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ABSTRACT: Code obfuscation is a crucial technique for protecting software against reverse engineering and security
attacks. Among various obfuscation methods, opaque predicates, which are recognized as flexible and promising, are
widely used to increase control-flow complexity. However, traditional opaque predicates are increasingly vulnerable to
Dynamic Symbolic Execution (DSE) attacks, which can efficiently identify and eliminate them. To address this issue,
this paper proposes a novel approach for anti-DSE opaque predicates that effectively resists symbolic execution-based
deobfuscation. Our method introduces two key techniques: single-way function opaque predicates, which leverage
hash functions and logarithmic transformations to prevent constraint solvers from generating feasible inputs, and
path-explosion opaque predicates, which generate an excessive number of execution paths, overwhelming symbolic
execution engines. To evaluate the effectiveness of our approach, we implemented a prototype obfuscation tool and
tested it against prominent symbolic execution engines. Experimental results demonstrate that our approach signifi-
cantly increases resilience against symbolic execution attacks while maintaining acceptable performance overhead. This
paper provides a robust and scalable obfuscation technique, contributing to the enhancement of software protection
strategies in adversarial environments.
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1 Introduction
With the growing integration of the Internet into everyday life, software has become a key tool for

providing essential services across various domains, including scientific research and daily life. However,
the widespread distribution and use of terminal software have also incurred significant security risks, such
as malware, software cracking, and information leakage, causing damage to both developers and end-users.
To counter these threats, researchers have developed various protective methods, including encryption [1]
and code obfuscation [2,3]. Encryption, while effective in securing data, has limitations when it comes to
software protection, as encrypted programs must eventually be decrypted into executable forms, allowing
attackers to intercept and analyze them in untrusted environments. Among the alternatives, code obfuscation
has emerged as a promising solution for software protection due to its flexibility, efficiency, and relatively
low overhead. Among the various types of obfuscation, control obfuscation, which modifies the control-flow
structure of a program, is particularly effective in preventing reverse engineering. Techniques such as control
flow flattening and opaque predicates are commonly employed to complicate the program’s control flow.
Among these, opaque predicates are attractive due to their ability to increase control flow complexity while
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having minimal impact on execution performance. However, these control-flow obfuscation techniques are
increasingly vulnerable to detection due to advances in Dynamic Symbolic Execution [4–7].

In our work, we address the limitations of existing methods by introducing a new class of opaque
predicates specifically designed to resist symbolic execution. Our approach focuses on two key weaknesses of
symbolic execution: path explosion and constraint solving. We propose opaque predicates based on single-
way functions, such as hash functions and logarithmic computations, which complicate the generation of
valid inputs for symbolic execution. Additionally, we introduce path-explosion techniques that generate
irrelevant bogus control-flow branches, overwhelming the sources of symbolic execution engines.

We implement our approach in a prototype obfuscation tool based on the Obfuscator-LLVM [8]
framework. To evaluate the resilience of our approach, we conducted experiments using two prominent
dynamic symbolic execution engines: KLEE [9] and Angr [10]. Our results demonstrate that the proposed
opaque predicates exhibit strong resilience against symbolic execution-based attacks while maintaining
acceptable performance overhead compared to the default opaque predicates in Obfuscator-LLVM. Further-
more, our scheme integrates seamlessly with existing opaque predicates, enhancing their resilience without
sacrificing performance.

This paper makes the following contributions:

• A framework of strong resilience against symbolic execution: We implemented a prototype obfuscation
tool that integrates our proposed opaque predicates into the Obfuscator-LLVM framework. This tool
enables developers to apply our resilient opaque predicates in the form of optional parameter configu-
rations during the compilation process, ensuring that their software is well-protected against symbolic
execution attacks.

• Novel Opaque Predicates Using Single-Way Functions: We propose the use of single-way functions, such
as hash functions and logarithmic computations, in combination with traditional opaque predicates.
These predicates make it difficult for symbolic execution engines to recognize and solve the constraints
generated by the obfuscated code. Our experiments demonstrate that these enhanced opaque predicates
are highly effective in resisting symbolic execution attacks.

• Path-Explosion Opaque Predicates: We construct opaque predicates that induce path explosion, a known
challenge for symbolic execution. By generating numerous irrelevant bogus control-flow branches, these
predicates cause symbolic execution engines to waste time solving irrelevant paths, effectively disabling
the analysis.

• Comprehensive Evaluation of Security and Performance: We evaluate the security of our opaque
predicates against two prominent symbolic execution engines, KLEE and Angr, using a diverse set of
benchmarks and real-world applications. Our results show that the proposed predicates significantly
increase resilience against symbolic execution, while the performance overhead remains negligible
compared to the default obfuscation methods used in Obfuscator-LLVM.

2 Literature Review and Motivation

2.1 Code Obfuscation and Opaque Predicates
Code obfuscation is a well-established technique for protecting software from reverse engineering

and tampering. Collberg et al. [2] classified code obfuscation into four categories: layout obfuscation, data
obfuscation, control obfuscation, and preventive transformation. Control obfuscation, which alters the
control-flow structure of a program, plays a crucial role in thwarting reverse engineering attempts. One of
the key techniques within control obfuscation is the use of opaque predicates. Opaque predicates [2] are
Boolean expressions whose outcome is predetermined by the developer but appear ambiguous to an external
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observer, especially during static or dynamic analysis. By embedding these complex predicates, developers
make it harder for attackers to discern the program’s logic, thus increasing its protection against analysis.

Opaque predicates can be categorized into two types: static and dynamic, shown in Fig. 1. Static opaque
predicates have Boolean values that are determined at compile-time and remain constant throughout the
program’s execution. An example of a static opaque predicate is a complex mathematical expression that
always evaluates to true, such as (x2 − x)mod 2 = 0 for any integer x. In contrast, dynamic opaque predicates
change their values based on runtime conditions, making them more unpredictable and challenging to
analyze. For instance, a dynamic opaque predicate might depend on the system time, such as time mod 2 = 0
which would evaluate to true or false based on whether the system time is an even or odd number.

Figure 1: Static and dynamic opaque predicates. OPT means opaque predicates that are always true, OP?means opaque
predicates that are uncertain. Solid lines indicate paths that may sometimes be taken, and dashed lines indicate paths
that will never be taken

2.2 Symbolic Execution
Symbolic execution, first introduced by King [11], is a program analysis technique that systematically

explores program paths by treating inputs as symbolic variables rather than concrete values. This method
allows for the analysis of all possible execution paths by representing inputs with symbolic expressions and
constructing path conditions—conjunctions of constraints on the symbolic inputs—along each path. As the
symbolic executor navigates through the program, it builds these path conditions and relies on constraint
solvers to check their satisfiability. If a path condition is unsatisfiable, the corresponding execution path is
considered infeasible. Symbolic execution is particularly useful for identifying security vulnerabilities and
generating test cases that cover edge cases and rare scenarios that might be missed by traditional testing
methods [12].

Dynamic Symbolic Execution [13,14] combines symbolic execution with concrete execution [15–17],
enabling more practical and scalable exploration of multiple execution paths within a program. After
executing a path with concrete inputs, DSE employs a constraint solver to generate new inputs that can drive
the program along unexplored paths. Unlike pure symbolic execution, which attempts to explore all possible
paths, DSE focuses on paths encountered during actual runs, making it more efficient.

However, symbolic execution faces several challenges, most notably path explosion [18], where the
number of possible execution paths grows exponentially with program complexity. This issue can overwhelm
the analysis, especially in larger programs with many branching conditions or loops. Additionally, symbolic
execution struggles with complex data structures, external libraries, and interactions with operating systems
or networks, which often require sophisticated modeling to simulate their behavior accurately [17].

Another significant limitation of symbolic execution is its reliance on constraint solvers [18], such as
STP [19] and Z3 [20]. While constraint solvers play a critical role in reasoning about program paths, they
can become a bottleneck, particularly when dealing with large or complex constraints. As the complexity
of the symbolic expressions grows, the efficiency of the solver decreases, leading to longer analysis times or
even failure to find solutions within reasonable limits. Scalability issues further exacerbate this problem, as
handling a large number of constraints can be computationally expensive and time-consuming.
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2.3 Code Obfuscation against Dynamic Symbolic Execution
DSE combines dynamic program analysis with symbolic reasoning, enabling the exploration of multiple

execution paths based on symbolic values rather than concrete inputs. This makes it an efficient tool for
identifying and neutralizing obfuscation techniques [21–23], including opaque predicates. Tools like Angr
can easily distinguish opaque predicates by identifying branches that are never satisfied, thereby stripping
them from the program. To address this challenge, researchers have proposed several solutions, including
hard-to-solve predicates such as Mixed Boolean Arithmetic (MBA) [24] formulas and cryptographic hash
functions [25]. However, MBA formulas are often unsuitable for opaque predicates, and cryptographic
functions, while secure, tend to introduce significant overhead and are vulnerable to key extraction attacks,
possibly through DSE. More recently, path-explosion techniques have been introduced to complicate
symbolic execution. For instance, Banescu et al. [18] demonstrate that standard obfuscation tools like
Obfuscator-LLVM and Tigress [26] have limited effectiveness against DSE and propose Ranger Divider,
a path-explosion obfuscation technique. However, this approach suffers from excessive code duplication.
Ollivier et al. [27] developed SPLIT and FOR transforms that limit branch choices to reduce code duplication,
but these techniques are only available at the C source code level. Dinu [28] extended these techniques to
the Low Level Virtual Machine (LLVM) level, though the project source code is not publicly available. Xu
et al. [29] introduced Bi-Opaque Predicates, which employ symbolic memory and parallel programming
to complicate symbolic analysis. Hirano and Ohtaki [30] proposes an opaque predicate design based on
homomorphic encryption, which significantly enhances resilience against static and symbolic execution
analysis by leveraging the mathematical properties of encryption. However, it is burdened by high computa-
tional overhead, limited compatibility with modern binary analysis frameworks, and increased deployment
complexity, all of which significantly hinder its practical application in real-time or resource-constrained
environments. De Pasquale et al. [31] proposes ROPfuscator that leverages Return-Oriented Programming
(ROP) to transform code into ROP chains, and then augments the obfuscation by integrating opaque
predicates and an instruction hiding mechanism to protect critical gadget addresses, while ROPfuscator
effectively disrupts static disassembly and hampers dynamic analysis, its robustness is heavily contingent
on the availability of suitable ROP gadgets extracted from the target libraries, and it incurs significant
performance and code size overhead.

2.4 Motivation
2.4.1 Adversary Model

In our adversary model, we assume that attackers have access to the binary program obfuscated using
our framework but not to the source code. These adversaries are skilled in program analysis and equipped
with advanced symbolic execution tools, allowing them to attempt deobfuscation of our protections in
conjunction with other analysis techniques. However, they operate with limited resources, including time and
computational capacity. Importantly, we do not expect attackers to invest in the development of specialized
tools. Our goal is to sufficiently delay the attack process to the extent that the costs—both in terms of time
and resources—become prohibitive, dissuading further attempts at deobfuscation.

2.4.2 Motivating Example
To illustrate the effectiveness of our obfuscation protections, we present a simple example program. As

depicted in Fig. 2a, the program prompts users to input an integer. If the input is 30, the program outputs
a success message; otherwise, it prompts the user to “try again.” The obfuscation utilized in this example
is based on the Obfuscator-LLVM project, initiated in June 2010 by the Information Security Group at the
University of Applied Sciences and Arts in Western Switzerland. This project aims to enhance software
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security through various code obfuscation techniques. Specifically, we focus on the bogus control flow
transformation, which employs number theory-based opaque predicates.

As shown in Fig. 2b, the original control flow of the example program consists of two subsequent choices
represented in LLVM IR. The obfuscated control flow introduced by the bogus control flow transformation
complicates the structure significantly, as illustrated in Fig. 3. The opaque predicates, represented by the
expression

(x(x − 1))mod 2 = 0∣∣y < 10 (1)

are highlighted in red boxes.

Figure 2: Example program structure

Figure 3: Opaque predicate in LLVM intermediate representation (IR)
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When subjected to symbolic execution, as demonstrated in Fig. 4, the symbolic execution engine
simulates the execution of the obfuscated program and identifies blocks of code that are never executed.
Consequently, these bogus blocks enable the detection of associated opaque predicates. The obfuscation
introduced by Obfuscator-LLVM is thus revealed, leading to the elimination of the opaque predicates from
the protected program [32]. As shown in Fig. 5, instructions in the unexecuted blocks are replaced with
no-operation (nop) instructions, confirming that the opaque predicates have been successfully recognized
by the symbolic execution engine. This example underscores the vulnerabilities inherent in current opaque
predicate techniques, as evidenced by similar findings in other investigations [33,34].

Figure 4: Framework for detecting opaque predicates using symbolic execution techniques

Figure 5: Binary file analyzed by symbolic execution in IDA Pro
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3 Approach
We implemented a prototype tool based on Obfuscator-LLVM, leveraging the LLVM infrastructure

to focus specifically on control-flow obfuscation for securing program code. As illustrated in Fig. 6, the
implementation framework involves several key stages. Initially, the source code is processed through the
LLVM Frontend, which transforms it into an Intermediate Representation (IR). This IR serves as a flexible,
platform-independent abstraction, enabling various optimizations and transformations before compilation
into the final machine code. The LLVM Backend ultimately converts this IR into binary code executable on
specific hardware.

Figure 6: Framework of the prototype implementation, OP indicates opaque predicates

Within this LLVM framework, we integrate our opaque predicates as a dedicated compiler pass,
replacing the default predicates generated by Obfuscator-LLVM with more resilient variants. One significant
enhancement is the introduction of single-way opaque predicates, which replace global variables with
input-related or local variables. This replacement makes it difficult for reverse engineers and symbolic
execution tools, as the opaque predicates become strongly correlated with the program inputs, preventing
attackers from simply setting global variables to zero and recompiling. Additionally, we use hash functions
or logarithmic transformations to obscure the values of the predicates, further complicating their resolution.
Alongside this, path-explosion opaque predicates are used as an alternative approach. These predicates
introduce numerous bogus branches into the control flow, causing symbolic execution engines to waste
resources on irrelevant paths, significantly increasing the complexity of analysis.

3.1 Single-Way Opaque Predicates
As symbolic execution explores the obfuscated program, constraint solvers attempt to get the inputs that

satisfy conditions for path traversal. By transforming opaque predicates into forms that are difficult to solve,
we aim to render the corresponding bogus blocks that follow the opaque predicates unrecognizable during
symbolic execution. The single-way transformation effectively results in an algorithm that is easy to compute
in one direction but is infeasible to invert. Specifically, given an input x, computing f (x) is computationally
efficient; however, deducing the original input x from y = f (x) is practically infeasible within reasonable
time limits.

Hash functions, as classical examples of single-way functions, convert inputs into fixed-size byte strings,
typically resulting in hash values or codes. The outputs are short, fixed-length values that are unique for
each distinct input. To ensure efficient computation, we select CityHash64 [35] as our hashing algorithm.
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Developed by Google, CityHash is optimized for modern Central Processing Units (CPU) and provides
efficient hashing across various platforms and input sizes. It includes multiple variations, such as CityHash64,
CityHash128, and CityHash32, accommodating different input lengths and hash space requirements. A
comparison of common hash algorithms is presented in Table 1, where we can clearly see the reason for
CityHash64 being selected.

Table 1: Hash function performance in terms of bandwidth

Hash name Width (bits) Bandwidth (GB/s)
City64 64 22.0
T1ha2 64 21.0

City128 128 21.7
SipHash64 64 19.4

SpookyHash 64 19.3
Mum 64 18.0

XXH32 32 9.7
City32 32 9.9

Murmur3 32 3.9
XXH64 64 13.2
FNV64 64 1.2
Blake2 256 1.1
SHA1 160 0.6
MD5 128 0.8

As Fig. 7 shows, our approach involves computing the hash values of both the left and right components
of the opaque predicate expressions using CityHash. Consequently, the feasible solutions that satisfy our
modified predicates cannot be easily determined. For example, given the value of hash(0), it is theoretically
impossible to reverse-engineer the original value of zero, thus obscuring the true nature of our opaque
predicates from symbolic execution.

Figure 7: Hash function opaque predicate

However, there are two critical challenges in implementing this approach. First, hash computations
introduce additional execution time. As we add multiple opaque predicates to the target program, each
execution incurs the overhead of two hash computations. To mitigate this issue, we establish an obfuscation
probability limit of 30%–70%, which regulates the number of opaque predicates to reduce computational
demands. Additionally, we precompute the hashes of constants (e.g., hash(0)) and incorporate these into
the opaque predicates.

Second, the optimal way to compute CityHash is through a dynamically linked library, providing
flexibility and reusability. As mentioned, symbolic execution faces challenges when dealing with external
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libraries. Thus, during testing, we simulate loading the library to execute the code within it, and the results
are returned to the symbolic execution state.

If the opaque predicate expressions lack direct comparisons, such as in the case of x2 ≥ 0, it becomes
irrelevant to compare the relative sizes of two hash values. To address this, we propose an alternative single-
way transformation that is more lightweight and suitable for various scenarios.

3.2 Fermat’s Little Theorem Opaque Predicate
Fermat’s Little Theorem, a fundamental concept in number theory discovered by Pierre de Fermat, states

that: If p is a prime number and a is an integer not divisible by p, then:

a(p−1) ≡ 1 mod p (2)

This implies that if you raise a to the power of p − 1 and divide by p, the remainder is always 1. It can
also be extended to state that for any integer a:

ap ≡ a mod p (3)

Thus, we can replace x with x pmod p, where p is a large prime number. For example, the expression
x2 ≥ 0 can be transformed into (x2)pmod p ≥ 0. This obfuscation does not alter the program’s semantics and
can be computed efficiently using modular exponentiation with a time complexity of O(log p). We utilize an
efficient algorithm for fast exponentiation, allowing for quick computation of x pmod p, even when p is large.
The pseudocode for this algorithm is illustrated in Algorithm 1. The algorithm shows an efficient method
for computing modular exponentiation. It uses the method of successive squaring, reducing the power p by
half at each step and multiplying the result when necessary, which significantly reduces the computational
complexity. Because this property is transparent to existing symbolic execution tools (e.g., KLEE), it takes
O(p) time complexity for the symbolic execution tool to solve this branching condition. So if we choose an
appropriate prime p, the symbolic execution will take a fair amount of time to solve. By the way, modular
exponentiation causes path explosion with its branch condition and high power computation. Both of them
make it infeasible to remove our obfuscation with the help of symbolic execution, thereby enhancing the
security of our obfuscation technique.

Algorithm 1: Fast modular exponentiation
Input: Integers x, prime p
Output: Computes x p mod p and returns the result

1: Initialize resul t ← 1
2: x ← x mod p
3: while p > 0 do
4: if p mod 2 = 1 then
5: resul t ← (resul t × x) mod p
6: end if
7: p ← p ÷ 2
8: x ← (x × x) mod p
9: end while

return result
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3.3 Path-Explosion Opaque Predicate
Path explosion occurs when the number of potential execution paths in a program increases expo-

nentially with the number of branching points, such as conditional statements and loops. This exponential
growth can render symbolic execution analysis infeasible for larger programs due to constraints related
to time and memory. We implement path-explosion opaque predicates through two methods: recursive
Fibonacci and the Collatz Conjecture.

3.3.1 Recursive Fibonacci Opaque Predicate
The Fibonacci sequence is defined such that each number is the sum of the two preceding ones, starting

typically with 0 and 1. The recursive definition is expressed as follows:

Fn =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0, if n = 0;
1, if n = 1;
Fn−1 + Fn−2, if n > 1.

(4)

Our Recursive Fibonacci opaque predicate is defined with Fn = Fn−1 + Fn−2 that is always true. Upon
selecting an appropriate value for n, symbolic execution encounters an explosion of path constraints, leading
to excessive time consumption. There are two considerations when using a recursive Fibonacci-based opaque
predicate. First, the value of n should be chosen appropriately to ensure the symbolic execution tool fails
while not incurring excessive computation time. We conducted experiments with various values for n. Fig. 8
illustrates the impact on symbolic execution time as n varies in our tests, based on the code from Fig. 2.
From Fig. 8, it is evident that as n increases, the time required for symbolic execution grows rapidly. When
n is set to 20, the execution time exceeds three hours.

Figure 8: Symbolic execution time of the recursive Fibonacci opaque predicate as n changes

The second issue involves the significant time overhead incurred when calculating the Fibonacci
sequence with n set to 20. To improve the efficiency of these calculations, we employ dynamic programming
(memorized recursion), which is a top-down dynamic programming approach that stores previously
computed Fibonacci numbers in an array to avoid redundant calculations, significantly reducing the time
complexity from O(n2) to O(n).
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3.3.2 Collatz Conjecture Opaque Predicate
The Collatz Conjecture, also known as the 3n + 1 conjecture, defines sequences based on the following

rules. Given a positive integer n, define the next term in the sequence T(n) as:

T(n) =
⎧⎪⎪
⎨
⎪⎪⎩

n
2 , if n is even;
3n + 1, if n is odd.

(5)

The conjecture posits that for any initial value n, repeated application of this transformation will
eventually yield the value 1. The Collatz Conjecture opaque predicate is structured as shown in Fig. 9. For a
given number n, if the transformation T(n) results in a value not less than 1, the true block leads to the next
block where T(n) = 1 and loops back to the original block when T(n) > 1. Otherwise, the subsequent block
becomes a bogus block. The multiple loops and conditional judgments induce path constraint explosion,
rendering symbolic execution ineffective.

Figure 9: The Collatz Conjecture opaque predicate

4 Experimental Evaluation

4.1 Evaluation Criteria
According to Collberg et al. [2], the evaluation criteria for assessing the quality of software obfus-

cation include potency, resilience, stealth, and cost. However, not all of these criteria are applicable to
our study. We focus specifically on evaluating the resilience and cost of symbolic opaque predicates.
Resilience measures the ability of the obfuscation technique to withstand automatic attacks, particularly
from adversaries using symbolic execution. In this work, we assume that attackers are skilled in utilizing
symbolic execution-based tools to deobfuscate our protections. Cost assesses the overhead introduced by
the obfuscation process, encompassing both program size and execution time. We evaluate this overhead
by comparing the performance of real programs obfuscated with our symbolic opaque predicates against
existing opaque predicates.

We do not evaluate potency, as it primarily pertains to the overall obscurity added to the program,
which is a major objective of general obfuscation or control-flow obfuscation, rather than specifically to
opaque predicates. Additionally, stealth assesses whether an obfuscation technique appears suspicious to
human analysts. A stealthy opaque predicate should not exhibit abnormal instruction patterns or significant
statistical differences compared to normal predicates. Currently, no standardized evaluation method exists
for stealth. As a result, to comprehensively evaluate our obfuscation approach, we consider a diverse set of
metrics encompassing resilience, runtime overhead, code size, memory usage, coverage, correctness, and
extensibility. Resilience gauges the obfuscation’s ability to withstand both static and dynamic attacks, espe-
cially those involving symbolic execution. Runtime overhead measures the increase in runtime performance
costs introduced by the obfuscation, while code size captures the relative growth of the binary compared
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to the unobfuscated version. Memory usage quantifies the additional resources required during execution.
Coverage reflects the proportion of code actually protected by the obfuscation transformations. Correctness
ensures that the obfuscated program preserves the original functionality and outputs, and extensibility
assesses how readily the technique can be adapted to new architectures, programming languages, or evolving
threat models.

4.2 Prototype Implementation
We developed a prototype obfuscation tool based on Obfuscator-LLVM. The source code of a program

is initially processed by the LLVM frontend, which transforms the code into an Intermediate Representation.
For C programs, the frontend utilized is Clang. The IR serves as the core object processed in LLVM, providing
a framework for various program analysis tasks, including optimization and obfuscation.

Obfuscator-LLVM inherently applies several compilation passes to obfuscate programs at the IR level.
Finally, the IR is compiled into binary code by the corresponding backend, suitable for specific hardware
architectures (e.g., x86-64). Within the LLVM framework, we implement our strengthened opaque predicates
as a compiler pass. This pass allows for the substitution of opaque predicates generated by Obfuscator-
LLVM with more resilient versions. Users can select which opaque predicates to employ during the
obfuscation process.

4.3 Experiment Setup
• addedHardware and Software Configuration: All experiments were conducted on a desktop computer

running Arch Linux (Kernel version 5.4.0), equipped with a 12th Gen Intel R© Core™ i5-12500H processor
at 2.50 GHz and 16 GB of RAM.

• Obfuscation Probability: An obfuscation probability of 70% was set, meaning that in each compilation,
approximately 70% of eligible candidate locations have the opaque predicates inserted.

4.4 Dataset
In this study, we utilized two distinct test datasets. The first dataset originates from the research paper

“Code Obfuscation Against Symbolic Execution Attacks [18]” which includes a diverse range of test functions
specifically designed to evaluate resistance against dynamic symbolic execution. This dataset features various
control-flow statements, integer arithmetic, and system calls to printf, with code lengths varying from 11 to
24 lines.

The second dataset comprises commonly used cryptographic algorithms to assess the practical effective-
ness of our obfuscation methods. This dataset includes hash functions (SHA and MD5) and cryptographic
encoding functions (AES and DES), with code sizes ranging from 73 to 400 lines.

4.5 Evaluation Results
4.5.1 Resilience

To evaluate the impact on dynamic symbolic execution, we employed two key metrics. The first metric
was the timeout duration imposed on symbolic execution. If the symbolic execution engines could not
identify opaque predicates within three hours, we deemed this a successful resistance against symbolic
execution. The second metric focused on false negatives (FN), defined as instances where opaque predicates
were incorrectly identified as non-opaque by the symbolic execution tool. The results of these tests are
summarized in Tables 2 and 3. We use Hash, Fermat, Fib, and Collatz to represent Single-Way, Fermat’s Little
Theorem, Recursive Fibonacci, and Recursive Fibonacci Opaque Predicate, respectively.
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Table 2: Impact of obfuscations on DSE of Angr

Opaque predicate Dataset 1 Dataset 2

Timeout FN Timeout FN
Obfuscator-LLVM Default 0/48 0/48 0/4 0/4

Tigress Default 0/48 0/48 0/4 0/4
Hash (Our) 0/48 48/48 0/4 4/4

Fermat (Our) 48/48 48/48 4/4 4/4
Fib (Our) 48/48 0/48 4/4 0/4

Collatz (Our) 48/48 0/48 4/4 0/4

Table 3: Impact of obfuscations on DSE of KLEE

Opaque predicate Dataset 1 Dataset 2

Timeout FN Timeout FN
Obfuscator-LLVM Default 0/48 0/48 0/4 0/4

Tigress Default 0/48 0/48 0/4 0/4
Hash (Our) 48/48 0/48 4/4 0/4

Fermat (Our) 48/48 0/48 4/4 0/4
Fib (Our) 48/48 0/48 4/4 0/4

Collatz (Our) 48/48 0/48 4/4 0/4

The data in the tables indicate that obfuscation using the four types of opaque predicates consistently
resulted in timeout on two datasets, preventing the symbolic execution tools from recognizing these
predicates. While using the Angr tool, no timeout occurred during hash obfuscation; however, false blocks
were misclassified as normal blocks due to the constraint solver’s inability to resolve the constraints. In the
case of Fermat obfuscation, a timeout occurred, and similar misclassifications (FN) were observed. These
results demonstrate that all four types of obfuscation exhibit strong resilience against dynamic symbolic
execution that Obfuscator-LLVM Default and Tigress Default opaque predicates do not have.

4.5.2 Impact on Runtime Performance
We assessed the cost of our obfuscation methods by measuring the runtime overhead and changes in

code size relative to the original code. The formula used to calculate the runtime increase factor is as follows:

Timeratio = Execution Time of Obfuscated Code
Execution Time of Original Code

(6)

To evaluate changes in runtime, we employed the Linux profiling tool, perf, focusing exclusively on
CPU time while ignoring I/O time. The C source files from the datasets were compiled into native executable
format and profiled using the perf program. The profiler results of the obfuscated code were compared to their
unobfuscated counterparts to determine the runtime overhead increase factor. The change in code size was
straightforward to measure; we utilized the l s command to determine the file sizes in bytes post-obfuscation.
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The formula used to calculate the code size increase factor is as follows:

CodeSizeratio = Code Size of Obfuscated Code
Code Size of Original Code

(7)

Changes in Runtime Overhead
From the Fig. 10, we observe that both Obfuscator-LLVM Default and Tigress Default introduce

relatively lower runtime overhead, remaining close to 1.0–1.5× the baseline execution time. Meanwhile, our
proposed obfuscation techniques exhibit a higher time overhead, with the Hash and Collatz methods leading
to the most significant increases. The runtime overhead for Fermat and Fib remains moderate, positioned
between 2.0× and 2.5×. This result highlights a key trade-off in opaque predicate design: while our methods
significantly enhance obfuscation strength, they come at the cost of increased execution time. However, the
overhead remains within a practical range, demonstrating the feasibility of applying these techniques in
real-world scenarios where security is prioritized over minimal performance impact.

Figure 10: Dataset 1 time overhead increase factor

For several utility programs in Dataset 2 shown in Fig. 11, any program exhibiting a runtime ratio
exceeding 100 was labeled as “greater than 100”, indicating an unacceptable delay. We appended a “+”
sign to the names of obfuscation methods where algorithmic improvements were made. The results reveal
that execution time ratios for our obfuscated programs are generally kept below five times, particularly
highlighting the negligible overhead incurred by the improved Fermat and Fibonacci obfuscation methods.
This illustrates the effectiveness of our optimized algorithm while also emphasizing that it achieves a
reasonably acceptable runtime overhead.
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Figure 11: Dataset 2 time overhead increase factor
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Changes in Code Size
In Dataset 1, the changes in code size for four obfuscation techniques were minimal, ranging from 1 to

1.01, suggesting that the increase in code size is virtually negligible, as shown in Fig. 12. For Dataset 2, changes
in code size are depicted in Fig. 13. The average change in code size ranged from one to two times, with
the Collatz obfuscation resulting in a relatively higher increase, varying between 1.6 and 3.2 times. While
Collatz obfuscation offers robust resistance to symbolic execution, its high overhead makes it less suitable for
resource-sensitive environments. In contrast, optimized techniques like Fermat+ and Fib+ present a more
balanced approach, making them ideal for scenarios with limited resources.

Figure 12: Dataset 1 code size increase factor

Figure 13: (Continued)
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Figure 13: Dataset 2 code size increase factor

4.5.3 Other Metrics
To comprehensively assess the effectiveness of different opaque predicate obfuscation techniques, we

define and evaluate four key metrics: memory usage, correctness, coverage, and extensibility. These metrics
provide quantitative insights into the trade-offs between security, efficiency, and adaptability. Memory
usage refers to the amount of memory consumed by the program during execution after obfuscation. We
measure this by running the obfuscated binaries on a standard evaluation environment and recording
the peak resident set size during execution. The final value represents the average memory consumption
across multiple test runs for each dataset. Correctness measures whether the obfuscated program maintains
its original functional behavior. We evaluate correctness by executing a set of predefined test cases and
comparing the outputs with the original, unobfuscated program. Coverage quantifies the proportion of
the program’s control flow that has been obfuscated. This is computed using static analysis tools that
measure the number of obfuscated basic blocks relative to the total number of basic blocks in the program.
Extensibility assesses how well the obfuscation technique can be adapted to different software architectures,
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programming paradigms, and application domains. This is a qualitative measure based on three factors:
Platform Independence, Language Agnosticism, Configurability. Each opaque predicate is scored on a scale
from 1 (low extensibility) to 10 (high extensibility) based on empirical observations and experimental results.

Table 4 presents a comprehensive comparative evaluation of our proposed obfuscation techniques—
Hash, Fermat, Fib, and Collatz—against the default opaque predicate implementations in Obfuscator-LLVM
and Tigress. The results underscore the significant advantages of our approach across multiple critical
dimensions. First, our methods achieve a coverage rate of 75%–86%, which substantially surpasses the 6%
coverage of Obfuscator-LLVM and the 65%–68% coverage of Tigress. This higher coverage indicates that our
obfuscation techniques affect a larger portion of the program’s control flow, thereby enhancing its resilience
against reverse engineering and symbolic execution attacks. By obscuring a greater number of execution
paths, our approach makes it significantly more challenging for attackers to analyze and deobfuscate the
protected code. Second, all of our techniques maintain 100% correctness, ensuring that the obfuscation
transformations do not introduce any semantic inconsistencies or disrupt normal program execution. This
is a crucial advantage as it guarantees that the obfuscated programs continue to function as intended without
introducing errors or unintended behaviors. In contrast, some obfuscation techniques may inadvertently
alter program semantics, leading to potential vulnerabilities or functional issues. Our methods, however,
strike a careful balance between security and correctness, making them highly reliable for practical use.
Third, while our approaches introduce a moderate increase in memory consumption—ranging from 10% to
3% compared to Obfuscator-LLVM and Tigress—the additional overhead remains within practical limits.
This slight increase in memory usage is a reasonable trade-off for the enhanced security provided by our
obfuscation techniques. Given the growing importance of software protection in untrusted environments,
the marginal increase in resource consumption is justified by the significant improvement in resilience
against reverse engineering and symbolic execution attacks. Finally, our methods achieve extensibility scores
of 8–9, outperforming Obfuscator-LLVM (7–8) and Tigress (6–7). This higher extensibility demonstrates that
our approach is more adaptable to different software environments and use cases, making it more suitable for
real-world deployment. The flexibility of our techniques allows developers to apply them across a wide range
of applications without requiring extensive modifications, further enhancing their practicality and appeal.

Table 4: Comparison of memory usage, correctness, coverage, and extensibility across two datasets

Opaque predicate Memory usage (MB) Correctness (%) Coverage (%) Extensibility (Avg)

DS1 DS2 DS1 DS2 DS1 DS2
Obfuscator-LLVM Default 90 100 100 100 60 65 7.5

Tigress Default 95 105 100 100 65 68 6.5
Hash (Our) 110 130 100 100 75 78 8.0

Fermat (Our) 115 140 100 100 77 80 8.0
Fib (Our) 105 125 100 100 80 83 8.5

Collatz (Our) 120 135 100 100 82 86 9.0

Therefore, our proposed obfuscation techniques not only provide superior coverage and extensibility
but also maintain high correctness and introduce only moderate memory overhead. These advantages make
our approach a robust and practical solution for enhancing software security in the face of increasingly
sophisticated reverse engineering and symbolic execution attacks.
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5 Conclusion
In this paper, we have introduced a novel class of anti-Dynamic Symbolic Execution opaque predicates

designed to enhance the resilience of code obfuscation techniques against reverse engineering and automated
analysis. Addressing the inherent weaknesses of traditional opaque predicates under DSE, our work proposed
two key techniques: single-way function opaque predicates and path-explosion opaque predicates. By lever-
aging hash functions and logarithmic transformations, single-way function opaque predicates effectively
hinder constraint solvers from generating feasible inputs, while path-explosion predicates exponentially
increase the number of execution paths, significantly burdening symbolic execution engines. To validate
the efficacy of our approach, we implemented a prototype obfuscation tool based on Obfuscator-LLVM and
conducted comprehensive experimental evaluations using two widely adopted symbolic execution engines,
KLEE and Angr. Our results demonstrate that our proposed predicates consistently increase the complexity
of symbolic execution, forcing timeouts in numerous cases where traditional obfuscation methods fail.
Compared to default opaque predicates in Obfuscator-LLVM and Tigress, our techniques exhibited higher
resilience against symbolic execution-based deobfuscation while maintaining acceptable performance over-
head. Specifically, our methods achieved higher coverage rates, ensuring a broader scope of protection, while
keeping execution overhead within a feasible range, making them suitable for real-world deployment.

Moving forward, our future work will focus on broadening the experimental scope and enhancing the
dataset to encompass a wider variety of real-world scenarios. In particular, we plan to evaluate our anti-DSE
opaque predicates across more diverse applications and larger datasets, which will help us better understand
their strengths and limitations in practical settings. Moreover, integrating our current method with other
obfuscation techniques, such as advanced control-flow and data-flow transformations, could provide a
multi-layered defense mechanism, thereby increasing the overall robustness against symbolic execution
attacks. Finally, addressing the performance overhead associated with our approach is crucial, therefore, we
intend to explore optimization strategies and develop an automatic parameter tuning framework, possibly
leveraging machine learning techniques, to dynamically balance security and efficiency. These enhancements
are expected to not only validate our current approach over a broader range of applications but also lay the
groundwork for a more adaptive and comprehensive software protection framework.
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