasets lack generalization ability
to unseen environmental conditions. When faced with real-world scenarios where the environmental
differences between query and reference images are significant, the models may misclassify or fail to
recognize the correct location, as illustrated in Columns 1 & 2 of Fig. 1.

To overcome this, we propose generating environment-specific variations of query and reference
images, and leveraging their commonality to learn robust features for the original images. This mitigates
the impact of environmental changes on feature learning. Consequently, the robust features enable the
visual place recognition framework to retain strong spatial relationship analysis capabilities under drasti-
cally changing environmental conditions, thereby improving place recognition accuracy. Building on this
foundation, we propose CerfeVPR, a method specifically designed to enhance cross-environment robustness
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and improve matching precision for images under diverse conditions. First, CerfeVPR employs Generative
Adversarial Networks (GAN) [20] to generate similar images under different environments for the original
images, which are processed by the pre-trained DINOv2 model to extract general feature maps. To help
DINOv2 better focus on global features and reduce interference from less discriminative local features,
a novel large-kernel adapter is introduced to fine-tune DINOv2. Next, CerfeVPR’s 3-layer pyramid scene
parsing network further refines and fuses local and global features for comprehensive representation. Finally,
a Transformer-based robust feature learning network processes the fused features of original and synthesized
images to corporately learn robust features for orignal images [21], significantly enhancing perceptual
capabilities and resilience to environmental variations.

Query GroundTruth SFRS CricaVPRDHE-VPR

Figure 1: Examples of challenging queries with significant environmental differences from their corresponding
GroundTruth, causing existing VPR methods to fail in correctly recognizing places

Extensive experiments conducted on five widely used datasets demonstrate that CerfeVPR outperforms
existing benchmark methods for visual place recognition.

The main contributions are as follows:

1) We propose a novel visual place recognition method CerfeVPR that leverages GAN-generated similar
variants of an image to enhance the robustness of its global descriptor. By focusing on invariant
landmark features, CerfeVPR effectively overcomes the challenges posed by diverse environmental
conditions and discrepancies between query and reference images of the same location.

2) We introduce a large-kernel adapter to fine-tune the pre-trained DINOv2 model, enabling it to learn
more effective general representations for images. To further optimize this representation for the visual
place recognition task, its local and global information are further fined and fused to produce a
comprehensive feature representation.

3) Experimental results demonstrate that the proposed method surpasses existing baseline methods on
multiple public datasets. Notably, it achieves a significant performance improvement of up to 4.6%
in Recall@1 on datasets, where references images share similar environmental conditions with the
generated variants of query images.
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The rest of the paper is organized as follows. Section 2 reviews the related work in visual place recog-
nition. Section 3 presents our proposed CerfeVPR method, detailing its design and components. Section 4
provides a comparative analysis of different approaches. Finally, we conclude this paper in Section 5.

2 Related Work

2.1 Visual Place Recognition Based on Convolutional Neural Networks
Chen et al. [6] were the first to employ Convolutional Neural Networks (CNNs) for VPR, demonstrating

that features extracted by CNNs can achieve robust performance under varying environments. Sunderhauf
et al. [5] evaluated the performance of features from each layer of the neural network and found that features
extracted from the third convolutional layer exhibited high robustness to changes in environmental appear-
ance. Arandjelović et al. [12] designed the NetVLAD layer, which not only allows for end-to-end training but
can also be applied to any CNN architecture. However, NetVLAD directly aggregates global features without
considering more granular features. To remedy this limitation, Patch-NetVLAD [10] extracts locally-global
descriptors by incorporating patch-level features from the feature space, effectively combining the advantages
of both local and global descriptor methods, thereby achieving superior performance. In addition, the
optimization of training strategies has garnered significant attention. For instance, SFRS [22] achieved
noticeable improvements through self-supervised iterative training. CosPlace [1] reformulated the training
as a classification problem, eliminating the necessity for hard negative mining. Additionally, MixVPR [8]
innovatively employs a fully MLP-based aggregation technique, iteratively incorporating global relationships
into each feature map extracted from the pre-trained backbone, resulting in outstanding performance.

Table 1: Advantages and disadvantages of recent representative works in the VPR field

Year Method Advantages Disadvantages
2014 Chen [6] It pioneered the use of pre-trained

CNN for VPR.
When faced with severe

enviromental changes, the
model’s performance drops.

2018 NetVLAD [12] It can be trained end-to-end and is
applicable to any CNN architecture.

It aggregates the global features
directly without considering

detailed features.
2020 SFRS [22] It achieved significant improvement

through self-supervised iterative
training.

There is high computational
complexity and poor robustness

to lighting changes.
2021 Patch-

NetVLAD [10]
It combines the advantages of local
and global descriptor methods and
can capture more detailed spatial

information.

This algorithm is sensitive to
image noise and has relatively
high memory consumption.

2022 CosPlace [23] It transforms the training process into
a classification problem and eliminates

the need for mining negative
examples.

This algorithm is less accurate
in low-texture environments.

2022 TransVPR [11] It can adaptively extract robust image
representations of the image, and
re-order through the RANSAC
algorithm to improve accuracy.

This model has high
computational cost in some

complex and variable
environments.

(Continued)
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Table 1 (continued)

Year Method Advantages Disadvantages
2023 MixVPR [8] It uses full MLP aggregation to

iteratively incorporate global
relationships into the feature maps.

This method can effectively capture the
long-range dependencies in the image.

This algorithm has relatively low
recognition accuracy for scenes

with drastic changes in
illumination and perspective.

2023 R2former [24] It adopts Transformer to represent
deep features, and considers multiple

factors in the re-ordering module.

This model has high running
time and memory consumption.

2023 AnyLoc [14] It adopts the large pre-trained model
DINOv2 combined with unsupervised

aggregation methods. The use of
DINOv2 can leverage the pre-learned

knowledge from large-scale data.

It is sensitive to dynamic objects
during image representation

generation and overlooks static
discriminative backgrounds.

2024 SALAD [15] It also utilizes the DINOv2 to enhance
the performance of VPR.

Environmental interferences
may impact the model’s

accuracy.
2024 DHE-VPR [25] It constructs a compact convolutional

Transformer backbone network to
extract dense feature maps and

determines image similarity through
regression analysis.

This algorithm is prone to
misrecognition in scenes with

similar global features.

2024 PlaceFormer [26] It generates multi-scale patches, uses
the self-attention mechanism to select

relevant patches for geometric
verification and re-ordering.

The model shows poor
robustness in the face of
dramatic changes in the

environment.
2024 SelaVPR [27] It adds an adapter module to the

pre-trained model framework, bridges
the gap between pre-training and VPR
tasks, and improves the performance

of the base model.

The model has a relatively
complex model structure that

requires more computing
resources and longer training

time.
2024 CricaVPR [16] The cross-image correlation aware

encoder in CricaVPR enables the
model to comprehensively capture and

analyze correlations across different
images.

The model has relatively high
GPU requirements due to the

additional module.

2.2 Visual Place Recognition Based on Transformer
With the remarkable success of Transformer in computer vision, several representative works have

emerged based on visual Transformer. For example, TransVPR [11] utilizes an adaptive strategy to extract
robust image representations from different regions of an image, which are subsequently utilized as global
features for candidate sequence retrieval. Then, the RANSAC algorithm is employed for spatial matching
to refine the ranking. R2former [24] employs Transformer to enhance image location representation by
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incorporating depth features, in the image re-ranking module, the characteristics of features, attention
values, and xy coordinates are factored in to determine whether two images originate from the same
location. The DHE-VPR [25] employs the dense feature map extracted by the backbone network as input,
and then performs a regression analysis to achieve a single response matrix that assesses the internal
similarity between matching local features. PlaceFormer [26] initially generates multiple scale blocks and
then employs self-attention mechanisms to select relevant blocks for geometric verification based on the
task at hand. Subsequently, a similarity score is computed for resorting. Currently, transformer-based
methods predominantly follow a two-stage process that involves two rounds of ranking to improve the
precision and robustness of localization. However, this method often incurs substantial computational and
memory overhead.

2.3 Visual Place Recognition Based on a Large Pre-Trained Model
Large Vision Models (LVM) can produce powerful feature representations, outperforming many

existing models in general visual localization, which brings both new challenges and opportunities for VPR.
The use of large visual pre-trained models in place recognition tasks has become increasingly popular,
with examples like AnyLoc [14] and SALAD [15] both using the large pre-trained model DINOv2 [28] as
their feature extraction backbone, combined with unsupervised aggregation methods to extract image pixel
features, significantly improving the accuracy and efficiency of VPR.

While using pre-trained models can provide powerful general learning representation capabilities on
large-scale datasets, directly applying them to VPR tasks still has limitations, particularly in being susceptible
to dynamic objects when generating image representations and tending to ignore some static discriminative
backgrounds (such as buildings and vegetation). SelaVPR [27] and CricaVPR [16] bridge the gap between
model pre-training and VPR tasks by adding adapter modules to the pre-trained model framework and
then training or fine-tuning on VPR datasets, greatly improving the performance of foundation models in
VPR tasks.

We have comprehensively summarized the advantages and disadvantages of the methods introduced in
the above-mentioned related works and systematically organized them into Table 1.

3 Proposed Method
In this section, we introduce CerfeVPR, a novel method designed to mitigate the environmental impact

on feature representations of place images by leveraging their similar variants to learn inherently robust and
invariant feature representations. CerfeVPR begins with a well-designed global descriptor learning process
to generate robust global descriptors for each query and reference image. Then, we utilize cosine similarity
to estimate the similarity between the global descriptors of a query and a reference image. The location of the
query image is approximately determined by identifying the most similar global descriptor in the retrieval
database. This method significantly improves the matching accuracy of global descriptors, thereby enhancing
overall place recognition performance. The core of CerfeVPR lies in its global descriptor learning process.
As illustrated in Fig. 2, this process is mainly composed of the following four modules:

1. Similar Image Generation: Using the collaborative efforts of generators and discriminators in the
GAN model, this module generates new similar images that retain the original key landmark features while
incorporating new environmental conditions. These generated images simulate the same location under
varying environmental conditions, enriching the information for robust feature learning.

2. Adapted ViT Backbone Network: It leverages the large-scale pre-trained Vision Transformer(ViT),
DINOv2, as the backbone network to learn general feature representation for each image. To effectively
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extract spatial information from the image’s sub-regions at various scales, a novel large-kernel adapter is
integrated, enabling efficient fine-tuning of DINOv2. This adaptation significantly enhances the model’s
ability to learn discriminative general feature representations.

3. Local-Global Feature Fusion: This module separates global and multi-level local features from the
feature representations learned by the fine-tuned DINOv2. It utilizes a 3-layer pyramid scene parsing network
to capture contextual relationships across various scales and sub-regions. An adaptive average pooling (AAP)
algorithm is then applied to reduce redundant local information. Finally, it integrates the global and multi-
scale local features to create a compact global representation.

4. Robust Feature Learning: This module utilizes a Transformer-based architecture to construct a robust
feature learning network, designed to generate a reliable global descriptor for each original query or reference
image. By taking the fused features of an original image and its GAN-generated similar variants as input,
the network captures shared features among images of the same location under varying environmental
conditions. This process facilitates the learning of discriminative landmark features as the global descriptor,
ensuring robust and accurate place recognition despite environmental changes.
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Figure 2: Overview of the robust global descriptor learning pipeline in the proposed CerfeVPR. To enhance the
learning of robust features across different environments, it initiates by generating similar images under diverse
environmental conditions. Subsequently, utilizing shared inherent features of these images, it learns robust feature
representations, reducing environmental impacts on extraction and recognition

3.1 Similar Image Generation
Since a query or reference image in the dataset can only represent the state of a location at a specific

moment, this state is heavily influenced by the environment. This variability makes it challenging to
accurately match query images with their corresponding reference images under different environmental
conditions. To overcome this, we propose generating similar images under diverse environmental conditions,
which are utilized to facilitate the learning of robust feature representations for query and reference images.
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Inspired by existing neural network models [29–31], we adopt the CycleGAN [30] model to generate high-
quality images that are very similar to the original images, which transfers the environmental type while
keeping the content unchanged.

Fig. 3 shows some examples of similar images generated by the CycleGAN.

Original images

GAN-generated 
similar images

SPED SVOXPitts30k Nordland

Figure 3: A simple illustration of similar images generated using the CycleGAN. The displayed generated images have
the source domain as summer and the target domain as winter in different datasets

The cycle consistency loss mechanism of CycleGAN enables it to generate paired images in the target
domain (i.e., under different environmental conditions) while maintaining a high level of visual similarity
to real-world images. This characteristic is particularly crucial for our research. Therefore we adopt the
CycleGAN model to transfer environmental types while maintaining content unchanged, generate similar
variants under specified environmental conditions for original query images or reference images. CycleGAN
employs two generators and two discriminators to learn mapping functions between two different domains
M and N, where images from these domains are captured in varying environments (such as winter vs.
summer, day vs. night). Specifically, for a source domain image m ∈ M, an image generator G ∶ M → N is
trained to generate a corresponding target domain image n′, such that G(m) = n′. Conversely, a reverse
generator F ∶ N → M is trained to generate source domain image m′ corresponding to the target domain
image n ∈ N , where F(n) = m′. Meanwhile, two discriminators, DM and DN , are trained to distinguish
between real images and generated images within their respective domains. Specifically, DM differentiates
between real images {m} from domain M and generated images {F(n)} produced by the generator F.
Similarly, DN distinguishes between real images {n} and generated images {G(m)} produced by the
generator G. These discriminators are trained to maximize their ability to correctly classify real and generated
images, while the generators aim to produce images that can deceive the discriminators, thereby improving
the quality of the generated images.

The objective function combines two components: adversarial loss LG AN and cycle consistency loss Lc yc ,
which are jointly optimized to enable high-quality image generation. The overall objective is defined as:

L(G , F , DM , DN) = LG AN(G , D, M , N) + LG AN(F , D, N , M) + λLc yc(G , F), (1)

where λ controls the relative importance of the adversarial and cycle consistency losses. The adversarial loss
LG AN is designed to ensure that the generated images are indistinguishable from real images within their
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respective target domains. It is expressed as:

LG AN(G , DN , M , N) = En∼Pd ata(n) [log DN(n)] + Em∼Pd ata(m) [log(1 − DN(G(m)))] ,
LG AN(F , DM , N , M) = Em∼Pd ata(m) [log DM(m)] + En∼Pd ata(n) [log(1 − DM(G(n)))] , (2)

where Em∼Pd ata(m) and En∼Pd ata(n) represent the expectation over real images in domains M and N, respectively.
Additionally, the cycle consistency loss Lc yc ensures that an image translated to the target domain can

be accurately reconstructed back to its original form in the source domain. This loss guarantees the accuracy
of the mapping function and enhances the quality of generated images. It is formulated as:

Lc yc(G , F) = Em∼Pd ata(m) [∥ F(G(m)) −m∥1] + En∼Pd ata(n) [∥ F(G(n)) − n∥1] , (3)

where ∥ ∥1 represents the L1 norm, which is used to calculate the distance between two image representations.
To handle diverse environmental conditions, we train CycleGAN using various datasets representing a

set of common conditions: Ec = {c0, ec1 , . . . , ecr−1}, where r is the number of environmental conditions (e.g.,
spring, summer, night, ⋅ ⋅ ⋅ ). For an arbitrary query or reference image I, different trained models are applied
under these conditions to produce r similar images I′ = {I′0, I′1 , ⋅ ⋅ ⋅ , I′r−1}, each preserving the original
structural information while reflecting different environmental variations. The collection of the original
image I and similar images is denoted as Ĩ = {I′0, I′1 , ⋅ ⋅ ⋅ , I′r}, where I′r = I.

3.2 Backbone with Large Kernel Adapters
To achieve robust place recognition, efficient image representations must be learned. Considering that

the latest VPR models AnyLoc [14] and SALAD [15] have demonstrated that pre-trained large-scale model
DINOv2 possesses powerful representation capability and can effectively enhance VPR task performance,
we also adopt DINOv2 to learn universal feature maps from original images and their similar images.

As shown in Fig. 4a, DINOv2 utilizes a Vision Transformer (ViT) as its backbone. However, directly
applying DINOv2 to downstream tasks underutilizes its potential, while full-volume fine-tuning on a VPR
dataset imposes significant computational and storage demands. Therefore, during the feature learning
process, most layers of the model are typically frozen, with only some parameters being efficiently fine-tuned.
For example, SelaVPR [27] adapts the pre-trained model to VPR tasks by adding an efficient fine-tuning
adapter called Vanilla adapter, as shown in Fig. 4b. Vanilla adapter has a simple structure. It uses fully
connected layers to project the input down to a lower dimension, activates the reduced representation with
a non-linear activation function ReLU, and then projects it back up to the original dimension. This design
efficiently captures VPR task-specific knowledge while ensuring computational efficiency.

To capture features that differ at the visual perception level but remain consistent in visual cognition,
we propose a new adapter: LargeKernelAdapter, whose structure is illustrated in Fig. 4c. This adapter
leverages multi-scale convolution kernels to capture cognitive-level visual features. It first employs the
down-projection layer Wdow n to reduce the input’s dimension. A 1 × 1 convolution is then applied to
compress the features and provide an appropriate number of channels for subsequent operations. Next,
LargeKernelAdapter constructs three parallel convolution paths with convolution kernels of different scales
(3 × 3, 5 × 5, and 7 × 7) to capture multi-scale features [32]. The outputs of these paths are concatenated and
combined with the residual connection after downsampling, ensuring efficient reuse of the original features
and minimizing feature loss during convolution. This integration enables residual transfer while achieving
multi-scale feature fusion.
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Figure 4: Illustration of the adapters and backbone network optimization. (a) Transformer block in ViT, (b) Vanilla
adapter, (c) Proposed LargeKernel adapter, (d) Transformer with Vanilla and LargeKernel adapters

Finally, the processed features pass through ReLU, and the up-projection layer Wu p projects the features
back to the original dimension. The entire process of LargeKernelAdapter is expressed as following:

LargeKernel Adapter = ReLU(Conv(X′ ⋅Wdow n)) ⋅Wu p , (4)

where ReLU is the activation function, X′ represents the features after Layer Normalization of the output of
the Multi-Head Attention (MHA) layer. As depicted in the structure shown in Fig. 4c, the Conv(⋅) operation
represents a series of convolutional operations. It encompasses a residual connection and a 1 × 1 convolution,
along with three parallel convolutional paths with kernel sizes of 3 × 3, 5 × 5, and 7 × 7, respectively. Unlike
SelaVPR [27], which cascades the adapter after MHA, we integrates VanillaAdapter in series between
LayerNorm and MHA to refine feature extraction, while connecting the LargeKernelAdapter in parallel with
the Multi-Layer Perceptron (MLP) layer. This design, depicted in Fig. 4d, constructs a new Transformer
module that combines serial and parallel adapters, which does not disrupt the features of the original
independent branches, better preserving and utilizing the data information from the original branches. By
incorporating these lightweight adapters into the Transformer, the optimized backbone network DINOv2
enhances its feature representation capability with only a small number of additional parameters, allowing
it to focus more on discriminative landmark feature representations for the VPR task.

The optimized backbone DINOv2 is employed to learn the general feature map of each query, reference
image and their generated similar images. An image is first divided into N patches of size p × p, and
then transformed into D-dimensional vector representation x1 , . . . , xN via linear projection, and positional
embeddings P is added to retain spatial information. To capture the global semantic information of the
entire patches, a learnable class token xcl s is prepended, forming the serialized input representation X0 =
[xcl s , x1 , . . . , xN] + P.

The sequence X0 is processed through the above optimized Transformer, which integrates the LargeK-
ernelAdapter for multi-scale attention computation and feature learning. The output from the prior layer
first undergoes LayerNorm, followed by the VanillaAdapter and MHA layer, as described in Eq. (5):

Xt
′ = MHA(Vanil l aAdapter(LN(Xt − 1))), (5)

where Xt−1 represents the output of the (t − 1)-th layer of the Transformer, and X
′

t denotes the output
of the MHA in the current layer. Subsequently, X

′

t is normalized and processed by two parallel branches:
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LargeKernelAdapter and the MLP layer. The features from these branches are fused via residual connections,
with the fully connected feedforward layer incorporating the LargeKernelAdapter expressed as:

Xt = MLP(LN(X
′

t)) + s ⋅ LargeKernel Adapter(LN(X
′

t)) + X
′

t , (6)

where s is a scaling factor. Finally, the output of the last Transformer is used as the extracted feature map F,
representing the final general feature representation of the input image.

3.3 Local-Global Feature Fusion
Effective representation of VPR scene requires a balanced integration of global and local features. While

global features capture the overall semantic context of an image, local features provide the fine-grained details
essential for distinguishing between visually similar places. To achieve this balance, we combines global and
local information in the learned feature map F to enhance the feature representation. The feature map F is
first separated into two components: a global token summarizing image content (Fc ∈ RH×W×1, derived from
the class token xcl s), and patch tokens containing local information (Fp ∈ RH×W×(D−1)). Each component
is processed through specialized paths to maximize their respective contributions. The architecture of this
fusion process is illustrated in Part 3 of Fig. 2.

We introduce a 3-layer pyramid scene parsing network to integrate local contextual information under
different scales and subregions. It divides the patch tokens Fp into three different scales (2 × 2, 3 × 3, and
4 × 4, respectively), with each region forming a compact feature representation through feature aggregation
algorithm. The aggregation algorithm includes convolution and average pooling, which are used to get
compact global feature representations. The three aggregated layers of features will be combined in sequence
and, the global information Fc will be concatenated through skip connections at the end, form the global
feature representation. In the VPR field, feature aggregation algorithm chosen determines how the model
combines local features to describe images and environments. Common feature aggregation methods can be
divided into aggregation layers based on feature extractors (such as NetVLAD [12], MixVPR [8], etc.) and
unsupervised lightweight pooling layers (such as GeM [13], VLAD [4], etc.), which can effectively perform
global feature representation for retrieval. Unlike these methods, we use a combination of 1 × 1 convolution
and adaptive average pooling [23] as the feature aggregation module to pool hierarchical feature maps. Firstly,
Fp linearly combines the features of different channels through a 1 × 1 convolution to realize the information
integration across channels. This allows feature maps of different scales to not only retain their original spatial
position information but also integrate global position information from different channels. Then, the spatial
dimension of Fp is reduced by adaptive average pooling, and the feature map space is divided into sub-regions
of the same size as s1 × s2, and the average value is taken to perform effective feature aggregation to obtain
a feature map of size s1 × s2 × d. Then, Fc containing global information is merged into local features with
three levels to obtain the global representation Z, which is formally described as:

Z = Fc ⊕ AAPs1×s2(Conv1×1(Fp)), (7)

where AAP( ) represents adaptive average pooling operation and Conv1×1( ) represents the 1 × 1 convolution
operation. By leveraging convolution and feature aggregation within this module, this model enhances its
ability to sense environmental context and produce comprehensive global feature representations. As a
result, compact global features that encode relationships across different scales and sub-regions are obtained,
enabling superior recognition performance in visual place analysis.
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3.4 Robust Feature Learning
Achieving reliable place recognition in different environments requires feature representations that not

only capture general visual patterns but also exhibit robustness across varying conditions. The fused features
often lack the resilience necessary to handle perceptual aliasing and cross-environment variability inherent
to VPR. Therefore, we construct a robust feature learning network, as shown in Part 4 of Fig. 2, to learn a
more robust global descriptor for each query or reference image. It utilizes the attention mechanism in the
Transformer block to conduct continuous identification and analysis on the global feature representation
sequence Z̃, thereby effectively enhancing the robustness of the global features. Z̃ is generated after the feature
extraction and fusion operations on the similar image set Ĩ = {I′0, I′1 , ⋅ ⋅ ⋅ , I′r}, and is represented as:

Z̃ = {Zi}, i ∈ {0, ⋅ ⋅ ⋅ , r}, (8)

where Zi corresponds to the feature representation of the i-th image. This sequence already contains
abundant feature information, but to produce the same correct results for different transformations of
images from the same location, we need to further focus on features that remain unchanged despite varying
conditions. Thus, we feed global representation sequence composed of images from the same location under
different conditions into a Transformer encoder, calculating feature correlations at the same positions in
sequence and learning dependencies of similar images. First, global representation sequence Z̃ is input
into Transformer encoder layer for normalization, then feature Z

′

obtained through the MHA layer and a
residual connection:

Z
′

= MHA(LN(Z̃)) + Z̃ . (9)

After the MHA layer, feature Z′ undergoes normalization and pass through two Linear Layers, with
a ReLU activation function applied between the two Linear Layers to help regularize the network, while
residual connections are used to preserve information flow. This process can be described as follows:

Z′′ = Linear(ReLU(Linear(LN(Z
′

)))) + Z
′

, (10)

where Linear(⋅) is a linear transformation function. The global representation sequence obtains feature
representation Z′′ after passing through two encoder layers mentioned above. Since a large amount of local
feature information is aggregated in the feature fusion part, at this point, Z′′ is typically high-dimensional.
In order to fully utilize these features with strong robustness across different environments while reducing
feature dimension, we use a fully connected layer Wpro j(⋅) to control the size of the global descriptor, followed
by a Fl atten(⋅) dimensionality reduction and a normalization operation LN(⋅) to generate the final global
descriptor O of original image I:

O = LN(Fl atten(Wpro j(Z′′))). (11)

This structural setup allows the robust feature learning module to not only focus on features of
individual images, but also comprehensively consider the feature dependencies between the original image
and all similar images. This process results in robust, high-quality global descriptors that facilitate accurate
VPR under complex real-world scenarios [33]. By learning highly discriminative global features during
training, the model achieves improved place recognition performance even in challenging environments.

3.5 Model Training
During model training, to reduce interference from similar yet location-different negative samples

to query images, we adopt the online hard example mining (OHEM) [34] algorithm. In each iteration, it
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prioritizes samples with larger loss functions (i.e., hard examples hard for the neural network to distinguish).
By mining and integrating these representative samples into the training set, the model can focus on difficult
samples and strengthen its robust feature representation for negative samples. Moreover, efficiently and
accurately adopt and weight important sample pairs, can be expressed as: OHEM addresses the issue of
excessive simple samples in the dataset by eliminating easily distinguishable examples based on loss value
rankings. This not only reduces computational overhead but also enables efficient training on large-scale
datasets. We employ Multiple Similarity Loss (MS-Loss) [35] for computation as it has proven to perform
best in VPR [23]. This loss comprehensively considers self-similarity and relative similarity, optimizing the
weighting of sample pairs to more efficiently and accurately adopt and weight important sample pairs:

LMS =
1
B

B
∑
q=1

⎧⎪⎪
⎨
⎪⎪⎩

1
α

log
⎡⎢⎢⎢⎢⎣

1 + ∑
p∈Pq

e−α(Sq p−λ)
⎤⎥⎥⎥⎥⎦
+

1
β

log
⎡⎢⎢⎢⎢⎣

1 + ∑
p∈Nq

eβ(Sq p−λ)
⎤⎥⎥⎥⎥⎦

⎫⎪⎪
⎬
⎪⎪⎭

, (12)

where B represents the number of image samples in a batch, and q represents the index of each query image.
The index sets of the positive sample pairs and negative sample pairs are Pq and Nq , respectively. Sq p is the
cosine similarities of positive and negative pairs, α, β and λ are three constant hyperparameters.

4 Experiments and Results

4.1 Training Strategies and Implementation Details
Training was conducted on the GSV-Cities [23] dataset, which contains 560 k images captured at

62 k locations around the world, featuring highly accurate labels, extensive geographical coverage, and
highly precise ground truth. All experiments in this work were conducted on two NVIDIA GeForce RTX
3090 GPUs. In the similar image generation module, two environmental conditions, summer and winter,
were designated to generate similar images. Each original image has two similar variants under the conditions
of summer and winter generated by the trained CycleGAN model. The resolution of all input images was
unified to 224 × 224, and the patch size p was set to 14. Thus, an image was segmented into 256 patches.
In the adapted ViT backbone network, the basic backbone network adopted ViT-B/14, the scale factor s in
the parallel adapter was set to 0.5, and the dimension of the input of the adapter was limited to 768. The
number of channels was reduced to 192 through 1 × 1 convolution, and then it was further reduced to 128
through convolutions with kernel sizes of 3 × 3, 5 × 5, and 7 × 7. For all convolutional components, we fix
the stride to 1, use a single convolutional layer, and set the output channel dimension to 3. The outputs of the
convolutions at three scales were concatenated and then added to the output through a skip connection, so
that the final channel output still maintained 768 dimensions. In the loss function, the hyperparameters were
set as α = 1, β = 50 and λ = 0. The margin in online mining was set to 0.1. The initial learning rate was set to
0.0001 and multiplied by 0.5 after every 3 epochs. The total number of parameters in our model is 107.3 M,
and the number of tunable parameters is 21.2 M. The inference time for each query image is 0.0082 s.

4.2 Test Datasets
To thoroughly evaluate the capabilities of different methods, we selected the following five widely-used

real-world datasets for test and analysis. These datasets cover a variety of real-world scenarios, namely images
under different scales, viewpoints, illuminations, weather conditions, seasons, and camera types.

1. Mapillary Street-Level Sequences (MSLS)
The Mapillary Street-Level Sequences (MSLS) [36] is a large-scale long-term place recognition dataset

that contains over 1.6 million street-level images collected in urban, suburban, and natural scenes over a
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period of seven years. It encompasses various challenging visual variations, such as changes in lighting,
weather, seasons, viewpoints, as well as dynamic objects.

2. Pittsburgh30k
The Pittsburgh [37] dataset was collected from Google Street View maps and provides images collected

at different locations and poses in the city center. The images in this dataset have significant viewpoint
variations and condition changes in various geometric structures. We used the test dataset consisting of
10,000 database images and 6,816 query images.

3. Nordland Dataset
The Nordland [38] dataset shows severe appearance changes images in four different seasons recorded

from the perspective of the front of the train. It exhibits no viewpoint variations, thus allowing the testing
of the algorithm’s robustness on isolated condition variations. Note that two versions of Nordland are used
for VPR benchmarking in this paper: one uses the entire summer image sequence as query images and the
entire winter image sequence as reference images, while the other uses the entire winter image sequence as
query images and the entire summer image sequence as reference images (accompanied by the marker*).

4. SPED Dataset
The SPED [39] (Specific PlacEs Dataset) dataset contains 2.5 million pictures collected from over 1,000

places, with hundreds of pictures for each place. These images encounter constantly changing conditions,
including weather, season, and day-night variations.

5. SVOX-Night Dataset
The SVOX [40] is a cross-domain VPR dataset sourced from Google Street View images across the city

of Oxford. It contains a large amount of data under various weather conditions such as sunny, rainy, snowy,
and from a night-time perspective, and is divided into multiple subsets according to different conditions.
The test set SVOX-Night we used, is a challenging subset of night-time image queries within the dataset.

4.3 Comparison with Previous Works
We conducted comparative experiments on six place recognition datasets (including variants of Nord-

land) between the method proposed in this paper and eight of the most representative VPR methods. The
evaluations follow the standard VPR evaluation framework [41], using Recall@N [42] as the evaluation met-
ric. Recall@N (R@N) measures the percentage of queries where at least one of the top-N retrieved reference
images falls within a specific threshold of the ground truth. The proposed CerfeVPR is compared with eight
promising VPR methods. These compared methods include CNN-based VPR methods: NetVLAD [12],
SFRS [22], MixVPR [8], CosPlace [1], EigenPlaces [9]; a Transformer-based VPR method: DHE-VPR [25];
and VPR methods based on large pre-trained models: SelaVPR [27], CricaVPR [16]. Each method in our
experiments used its original author-released parameters. The comparison results for Recall@N across six
datasets, with N set to 1, 5, 10, and 20, are listed in Table 2.

Table 2: Comparison on the Recall@N. The best is highlighted in bold and the second is underlined

Datasets Method NetVLAD SFRS MixVPR CosPlace EigenPlaces DHE SelaVPR CricaVPR CerfeVPR

MSLS-val

R@1 54.0 64.9 83.3 79.4 85.0 80.5 87.3 88.4 88.1
R@5 65.4 74.5 90.1 86.8 91.4 89.1 93.9 94.1 94.3
R@10 70.0 78.3 92.0 89.4 93.0 91.6 95.6 95.5 95.5
R@20 74.3 81.6 93.5 91.4 94.3 93.2 96.9 96.3 96.4

Pitts30k
R@1 85.0 89.1 91.6 88.4 91.9 89.4 92.8 94.5 95.0
R@5 92.1 94.6 95.6 94.6 96.4 94.9 97.0 97.4 97.5

(Continued)
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Table 2 (continued)

Datasets Method NetVLAD SFRS MixVPR CosPlace EigenPlaces DHE SelaVPR CricaVPR CerfeVPR
R@10 94.4 96.0 96.4 95.7 97.4 96.1 97.9 98.0 98.0
R@20 95.9 97.0 97.4 96.5 97.9 97.1 98.5 98.7 98.7

Nordland

R@1 13.1 16.0 76.4 58.5 67.9 45.8 87.0 89.1 93.7
R@5 21.1 24.1 87.1 73.6 81.1 54.1 94.1 95.3 97.4
R@10 26.1 28.7 90.6 79.4 85.6 56.5 95.8 96.7 98.1
R@20 32.0 34.4 93.6 84.8 89.6 58.4 97.1 97.9 98.8

Nordland*

R@1 9.3 11.3 59.5 49.3 56.4 40.1 79.0 82.7 85.3
R@5 15.0 18.1 72.3 64.4 70.4 49.0 86.5 90.6 92.7
R@10 18.9 22.1 77.5 71.1 76.1 67.6 87.9 93.2 94.9
R@20 23.7 27.6 82.4 77.5 81.7 70.3 89.2 95.3 96.6

SPED

R@1 65.7 72.3 85.7 74.6 72.0 75.6 88.8 91.8 92.6
R@5 83.0 88.1 93.1 87.3 85.2 81.4 95.2 95.7 96.2
R@10 88.0 92.3 95.2 90.3 89.6 82.9 96.5 96.7 97.7
R@20 92.4 94.9 96.9 93.6 92.4 83.5 97.7 97.5 98.6

SVOX-
Night

R@1 8.0 28.7 63.1 51.6 51.6 34.9 79.2 85.1 87.0
R@5 17.4 40.6 79.8 70.8 70.8 50.2 92.6 95.0 94.8
R@10 23.1 46.4 84.1 78.4 78.4 56.7 95.0 96.7 96.8
R@20 29.4 52.1 88.1 84.1 84.1 62.0 96.6 97.1 97.8

Average

R@1 39.2 47.1 76.6 67.0 70.8 61.1 85.7 88.6 90.3
R@5 49.0 56.7 86.3 79.6 82.6 69.8 93.2 94.7 95.5
R@10 53.4 60.6 89.3 84.1 86.7 75.2 94.8 96.1 96.8
R@20 58.0 64.6 92.0 88.0 90.0 77.4 96.0 97.1 97.8

The proposed CerfeVPR exhibits outstanding overall performance. On average, CerfeVPR achieves
the highest results, with all Recall@N values exceeding 90%. Furthermore, it achieves state-of-the-art
performance across all metrics on Pitts30k, Nordland, Nordland*, and SPED. In particular, CerfeVPR shows
a significant advantage on Nordland and its variant Nordland*, achieving a remarkable 4.6% improvement
in Recall@1. This improvement may be attributed to the alignment of query images’ similar variants with
reference images under similar environmental conditions. Unlike other datasets, Nordland, comprising
video frames captured during ten-hour train journeys across four distinct seasons, presents drastic seasonal
appearance changes, often causing a season gap between query and reference images. CerfeVPR bridges
this gap by generating seasonally aligned variants for summer and winter using CycleGAN. These variants
enhance the global descriptors of query and reference images, substantially improving VPR performance
and resulting in a marked increase in Recall@N values on Nordland and Nordland*.

Fig. 5 presents the qualitative results under five highly challenging query cases. From top to bottom,
it covers a variety of complex situations such as significant seasonal changes, rainy and snowy weather,
perceptual aliasing, illumination changes, and viewpoint variations, all of which are typical difficult problems
in VPR tasks. Especially in the first two query images, where heavy snow in winter covered many local
features and need to match them with the reference images taken in summer, our method was still able to
accurately locate the images, while other methods generally returned images that were visually similar to the
query images but had incorrect geographical locations.
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Query CerfeVPR(Ours) NetVLAD SFRS DHE-VPR SelaVPREigenPlacesCosPlaceMixVPR CricaVPR

Figure 5: Qualitative results. In these queries, our method accurately returned the correct retrieval results, while most
of the other comparative methods returned incorrect matching images

4.4 Ablation Study
To deeply explore the effectiveness of each component module in the model and test its contribution

to the overall performance, we removed the corresponding modules from CerfeVPR to conduct ablation
experiments. We denote the version without the similar image generation module as “-w/o SIG”. “-w/o PSPN”
represents the removal of the 3-layer pyramid scene parsing network used to obtain the initial global feature
representation of the image. “-w/o RFL” represents the removal of the robust feature learning module used
to enhance the robustness of global features. This ablation experiment verified the improvement of model
performance brought by different modules, and the results are shown in Table 3.

Table 3: Ablation experiments. The best results are highlighted in bold and the second is underlined

Versions NordLand NordLand* SPED SVOX-Night

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
-w/o SIG 93.3 97.2 98.0 85.0 92.5 94.4 92.4 95.9 97.5 86.8 93.3 95.3

-w/o PSPN 92.5 96.7 97.8 81.4 88.9 91.5 89.0 94.1 96.3 84.3 90.0 92.4
-w/o RFL 89.2 95.7 96.5 80.9 88.3 90.2 88.1 93.6 94.9 83.8 89.5 91.9
CerfeVPR 93.7 97.4 98.1 85.3 92.7 94.9 92.6 96.2 97.7 87.0 94.8 96.8

The similar image generation module generates retrieval and reference images with new backgrounds
but still retaining the original features by changing the seasons of the images without changing the original
location labels of the data. Experimental data shows that the similar image generation module expands the
diversity of images, enabling the model to learn features that are more crucial for the place recognition task.
The 3-layer pyramid scene parsing network aggregates features at different scales, enabling the model to better
adapt to the scale changes of images. The robust feature learning module improves the model’s robustness to
interferences such as illumination and seasons by learning the features beneficial for recognition in similar
images. The combined effect of each module in the model makes the model perform better when facing
complex inputs in the real world.
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4.5 Impact Analysis of Adapters
We investigated the structural design of adapters and the impact of their insertion positions on

retrieval performance. Considering the ease of training residual structures and the superior performance
of superimposing trainable weights on frozen weights compared to splicing them, we devised four adapter
configurations to fine-tune and optimize DINOv2. 1) Serial LKA: two LargeKernel adapters serially con-
nected before the MHA and the MLP layer in the Transformer modul of DINOv2. 2) Serial + Parallel LKA: A
modification of Serial LKA where the LargeKernel adapter connected before MLP is arranged in parallel. 3)
Serial + Parallel VA: similar to Serial + Parallel LKA, but the LargeKernel adapters are replaced with Vanilla
adapters. This configuration, employed in SelaVPR, integrates both serial and parallel Vanilla adapters. 4)
Serial VA + Parallel LKA: This configuration is adopted in the proposed CerfeVPR (Fig. 4d), with a Vanilla
adapter in series and a LargeKernel adapter in parallel with the MLP layer. We fine-tuned DINOv2 under
these four configurations, followed by GeM pooling to generate image descriptors, ensuring experimental
consistency across all evaluations.

The retrieval results presented in Table 4 show that Serial + Parallel LKA outperforms standalone Serial
LKA, as its non-intrusive residual connections preserve discriminative features. Nevertheless, the Serial +
Parallel LKA configuration performs slightly lower performance than Serial + Parallel VA. This difference
may stem from the relatively complex structure of the LargeKernel adapter and its serial integration into
the backbone network, which can adversely affect the model’s performance. In contrast, the Serial VA +
Parallel LKA configuration, which is employed in CerfeVPR, achieves the best performance by striking
an optimal balance. Specifically, Serial VA allows for a sequential extraction of features, capturing long-
range dependencies effectively. Parallel LKA, on the other hand, can capture local and global features
simultaneously in parallel, enhancing the representational power of the model. The combination of these
two structures leverages their respective advantages, leading to the best performance in VPR tasks.

Table 4: Ablation studies of 4 different structures on the SVOX-Night and SPED datasets. The best is highlighted in
bold and the second is underlined

Method SPED SVOX-Night

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20
Serial LKA 87.0 94.2 95.7 97.5 78.3 89.1 91.9 94.2

Serial + Parallel LKA 88.3 94.1 95.9 97.2 79.8 88.9 92.0 94.2
Serial + Parallel VA 88.6 94.9 95.6 97.5 80.6 90.6 93.0 94.9

Serial VA + Parallel LKA 88.8 95.2 96.6 97.5 85.9 94.4 96.1 97.3

4.6 Impact Analysis of Descriptor Dimensions
We utilized Principal Component Analysis (PCA) to reduce the dimensionality of the original high-

dimensional global descriptors of each query and reference image, aiming to evaluate the impact of descriptor
dimensions on VPR performance. VPR tests were conducted using these reduced-dimension global descrip-
tors on three datasets: MSLS-val, Pitts30k, and Nordland. The place recognition results for descriptor with
various dimensions are illustrated in Table 5. The experimental results reveal that dimensionality reduction
has minimal impact on place recognition performance for the Pitts30k dataset. In contrast, performance on
the MSLS-val dataset decreases significantly when descriptors are reduced to 512 or 1024 dimensions. The
decline is even more pronounced for the Nordland dataset, with reductions exceeding 1% when dimensions
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drop below 4096. This degradation is primarily because that severe environmental changes and perceptual
aliasing present in the MSLS-val and Nordland datasets. High-dimensional descriptors retain more effective
information captured by the model, enabling precise differentiation between images of different locations
and enhancing retrieval accuracy.

Table 5: Experimental results for descriptors with varying dimensions. The best is highlighted in bold and the second
is underlined

Dim MSLS-val Pitts30k Nordland

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20
512 82.4 90.4 92.4 93.7 94.1 96.9 97.7 98.1 81.5 91.0 93.8 95.8

1024 85.4 92.8 94.2 95.3 94.6 97.2 97.9 98.3 87.4 94.4 96.1 97.6
2048 87.0 93.8 95.0 96.0 94.9 97.4 97.9 98.5 90.8 96.0 97.2 98.3
4096 87.7 94.2 95.3 96.3 94.9 97.5 98.0 98.7 92.5 96.8 97.8 98.6
10752 88.1 94.3 95.5 96.4 95.0 97.5 98.0 98.7 93.7 97.4 98.1 98.8

5 Conclusions
This work addresses the problem of perceptual aliasing caused by environmental differences in the

field of VPR and proposes CerfeVPR, an innovative cross-environment enhanced robustness VPR method.
It uses a Generative Adversarial Network to generate images with similar environmental conditions and
introduces large-kernel convolutional adapters and a 3-layer pyramid scene parsing network to analyze real-
world place scenes. The accuracy of this method has been improved to a certain extent on multiple datasets,
demonstrating the model’s ability to learn the features of key landmarks in complex environments and
achieving an ideal trade-off between global and local features. However, some datasets may have significant
architectural appearance shifts and extreme viewpoint changes. When there’s a lack of distinctive features,
the model can produce wrong results. Also, the similar-image generation module, though generating diverse
scene-based similar images, has a marginal-efficiency-decline issue and limited impact on retrieval accuracy.
Future research can focus on the currently emerging real-time VPR systems. Their fast and accurate
positioning capabilities are crucial for scenarios such as autonomous driving and drone navigation. In-depth
exploration of the environmental alignment between query images and reference images, and the excavation
of more efficient feature extraction and similarity measurement models will help reduce the dependence
on expensive computing power, and promote the VPR system to achieve higher robustness, accuracy, and
practicability in dynamic environments, serving scenarios such as autonomous driving and robot navigation.
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