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ABSTRACT: The consultation intention of emergency decision-makers in urban rail transit (URT) is input into the
emergency knowledge base in the form of domain questions to obtain emergency decision support services. This
approach facilitates the rapid collection of complete knowledge and rules to form effective decisions. However, the
current structured degree of the URT emergency knowledge base remains low, and the domain questions lack labeled
datasets, resulting in a large deviation between the consultation outcomes and the intended objectives. To address
this issue, this paper proposes a question intention recognition model for the URT emergency domain, leveraging
knowledge graph (KG) and data enhancement technology. First, a structured storage of emergency cases and emergency
plans is realized based on KG. Subsequently, a comprehensive question template is developed, and the labeled dataset
of emergency domain questions in URT is generated through the KG. Lastly, data enhancement is applied by prompt
learning and the NLP Chinese Data Augmentation (NLPCDA) tool, and the intention recognition model combining
Generalized Auto-regression Pre-training for Language Understanding (XLNet) and Recurrent Convolutional Neural
Network for Text Classification (TextRCNN) is constructed. Word embeddings are generated by XLNet, context
information is further captured using Bidirectional Long Short-Term Memory Neural Network (BiLSTM), and salient
features are extracted with Convolutional Neural Network (CNN). Experimental results demonstrate that the proposed
model can enhance the clarity of classification and the identification of domain questions, thereby providing supportive
knowledge for emergency decision-making in URT.

KEYWORDS: Emergency knowledge base for urban rail transit; emergency domain questions; intention recognition;
knowledge graph; data enhancement

1 Introduction
When dealing with emergency events in the urban rail transit (URT) system, decision-makers or

scheduling personnel need to consult the URT emergency knowledge base. In emergencies, questioners
typically frame their inquiries as questions to consult the knowledge base. However, since the expression
of questions is relatively random, rapidly and accurately identifying the consultation intentions of decision-
making or scheduling personnel is crucial for ensuring the knowledge base produces accurate outputs.
Intention recognition is essentially a text classification task focused on understanding the natural language
input from users and mapping it to the predefined intention category [1]. At present, text classification meth-
ods can be roughly divided into rule-based, statistical learning-based, and deep learning-based methods,
each of which is widely used across various fields [2–4]. The rule-based method [5] is straightforward and
efficient but has great limitations in dealing with complex text data, which is why they are primarily used in
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earlier text classification tasks. Meanwhile, advancements in computer technology have given rise to various
statistical learning methods, such as the K-nearest neighbor algorithm [6], decision tree [7] and support
vector machine [8]. Although these statistical models better learn the relationship between text features
and categories, they rely on artificial feature engineering and struggle to manage high-dimensional feature
spaces. In recent years, deep learning methods such as Word to Vector (Word2Vec) [9], Long Short-Term
Memory Neural Network (LSTM) [10], Recurrent Convolutional Neural Network (CNN) [11,12] and capsule
network [13] have been increasingly applied to overcome the limitations of traditional machine learning
approaches. Moreover, the emergence of pre-trained models such as Bidirectional Encoder Representations
from Transformers (BERT) [14], Generalized Auto-regression Pre-training for Language Understanding
(XLNet) [15] have significantly improved the ability to represent complex semantic features for Natural
Language Processing (NLP) tasks. They can autonomously extract and learn complex features from text
data, resulting in better classification outcomes. With the ongoing development of pre-trained models, Large
Language Models (LLMs) have shown remarkable capabilities in solving complex tasks [16]. Techniques such
as prompt engineering and fine-tuning within LLMs will systematically enhance the accuracy and semantic
generalization of intention recognition tasks.

The identification of question intentions in the field of natural language understanding has become a
pressing issue, particularly in URT emergency scenarios. Several challenges hinder progress in this area:
Firstly, there is a scarcity of publicly labeled question datasets specific to the URT emergency domain.
The quality of available datasets is insufficient, and the labeling cost is high. Secondly, these domain-
specific datasets typically suffer from insufficient diversity and contain small sample characteristics, which
can lead to overfitting in question intention recognition and poor generalization performance. Thirdly,
URT emergency knowledge is often stored in unstructured texts, such as URT emergency plans [17] and
emergency cases [18]. This information is challenging to utilize effectively due to its large volume, complex
content and low standardization. To address these challenges, it is essential to integrate URT emergency
knowledge, efficiently generate question datasets, and develop a question intention recognition model that
possesses strong robustness and generalization capabilities. This would enable the knowledge related to URT
emergency management can be obtained quickly and accurately.

Considering the above factors, this paper focuses on the intention recognition method of questions
for the URT emergency domain, utilizing data enhancement techniques. The aim is to realize the efficient
classification of questions and provide theoretical and technical support for rapid access to emergency
knowledge. The main contributions of this study are as follows:

1. This study designs a KG schema layer for URT emergency cases and emergency plans, linking two types
of KGs. The emergency-related text is stored in the Neo4j graph database, creating an information-based
and structured database for dataset generation and knowledge applications.

2. A series of comprehensive question templates are developed. By querying and storing the entities in the
KG, combining regular expressions and random selection methods, the templates are filled to quickly
generate the question dataset in the URT emergency domain.

3. This study employs the XLNet model to extract semantic information, combines the Recurrent Neural
Network (RNN) for sequence modeling, and uses CNN to extract local features. At the same time,
data back-translation and text transformation techniques are used to overcome template limitations and
enhance the diversity of questions, improving their classification effectiveness.

2 Related Work
At present, deep learning has become the mainstream text classification method and is applied to

intention recognition tasks in various fields. The application and comparison of different deep learning
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networks have been widely studied to improve the effect of intention recognition. For example, Chen
et al. [19] compared four deep learning models to understand users’ intentions in a medical question and
answering (Q&A) system, and CNN and Fast Text achieved the best results. Trewhela and Figueroa [20]
explored the performance of many traditional neural networks in intention recognition of questions and
proved that Recurrent Convolutional Neural Network (RCNN) is the most effective technology. Liu and
Xu [21] combined Term Frequency-Inverse Document Frequency (TF-IDF), CNN and LSTM to solve the
sparse problem, and used the attention mechanism to allocate model weights for short text intent recognition.

Pre-trained language models’ general semantic representation ability gives them significant advantages
in vertical applications. BERT [14] has implemented new effects in various NLP tasks. However, it has
some limitations, such as the assumption of mask word independence and the inconsistency of pre-training
and fine-tuning. XLNet is optimized for BERT’s shortcomings, improving on Attentive Language Models
Beyond a Fixed-Length Context (Transformer-XL) [22]. XLNet has many applications in named entity
recognition [23] and less in intention recognition, while BERT has been widely used in intention recognition
tasks in various fields [24,25]. XLNet is mostly used for text classification tasks such as emotion recognition.
For example, Areshey and Mathkour [26] explored the performance of XLNet, BERT and their variants on
emotion classification tasks, and the results showed that RoBERTa and XLNet had the best performance.
Han et al. [27] combined XLNet, Bidirectional gated loop unit (BiGRU) and attention mechanism (Att)
to effectively improve the model’s performance in text emotion recognition tasks. There is relatively little
attention paid to the task of intention recognition in the URT emergency domain, while identifying question
intention is an important prerequisite for realizing tasks such as Q&A and dialogue. Therefore, it is necessary
to conduct relevant research.

In the application of specific fields, intention recognition models often face the challenge of lacking
publicly labeled datasets. Scholars often build datasets for specific fields or tasks according to research needs.
The traditional method of generating domain datasets is generally manual annotation. For example, Weng
et al. [28] sorted out 21 labels of judgment documents in the judicial field, and manually labeled each
paragraph of the randomly selected 5000 judgment documents. Zhang et al. [29] invited three experts to
manually annotate the category mapping of emergency supplies between the GB/T 38565 and the GPC
taxonomy, establishing 798 fully mapped category pairs. Given that the traditional method is costly and
inefficient, studying the fast-generation method of questions is necessary. By utilizing predefined intent
types [30] and the dataset generation method based on question templates and entity substitution [31], the
annotation costs can be effectively reduced, and the efficiency of question generation can be improved. A
knowledge graph (KG) can store URT emergency knowledge in a structured and standardized way [32],
thus providing structured information. Combined with the flexible retrieval function of KG [33], entity
data can be quickly obtained to fill the question template, making it convenient to generate high-quality
question datasets. Some scholars have transformed emergency-related text data into KG. For example, Liu
et al. [34] constructed water conservancy project emergency plans as KG and provided retrieval of emergency
knowledge such as risks and measures. Zhu et al. [35] constructed a KG for URT safety event cases as the
basis of URT emergency response.

However, the domain datasets usually contain limited information and have the characteristics of small
sample learning. In recent years, many scholars have paid attention to the small sample learning method.
For example, Zhao et al. [36] used the SimBERT model to enhance the data of small sample datasets,
improving multiple models’ classification effects. Cao et al. [37] enhanced the ability of cross-language
small-sample intent recognition through prompt tuning. Luo and He [38] fused the original sentence with
an intention label to enrich semantic information and improve the model performance. Yan et al. [39]
integrated the triples in the KG into the training data, effectively realizing the knowledge enhancement of
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text representation. Therefore, it is necessary to consider data enhancement technology while studying the
fast generation method of the dataset, thereby effectively improving the performance of the small sample
intention recognition model under data scarcity.

3 Proposed Methodology

3.1 Data Preparation
3.1.1 The KG for URT Emergency Domain

The URT emergency knowledge mainly exists in URT emergency cases and emergency plans, but
these text data have not been organized and expressed standardized. The KG [40] can structurally store
the emergency knowledge contained in these texts and provide a standardized knowledge database. This
paper obtained more than 500 emergency cases and 56 emergency plans through Web Crawler and manual
collection methods. On this basis, a KG for cases and plans is constructed. The construction process is as
follows:
1. For the emergency cases, we analyzed the knowledge contained therein and constructed the pattern

layer, as shown in the left half of the dashed box in Fig. 1. We cleaned and screened the data and
annotated the dataset relying on the EasyDL platform. Most of the knowledge has the phrasal charac-
teristics of entities, so deep learning-based entity knowledge extraction methods [35] are investigated.
For regular knowledge like time, regular expression acquisition methods are used. For the weather that
may not be indicated in the case, we obtained it by crawling the weather website through a web crawler.

2. Emergency plans have a relatively uniform composition, and we pay more attention to the content
related to emergency response and take it as the core of the KG. The more critical content is abstracted
into the pattern layer, as shown in the right half of the dotted box in Fig. 1. The knowledge in some
nodes is directly adopted in a section of the plan, and the knowledge in other nodes is extracted from
the paragraph by manually fine-grained.

Figure 1: The schema layer and local instance of the constructed KG

The acquired data is stored in the Neo4j database through Py2neo, and the same entity is shared, thus
integrating the two knowledge systems. The local instance of the constructed KG is shown in the right part
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of Fig. 1. The KG can quickly help generate a dataset and provide emergency personnel with consultation
support based on historical experience and disposal rules.

3.1.2 Construction of Question Labeled Dataset
Based on the constructed database, this study designs 25 types of questions by considering the possible

knowledge requirements in detail. The corresponding question template, slot number, and Cypher query
template are designed for each question type and saved as an Excel file. There are 142 question templates.
Each question template contains one or two slot entities, which are represented by placeholders “[ENT]” or
“[ENT0]” and “[ENT1]”. The number of slots reflects the number of entities required for the question. All
templates have six slot entities: city, organization, event level, event type, weather type, and event impact
on operations. The question instance can be obtained by filling the slot entity in the question template,
and then the dataset can be generated. The question metadata refers to the information describing the
question and represents the type of each question, as shown in Table 1. The metadata structure is “knowledge
source_answer type_key entity type”. Taking the label “0” as an example, the meaning of the question
metadata is to query the responsibility of an organization in the emergency plan and use the city and
organization as input conditions.

Table 1: The question metadata

Label Question metadata Label Question metadata
0 Case_Title_Weather type 13 Case_Organization name and its

responsibility_Event type
1 Case_Cause_Event type 14 Case_Emergency resource name_City

and event type
2 Case_Cause and consequence_City and

weather type
15 Plan_Scope of application_City

3 Case_Consequence_Event type 16 Case_Title_City and event type
4 Case_Personnel names_Event type 17 Case_Personnel names_City and event

type
5 Case_Organization name_Event type 18 Case_Personnel names and their

measures_Event type
6 Case_Organization name_City and event

type
19 Plan_Responsibility_City and

organization
7 Plan_Organization name_City 20 Plan_Command and coordination

measures_City and event level
8 Plan_Hierarchical response

measures_City and event level
21 Case_Title_City and weather type

9 Case_Consequence_City and event type 22 Plan_Emergency measures_City
10 Case_Emergency resource name_Event

type
23 Case_Title_City

11 Case_Personnel names and their
measures_City and event type

24 Case_Organization name and its
responsibility_City and event type

12 Case_Cause_City and event type
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In order to fill the slot entity in the question template and get the question instance, it is necessary to
obtain the attribute value and label of the slot entity. Firstly, the Graph class in Python’s Py2neo library is
used to establish a connection with the local Neo4j database. Then, Cypher query statements are defined
for six types of slot entities. The query statement is executed using the run method, and the result is saved
as an Excel file. Table 2 shows examples of attribute values for all types of entities in the Excel file. Finally,
to improve the consistency and comparability of data, some attribute values with the same meaning are
uniformly normalized, and a file of normative words and similar words is constructed.

Table 2: Examples of attribute values for slot entities

Label Attribute value examples
City Qingdao, Chengdu, Zhihua, Changchun

Organization Municipal Emergency Bureau, Municipal Propaganda Department
Event level Larger operational emergencies, major operational emergencies
Event type Natural disasters, terrorist attacks, mass passenger flow

Weather type Cloudy~sunny, cloudy~light rain, heavy rain~rainstorm
Event impact on operations Interruption of operation, increased intervals between trains,

temporary closure of stations

The question-labeled dataset for the intention recognition task is dynamically generated. Firstly, Python
is used to read the question template file and the slot entity file (including normative words and similar
words). Secondly, the label is extracted from the Cypher query statement of the slot entity through the
regular expression. Then, the attribute value corresponding to the label is randomly selected. Finally, by
replacing the placeholder in the problem template with the attribute value, the specific problem is generated.
In order to ensure the quality of the dataset, each template is limited to be used no more than 10 times. Back-
translation based on prompt engineering and text-transformation data based on NLPDA are introduced to
ensure the dataset’s diversity, resulting in 40,232 sentences participating in the training of intent recognition.
The question intention recognition model can identify questions in predefined categories to match the
corresponding Cypher query template for knowledge queries. The process is shown in Fig. 2.

Figure 2: The process of dataset generation and question consultation
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3.2 The Question Intention Recognition Model
3.2.1 Data Enhancement Layer

Generating the structure of interrogative sentences through templates is highly controllable, but the
diversity is insufficient, so data enhancement techniques need to be introduced. Through back-translation,
the limitation of templates can be effectively broken, and the diversity of interrogative sentences can be
enhanced by simulating the real data distribution while maintaining the semantic information. An approach
based on GPT-4o-mini prompt learning is employed to achieve back-translation. The method is employed
to generate translation data quickly and in batches. The semantic consistency of the back-translated data is
ensured through the well-designed prompts and manual checking. The prompts are shown in Fig. 3. Replace
the originally similar templated data with translated data while ensuring data quality to reduce the risk of
overfitting due to low template diversity. Meanwhile, the NLP Chinese Data Augmentation (NLPCDA) tool
is used to perform text transformation, including synonym replacement, near-sound word replacement,
random word deletion and near-word replacement (Which means disrupting the relative position of the two
words). This method can further enhance the robustness and generalization of the model.

Figure 3: Data back-translation prompts

3.2.2 Semantic Representation Layer
XLNet [15] introduces two core innovations based on Transformer-XL: Permutation Language Model-

ing (PLM) and Two-Stream Self-Attention, which synergistically combine the advantages of autoregressive
(AR) and autoencoding (AE) language models. PLM simulates diverse token permutations through attention
masking, enabling the model to exploit bidirectional context during prediction. PLM aims to maximize the
likelihood of generating the current token or character conditioned on its preceding inputs, as formalized
in Eq. (1).

max
θ

Ez∼ZT [
T
∑
t=1

log pθ (xzt ∣xz<t )] (1)

whereZT denotes the set of all possible permutations of a text sequence of length T; zt represents the t-th
element in the permutation, and z<t denotes the preceding t − 1 elements, within a permutation z ∼ZT.

Traditional AR language models do not include the positional information of the predicted word used in
prediction. To address this limitation, the positional information of the predicted word must be incorporated
into the model, as formalized in Eq. (2).

pθ (Xzt = x∣xz<t) =
exp(e(x)Tgθ(xz<t , zt))
∑
x′

exp(e(x′)Tgθ(xz<t , zt))
(2)

where θ denotes the model parameters; gθ (xz<t , zt) integrates both the preceding context xz<t and the
positional information zt of the predicted word.
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The model can predict xzt by leveraging the context xz<t and extracting information through the
attention mechanism. But there is a contradiction: while gθ (xz<t , zt)must exclude semantic information of
xzt to predict xzt , it simultaneously requires this information to predict the subsequent word. To solve this
problem, two hidden states are introduced. The content hidden state hθ (xz<t , zt) (denoted hzt ) contains both
the semantic information of xzt and the contextual information. The query hidden state gθ (xz<t , zt) (denoted
gzt ) contains only the positional information zt and contextual information, excluding the semantic infor-
mation of the predicted context. The updating processes are shown as Eqs. (3) and (4). The computational
process [15] of the Two-Stream Self-Attention mechanism is shown in Fig. 4.

h(m)zt
← Attention (Q = h(m−1)

zt
, KV = h(m−1)

z≤t
; θ) (3)

g(m)zt
← Attention (Q = g(m−1)

zt
, KV = h(m−1)

z<t
; θ) (4)

Figure 4: The structure of XLNet

3.2.3 Text Classification Layer
The word vectors output by the semantic representation layer are input into the TextRCNN model [41]

for classification. The TextRCNN model can extract the local and global features of the text, and its structure
is shown in Fig. 5.

Figure 5: The structure of TextRCNN
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Firstly, there is the Recurrent Structure Layer. The input text is represented as D = {w1 , w2, . . . , wn},
where wi represents the i-th word. The embedding representation e (wi) of the corresponding word is
obtained using the XLNet model. The word vector sequence is input into the bidirectional RNN model, and
the BiLSTM layer in the model captures the long-distance dependencies in the sentence. By processing the
forward and reverse information, the BiLSTM learns the sentence’s contextual information and obtains the
context feature representation of each word. The formulas are shown in Eqs. (5) and (6).

cl (wi) = f (W(l)cl (wi−1) +W(s l)e (wi−1)) (5)

cr (wi) = f (W(r)cr (wi+1) +W(sr)e (wi+1)) (6)

where cl (wi) is the left-side context vector of the word wi ; cr (wi) is the right-side context vector of the
word wi ; f indicates the activation function; W denotes the weight matrix.

By combining the word’s context features and its embedding, the final vector representation for the word
wi can be obtained, as shown in Eq. (7). A linear transformation is performed on the comprehensive vector
representation xi of the word wi . And the tanh activation function is applied to obtain the semantic vector
y(2)i . The formula is shown in Eq. (8).

xi = [cl (wi) ; e (wi) ; cr (wi)] (7)

y(2)i = tanh (W(2)xi + b(2)) (8)

where y(2)i is the new semantic vector containing the semantic and context information of wi ; b is the bias
vector of the model.

Then, the transformed results are sent to the Max-Pooling Layer to extract prominent features and
reduce the dimension of the feature map. This operation allows the model to handle a large amount of input
data better. The operation is shown in Eq. (9).

y(3) = nmax
i=1

y(2)i (9)

where y(3) is the output of the max-pooling operation, representing a vector of a fixed length; n is the number
of words contained in the input text.

Finally, the output of the Max-Pooling Layer is sent to the Fully Connected Layer for linear operation
and softmax function processing. Then, the final classification results are obtained. The formulas are shown
in Eqs. (10) and (11).

y(4) =W(4)y(3) + b(4) (10)

pi =
e y(4)

i

∑n
k=1 e y(4)

k

(11)

where y(4) is the result of linear operation; b(4) is the offset vector; pi denotes the probability value output
by the softmax function.

4 Experiments and Results

4.1 Experiment Settings and Evaluation Index
The GPU model used in this study is GeForce RTX 4060, and the built environment is PyTorch1.13.1

and Python3.10. Divide the training set, validation set, and test set in the ratio of 6:2:2. This study employs
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the Chinese XLNet model (“hfl/chinese-xlnet-base”) developed by the Harbin Institute of Technology &
iFLYTEK Joint Laboratory (HFL). The Dropout strategy is applied before the fully connected layer of all
models to ensure the fairness of the comparison. The stronger dropout strategy and L2 regularization strength
are used to mitigate the model overfitting problem. Due to hardware resource limitations, a mini-batch
training method is adopted. The gradient accumulation strategy is introduced to mitigate the oscillation
phenomenon of the mini-batch training process. Detailed parameters are shown in Table 3.

Table 3: Parameter setting of the intention recognition model

Parameter Parameter value Parameter Parameter value
Number of classes 25 Regularization warmup 0.1
Number of epochs 5 Gradient accumulation steps 2

Batch size 64 Max length of sentence 32
Number of iterations 1860 Learning rate 1.1 × 10−5

Regularization method L2 Dropout rate 0.5
Regularization strength 0.5 Number of RNN layers 2

4.2 Results and Discussions
4.2.1 Performance Comparison with Baseline Models

This study selected multiple classes of baseline models for comparative analysis, including two major
classes: non-pretrained and pre-trained models. For the non-pretrained models, we included several variants
of RNN-based models. As the baseline pre-trained model, we chose the BERT framework along with its
variants. The evaluation results are shown in Table 4.

Table 4: Comparative results between the models

Model Accuracy Average Precision Average Recall Average F1-Score
BiLSTM 0.9448 0.9347 0.9293 0.9315
BiGRU 0.9531 0.9444 0.9431 0.9436

BiLSTM_Att 0.9530 0.9440 0.9461 0.9449
BiLSTM_CNN 0.9607 0.9534 0.9539 0.9535

ALBERT_BiLSTM_CNN 0.9530 0.9430 0.9451 0.9439
DistilBERT_BiLSTM_CNN 0.9663 0.9586 0.9610 0.9596

BERT_BiLSTM_CNN 0.9676 0.9633 0.9638 0.9633
XLNet 0.9671 0.9607 0.9616 0.9610

XLNet_BiLSTM_CNN 0.9698 0.9645 0.9681 0.9662
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BERT [14]. A deep bidirectional language model constructed by stacking multiple layers of Transformer
encoders, utilizing only the encoder component of the Transformer architecture.

ALBERT [42]. Reducing parameter size through Factorized Embedding Parameterization and cross-
layer parameter sharing whilst introducing self-supervised loss for Sentence Order Prediction focuses on
modeling inter-sentence coherence.

DistilBERT [43]. Knowledge Distillation techniques were used in the pre-training phase, while the
BERT model architecture was streamlined.

The BiLSTM_CNN has significant advantages among the non-pretrained models. Its structure better
captures the long-distance dependency of sentences internally by using the memory of BiLSTM, and
effectively extracts local features through CNN. Introducing the pre-training phase generally improves the
model’s performance. The reason for the lack of performance improvement of ALBERT_BiLSTM_CNN may
be that ALBERT focuses on inter-sentence logical relations rather than single-sentence internal structure.
XLNet_BiLSTM_CNN has the best overall performance regarding overall prediction ability, accuracy in
identifying positive samples, coverage of positive samples and balance performance. The reason is that the
XLNet architecture is superior to the BERT architecture and its variants in bidirectional context modeling
capabilities and fine-grained semantic capture. With the introduction of BiLSTM_CNN, the proposed model
realizes the collaborative optimization of sequence dependent modeling and local feature extraction.

To ensure the clarity of the image, the models are divided into two groups to plot the loss curves of the
training set and the validation set, as shown in Fig. 6. XLNet_BiLSTM_CNN achieved the fastest convergence
rate when the baseline model was non-pretrained model. The introduction of pre-training architecture
generally speeds up the convergence of the model. The loss function curve of XLNet_BiLSTM_CNN
performs well on both training and verification sets. The proposed model can quickly adapt to the training
data and show good learning and generalization ability.

Based on the above analysis, the hybrid architecture has higher accuracy and generalization abil-
ity, so the performance of the hybrid architecture model is further compared. Fig. 7 shows the model’s
average training time and inference time, and Fig. 8 represents the complexity of the model. Although
XLNet_BiLSTM_CNN has the largest training time, inference speed, and model parameters, it does not
exceed other models by much. As can be seen, higher model complexity generally brings higher time costs
and advantages for accuracy.

Figure 6: (Continued)
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Figure 6: Loss function. (a) Training loss function with non-pretrained baseline model; (b) Validation loss function
with non-pretrained baseline model; (c) Training loss function with pre-trained baseline model; (d) Validation loss
function with pre-trained baseline model

Figure 7: Average training time and average inference time

Figure 8: Model parameters
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4.2.2 Performance of Single Model
The performance of the proposed model on the test set is evaluated. The results are shown in Table 5.

Table 5: Evaluation results of the proposed model on the test set

Question label Precision Recall F1-Score Support Question label Precision Recall F1-Score Support
0 0.9690 0.9690 0.9690 129 13 0.8956 0.9532 0.9235 171
1 0.9783 0.9890 0.9836 182 14 0.9969 0.9877 0.9922 648
2 0.9789 0.9957 0.9872 466 15 0.9505 0.9796 0.9648 98
3 0.9778 0.9724 0.9751 181 16 0.9623 0.9708 0.9665 342
4 0.9508 0.9355 0.9431 186 17 0.9528 0.9498 0.9513 638
5 0.9314 0.9532 0.9422 171 18 0.8854 0.8797 0.8825 158
6 0.9568 0.9519 0.9543 582 19 0.9919 0.9973 0.9946 370
7 1.0000 0.9835 0.9917 121 20 0.9931 0.9897 0.9914 290
8 0.9873 0.9936 0.9904 313 21 0.9784 0.9706 0.9745 374
9 0.9829 0.9875 0.9852 641 22 0.9402 0.9649 0.9524 114
10 0.9760 0.9879 0.9819 165 23 0.9608 0.9608 0.9608 102
11 0.9619 0.9456 0.9537 588 24 0.9651 0.9540 0.9595 609
12 0.9877 0.9808 0.9842 572

Most indicators are above 0.9. For most smaller categories (such as those with 0, 7, 15, and 23), their
Precision, Recall, and F1-scores exceed 0.95. This indicates that the model performs well on rare query types.
For the label “18”, its performance in three aspects is not more than 0.9. This may be attributed to the high
semantic ambiguity and a limited number of questions, which means the model has not fully learned its
semantic information. To assess the model’s robustness, four text transformation methods were employed
to introduce varying levels of noise to the test set. As can be seen from Table 6, performance degradation
correlates positively with noise intensity, and the sensitivity of different transform types is significantly
different. Near-sound word replacement has the substantial impact on the model, with effects at an intensity
of 0.3 being significantly greater than those of other types. Near-word replacement has the least influence
on the model, and the model accuracy decreases almost linearly. Synonym replacement and random word
deletion are relatively stable. It can be seen that the robustness of the model to structural changes is better
than that of semantic substitutions. The variation in accuracy of most experiments is less than 1%, indicating
that the model has good robustness and generalization ability.

Table 6: The performance of the model under different noise intensities

Text transformation Noise intensity

0.05 0.1 0.15 0.2 0.25 0.3
Synonym

Replacement
0.9671 (−0.27%) 0.9659 (−0.39%) 0.9633 (−0.65%) 0.9625 (−0.73%) 0.9644 (−0.54%) 0.9586 (−1.12%)

Near-Sound Word
Replacement

0.9674 (−0.24%) 0.9664 (−0.34%) 0.9627 (−0.71%) 0.9592 (−1.06%) 0.9609 (−0.89%) 0.9551 (−1.47%)

Random Word
Deletion

0.9677 (−0.21%) 0.9682 (−0.16%) 0.9660 (−0.38%) 0.9635 (−0.63%) 0.9613 (−0.85%) 0.9594 (−1.04%)

Near-Word
Replacement

0.9689 (−0.09%) 0.9675 (−0.23%) 0.9658 (−0.40%) 0.9633 (−0.65%) 0.9614 (−0.84%) 0.9602 (−0.96%)

The Fig. 9 presents the confusion matrix, which matrix reveals some confusing categories. The number
of times that “Case_Organization name and its responsibility_City and event type” is incorrectly classified
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as “Case_Personnel names and their measures_City and event type” and “Case_Personnel names_City and
event type” is incorrectly classified as “Case_Organization name_City and event type” type is 19. Moreover,
there are some similar mistakes. The reason may be that the concepts of “organization name” and “personnel”
are generally asked in a similar way. Overall, misclassification errors for question types with more complex
answers and more entities tend to be worse than for simple questions. This shows that it is necessary to
improve the data quality and the model’s complex semantic understanding ability.

Figure 9: Confusion matrix

5 Conclusions
The data in the URT emergency domain mostly exists in scattered text, which makes accessing emer-

gency knowledge challenging. Furthermore, there is a lack of publicly available question-labeled datasets
in this area. In order to solve these problems, this study integrates KG and NLP technologies to develop
methods for dataset construction and question intention recognition. Firstly, the KG is utilized to create a
structured representation of emergency data and to establish deep correlations within emergency knowl-
edge. Moreover, the question-labeled dataset is generated efficiently and with minimal manual annotation
by filling entities in the KG into the predefined question template. Finally, the data-enhanced question
intention recognition model is proposed. By leveraging the complex semantic understanding capabilities of
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XLNet_BiLSTM_CNN, along with the diverse training samples enabled by data enhancement techniques, we
improve the accuracy and robustness of the model. Compared with the baseline models, the proposed model
improves the efficiency of question classification and shows superiority. However, there are still limitations
to the study:

First of all, the knowledge sources in the KG include only emergency cases and emergency plans. It
would be beneficial to introduce additional text data (such as maintenance logs and expert experience) and
multimodal data (such as images and videos) to enrich the sources of intention. In addition, the questions
generated by the template lack diversity. It is essential to enrich the original dataset and explore methods for
rapidly generating the diversified high-quality questions.

Secondly, in the emergency response scenario, user-generated questions are often not standardized,
requiring the model to possess a high degree of generalization to accurately identify user intentions. The
proposed model does not have a high inference speed, which is critical in emergency situations. Future
studies should focus on enhancing the model’s generalization performance and response speed.

Finally, knowledge retrieval and Q&A processes can be realized by combining KG and the proposed
model. The intention recognition model in this study is part of the pipeline Q&A system, and utilizing multi-
task learning can optimize related tasks cooperatively. By considering intention recognition as one of the
tasks in a multi-task learning framework, the Q&A process can become more efficient and robust, ultimately
providing users with convenient emergency knowledge acquisition services in URT.
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