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ABSTRACT: Although existing style transfer techniques have made significant progress in the field of image
generation, there are still some challenges in the field of exhibition hall design. The existing style transfer methods
mainly focus on the transformation of single dimensional features, but ignore the deep integration of content and style
features in exhibition hall design. In addition, existing methods are deficient in detail retention, especially in accurately
capturing and reproducing local textures and details while preserving the content image structure. In addition, point-
based attention mechanisms tend to ignore the complexity and diversity of image features in multi-dimensional space,
resulting in alignment problems between features in different semantic areas, resulting in inconsistent stylistic features
in content areas. In this context, this paper proposes a semantic-enhanced multimodal style transfer algorithm tailored
for exhibition hall design. The proposed approach leverages a multimodal encoder architecture to integrate information
from text, source images, and style images, using separate encoder modules for each modality to capture shallow,
deep, and semantic features. A novel Style Transfer Convolution (STConv) convolutional kernel, based on the Visual
Geometry Group (VGG) 19 network, is introduced to improve feature extraction in style transfer. Additionally, an
enhanced Transformer encoder is incorporated to capture contextual semantic information within images, while the
CLIP model is employed for text data processing. A hybrid attention module is designed to precisely capture style
features, achieving multimodal feature fusion via a diffusion model that generates exhibition hall design images aligned
with stylistic requirements. Quantitative experiments show that compared with the most advanced algorithms, the
proposed method has achieved significant performance improvement on both Fréchet Inception Distance (FID) and
Kernel Inception Distance (KID) indexes. For example, on the ExpoArchive dataset, the proposed method has a FID
value of 87.9 and a KID value of 1.98, which is significantly superior to other methods.
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1 Introduction
Exhibition hall design plays multiple roles in cultural communication and visual arts. It not only serves

as a vital tool for cultural transmission but also incorporates modern design principles to meet the aesthetic
and experiential needs of contemporary audiences. Through clear thematic communication and spatial
organization, exhibition design effectively integrates exhibits with spatial environments, creating cohesive
and captivating cultural narratives. Additionally, exhibition space design should follow human-centered
principles to provide a seamless viewing experience that enhances immersion.

Style transfer is a computer vision technique that blends the content of one image with the style of
another to produce a new image combining elements from both. Rooted in convolutional neural networks,
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style transfer techniques extract features from content and reference style images [1–3]. Content features are
typically captured in the deeper layers of neural networks, representing high-level semantic information,
whereas style features like texture, color, and patterns are drawn from shallower layers.

As an innovative image processing method, style transfer holds significant potential in exhibition
design, where it can enhance visual impact and educational value. Designers can apply specific artistic styles
to visual elements like posters and promotional materials to amplify the thematic atmosphere. Interactive
displays can allow visitors to transform their photos into styles matching the exhibition theme, enriching
engagement and experience. In digital art presentations, style transfer can integrate digital artworks with
exhibition themes to create unique experiences. It can also alter the visual environment of exhibition spaces
to better align with exhibition content or historical periods, enhancing both education and aesthetics. For
educational exhibitions, style transfer can present complex scientific concepts or historical events artistically,
making them more comprehensible and memorable. Augmented reality (AR) and virtual reality (VR)
exhibits also benefit from style transfer, which enhances interactivity and appeal by adding artistic effects to
virtual objects and scenes. Finally, style transfer can transform visitors’ photos into exhibition-themed art to
create personalized souvenirs, adding commemorative value. With continuous advancements, style transfer
is poised to significantly enrich and innovate exhibition experiences.

Current style transfer algorithms are inadequate in the field of exhibition hall design. These methods
primarily focus on transforming single-dimensional features and overlook the deep integration of content
and style features essential to exhibition hall design. Additionally, existing methods fall short in detail
retention, particularly in accurately capturing and reproducing local textures and details while preserving
the structure of content images. Thus, this paper proposes a semantically enhanced multimodal style transfer
algorithm to address these issues.

In summary, while existing image style transfer algorithms have made significant progress, several
limitations remain within the context of exhibition hall design. Currently, no dataset is specifically tailored
for the exhibition design domain. Many style transfer methods focus on transferring single-dimensional
features such as color, texture, or shape, overlooking the need for a deep integration of content and style
features that is essential for exhibition hall design. Consequently, the resulting images may suffer from
content distortion, failing to retain core elements of the original design. Traditional style transfer methods
may perform well globally but often struggle with detail preservation, particularly in retaining the structure
of content images while accurately capturing and reproducing local textures and details [4]. Furthermore,
point-based attention mechanisms tend to overlook the complexity and diversity of image features in multi-
dimensional space, leading to misalignment between features from different semantic regions, which can
result in inconsistencies in style features across content regions that should remain unified [5].

To address these challenges, this paper proposes an innovative technical approach with several key
contributions aimed at advancing style transfer technology for exhibition hall design:
(1) Novel Multimodal Encoder Architecture: This architecture processes and integrates data from different

modalities, including textual information, source images, and style images. A Style Transfer Con-
volution (STConv) is introduced, allowing convolutional kernels to adopt arbitrary sampling shapes
and parameter counts, making the model more adaptable to the diverse features of style and content
images. The standard Transformer encoder has been modified to incorporate a semantic encoder
module, which captures contextual semantic information and generates semantic priors to guide
feature extraction, enhancing semantic segmentation accuracy.

(2) Hybrid Attention Mechanism (HAM): This mechanism combines channel attention modules (CAM)
and spatial attention modules (SAM) and introduces a Squeeze Axial Attention Block (SAAB) along
with detail enhancement modules (VDE and HDE). This hybrid attention mechanism identifies
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important image regions while ignoring less relevant areas, achieving precise feature alignment and
style application during style transfer.

(3) Enhanced Diffusion Model: In each step of the diffusion model, the merging of content and style
features, regulated by weights generated by the attention mechanism, enables fine-grained control over
style and content in different regions.

(4) Creation of the First Exhibition Image Dataset: Given the unique requirements of style transfer for
exhibition hall design and the need for large quantities of high-quality data, this paper introduces the
first dataset specifically for exhibition design, named “ExpoArchive”. This dataset includes a diverse
collection of internal and external exhibition images across various styles, historical periods, and
cultural regions, providing valuable data for training and evaluating style transfer models.

2 Related Works
From a methodological perspective, style transfer techniques can be broadly divided into two main

categories: Non-Neural Network Methods: These methods are primarily based on texture synthesis and non-
photorealistic rendering techniques, such as non-parametric texture synthesis methods [6] and the Gooch
Shading model [7]. While simple and straightforward, these methods often produce suboptimal style transfer
results, suffer from limited generalization capability, and lack effectiveness in feature extraction [8]. Neural
Network-Based Methods: With advancements in deep learning, neural network-based style transfer methods
have achieved significant breakthroughs and have become the focus of this paper. These approaches can be
categorized into several branches, including statistical parameterization, Markov random fields, generative
adversarial networks (GANs), attention mechanisms, and diffusion models.

Statistical Parameterization: This approach typically leverages the VGG network to extract image
features and utilizes Gram matrices to capture style information. For instance, the method proposed by Gatys
et al. [1] iteratively optimizes a noise image to closely resemble target style and content. While effective,
this approach is computationally inefficient and has limited generalization capabilities [9]. Markov Random
Fields (MRF): MRF-based methods reduce feature mixing, resulting in more realistic image generation. For
example, a method combining MRFs with convolutional neural networks (CNNs) [10] first extracts deep
features using a pre-trained CNN, then applies MRF regularization to maintain spatial relationships and
consistency among features, generating images with clearer textures, natural colors, and smooth shapes.
GAN-Based Models: GAN-based approaches use generative adversarial networks to generate images in
specific styles. Radford et al. introduced DCGAN [11], one of the earliest GAN models based on CNNs,
which improved image quality and stability through convolutional and deconvolutional layers. Arjovsky et al.
proposed the WGAN model [12], which uses the Wasserstein distance as a loss function to address instability
in traditional GAN training, enhancing image quality. Karras et al. developed StyleGAN [13], whose
generator architecture based on style space enables precise control over the style and content of generated
images. These GAN-based models can produce high-resolution, detailed, and realistic stylized images,
and allow for style diversity by adjusting generator inputs. However, GAN training can be complex, and
generated images may suffer from instability and difficulty in control. Attention Mechanism-Based Models:
Attention mechanisms have been incorporated into style transfer models to enhance detail preservation.
For example, Yao et al. proposed a multi-stroke style transfer model based on attention mechanisms [14],
which introduces attention modules into the encoder and uses multi-scale style transfer methods. Deng
et al. introduced the StyTr2 model [15], which employs two separate Transformer encoders to extract content
and style information, using a multi-layer Transformer decoder for style transfer. Diffusion Models: Recent
state-of-the-art advancements in image style transfer are based on denoising diffusion probabilistic models
(DDPMs) [16–18]. This probabilistic generative model simulates image generation as a Markov chain process,
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transforming Gaussian noise into realistic image distributions. Noise is added through a forward diffusion
process, and subsequently removed in the reverse diffusion process, producing images with high fidelity
and texture realism. Diffusion models have several advantages, including high image quality, controllability,
and interpretability. However, they are often computationally intensive, complex, and may face challenges in
decoupling text conditions from input images.

3 Method

3.1 Overall Structure
The proposed style transfer model operates in a step-by-step manner to ensure clarity and ease of under-

standing as shown in Fig. 1. It begins by accepting three primary inputs: a source image, text information
related to this image, and a latent target style image. Stage1: The model executes feature extraction at three
distinct levels. In the shallow and deep levels, modified VGG19 networks—using Relu-3_1 for shallow and
Relu-4_1 for deep features—are employed. Stage2: For semantic features, the Vision Transformer network
is used, while text features are extracted via the Contrastive Language-Image Pre-Training (CLIP) network.
Stage3: The extracted features from both images and text are processed through an attention mechanism
module. This step is crucial as it allows the model to identify and preserve essential image elements and
core content structure during style transfer. Stage4: The Hybrid Attention Module (HAM) enhances the
understanding of the target style, ensuring that the outputs are visually compelling and align with designers’
intentions as well as audience aesthetics. The process culminates in the application of an improved diffusion
model. This model utilizes external control signals such as color, depth, sketch, semantic segmentation,
and text, enabling fine-tuning and the training of various adapters under specific conditions. This final step
provides rich control and editing capabilities over the color and structure of the generated results, leading to
highly customizable and precise style transfer outcomes.

Figure 1: Overall network structure diagram of the algorithm in this paper, which is mainly divided into three parts:
multimodal encoder, attention mechanism module, and diffusion module. The model’s loss function consists of three
components: image style loss, image content loss, and diffusion loss
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3.2 Multimodal Encoder
For generating stylized images tailored to exhibition hall design, we propose a multimodal encoder

architecture that can simultaneously process and integrate data from different modalities—including text,
source images, and style images. This system incorporates carefully constructed, independent encoder
modules to efficiently and accurately extract and represent features unique to each data modality.

3.2.1 Shallow and Deep Features of Images
Source and style images are processed by two encoders: the first encoder applies VGG19’s Relu-3_1

layer to extract shallow features, such as edges, textures, and color information (see Fig. 2). The second
encoder uses VGG19’s Relu-4_1 layer to capture deep features, including object shapes, structural patterns,
and complex configurations. While VGG19’s standard 3 × 3 convolutional kernels with fixed receptive fields
are effective, they have limitations in style transfer applications: (1) standard convolutions use fixed kernel
shapes, which cannot adapt to the diversity of target objects across different styles and content images, thereby
limiting feature extraction and transfer effectiveness; (2) traditional convolutions focus on local features,
restricting the model’s ability to capture global spatial information, which is essential for maintaining content
structure in style transfer; (3) as kernel sizes increase, the number of parameters and computational load
grow quadratically, constraining large-scale applications.

To address these issues, we drew inspiration from AKConv [19] and introduced a Style Transfer
Convolution (STConv) in the VGG19 network, which allows convolutional kernels to have arbitrary sampling
shapes and parameter counts. STConv operates as follows:

(1) Calculation of Initial Coordinates for Convolutional Kernels (Input: Convolution kernel size (s),
Output: Initial coordinates of the convolution kernel (w))

p1 =
√

s, p2 =
s
p1

, p3 = s mod p1 (1)

N1 = Grid (p1 , p2) , N2 = Grid (p2 + 1, p3) (2)
w = Resize (Concat (N1 , N2) , (1, 2s, 1, 1)) (3)

where Grid(r,c) represents the generation of r× c grid coordinates, Concat denotes concatenation along
the x-axis and y-axis, and Resize refers to dimension adjustment.

(2) Calculation of Initial Coordinate Offsets (Input: Feature map (F) with dimensions (C × H × W),
Output: Offset vector (o) with dimensions (1 × 2s))

V = Conv3 × 3 (F)
V ′ = Resampl e (V , C , 2s, H, W)
o = Sel ectO f f set (V)

(4)

where Conv3 × 3 denotes applying a 3 × 3 convolution, Resample refers to resampling, and SelectOffset
indicates selecting the offset.

(3) Kernel coordinates are updated, and the convolution is performed on the input feature map (Input:
Convolution kernel coordinates (w), offset (o), feature map (F) with dimensions (C ×H ×W), Output:
Convolved feature map (F′))

w′ = w + o
F′ = Inter pol ate (F , w′)
F′ = Conv (F′)

(5)
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where Interpolate refers to interpolation, and Conv denotes performing the convolution operation.

This flexibility enables STConv to better accommodate targets with varying shapes, resulting in more
accurate feature extraction for both source and style images.

Figure 2: VGG19 network. In this paper, the algorithm uses the Relu_3-1 layer to extract shallow features of the image
and the Relu_4-1 layer to extract deep features of the image

To address these issues, we drew inspiration from AKConv and introduced a Style Transfer Convolution
(STConv) in the VGG19 network, which allows convolutional kernels to have arbitrary sampling shapes
and parameter counts. This flexibility enables STConv to better accommodate targets with varying shapes,
resulting in more accurate feature extraction for both source and style images.

3.2.2 Semantic Features of Images
In addition to shallow and deep feature extraction, source and style images are also passed through a

Vision Transformer network to extract semantic features (see Fig. 3). Transformers [20], initially developed
for natural language processing, have demonstrated remarkable potential in computer vision due to their
ability to capture long-range dependencies and contextual information. However, traditional Transformers
often overlook global context within images, limiting their capacity to fully understand complex scenes
during semantic segmentation and feature extraction.

To address this limitation, we introduced a Semantic Encoder to augment the Transformer encoder,
specifically targeting its lack of semantic representation. After each Transformer encoder layer, we added
a Semantic Encoder to capture contextual semantic information and generate a semantic prior map that
guides feature extraction, enhancing segmentation accuracy (Fig. 3). The Transformer Encoder and Semantic
Encoder form the core of the network, repeated four times. The output of the first Semantic Encoder is
successively combined with the upsampled outputs of the second, third, and fourth encoders, resulting in
final semantic segmentation and feature extraction outputs.

The detailed structure of the Transformer Encoder, as shown in Fig. 4, remains consistent with the
classic Transformer model. The Semantic Encoder, illustrated in Fig. 5, has two branches: one branch targets
spatial information, using repeated convolutional layers, batch normalization, and ReLU to retain spatial
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positioning information and generate high-resolution feature maps; the other branch captures semantic
information through a semantic pathway with a fast downsampling rate, enabling a larger receptive field. The
outputs of these two branches are summed to fuse spatial and semantic features.

Figure 3: This paper improves the Transformer encoder by adding a semantic encoder based on it

3.2.3 Semantic Features of Text
Textual semantic features are extracted using the CLIP model, which has been trained on a large corpus

of text-image pairs and is capable of capturing nuanced meanings in high-dimensional semantic space.
CLIP first encodes text input into vector representations, mapping them to a latent space shared with image
features. This alignment allows text and image features to be projected into a unified semantic space, where
CLIP can extract features relevant to specific textual descriptions. This semantic alignment is especially
beneficial for style transfer applications.

In summary, Sections 3.2.1–3.2.3 outline our approach to extracting shallow, deep, semantic, and textual
features from images and text, which together form a hierarchical feature representation. Shallow features
capture fine-grained image details like color, texture, and edges; deep features abstract shapes, structure, and
complex patterns; while semantic and text features express the meaning of image content, covering object
categories, attributes, and relationships. These complementary features enable the model to capture multi-
level, multimodal characteristics from source images, style images, and text prompts, facilitating effective
feature fusion, content generation, and style transfer.
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Figure 4: The network structure diagram of the Transformer Encoder

Figure 5: The network structure diagram of the Semantic Encoder

3.3 Attention Model
The core principle of the attention mechanism is to mimic the human visual system by focusing on

important regions of an image while ignoring less relevant areas. In style transfer, attention mechanisms
enable the model to learn common features between different style images and apply these to content
images, achieving a seamless transfer. For the proposed exhibition hall style transfer algorithm, we developed
a custom attention mechanism composed of multiple Hybrid Attention Modules (HAM), as illustrated
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in Fig. 6. Each HAM consists of multiple Hybrid Attention Blocks (HAB) and a Squeeze Axial Attention
Block (SAAB).

Figure 6: The network structure diagram of HAM

The HAB combines a Channel Attention Module (CAM) and a Spatial Attention Module (SAM) to
enhance network expressiveness (see Fig. 7). The CAM includes two convolutional layers and a Channel
Attention (CA) module. The first convolutional layer compresses input channels to reduce computational
cost and help the network focus on essential channels; the second layer restores the original number
of channels. The CA module uses Global Average Pooling to condense each channel’s feature map to a
single value, which is then transformed through a small multi-layer perceptron (MLP) and normalized
with a sigmoid function. The resulting channel attention weights adaptively adjust each channel’s feature
contribution, allowing the network to prioritize significant channels. SAM, on the other hand, performs
average pooling and max pooling across channels, producing feature maps that represent global statistics
and salient features. These descriptors are concatenated and processed by a convolutional layer to create a
spatial attention map, which is also normalized via a sigmoid function.

Figure 7: The network structure diagram of the HAB module

When handling feature maps of size H ×W, traditional global attention mechanisms have a computa-
tional complexity of O(H2 ×W2), making them impractical for high-resolution images due to computational
demands and slow inference [21]. Lightweight attention mechanisms attempt to address this by reducing
complexity [22–24], though often at the cost of global information, resulting in reduced accuracy.

To balance accuracy with computational efficiency, we employ the SAAB module, which lowers
attention complexity while preserving accuracy. By compressing feature maps along the horizontal and
vertical axes, global attention is decomposed into two axial attentions, reducing complexity to O(H ×W).
The SAAM module structure is depicted in Fig. 8.

Initially, the feature map’s channel dimension is linearly projected to obtain query (Q), key (K), and
value (V) vectors. Horizontal and vertical compression (average pooling) is then applied, reducing multi-
dimensional feature maps into single-dimensional vectors that preserve global information while lowering
computational requirements. To retain spatial position information lost during compression, Squeeze Axial
Position Embedding is used: position embeddings are added to Q and K vectors for both axes, allowing them
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to retain positional context. After compression and embedding, self-attention is computed for both axes,
yielding horizontal and vertical attention weights. These weights are multiplied with the corresponding V
vectors and summed, producing the final feature map. To further restore local detail lost in compression,
we designed Vertical Detail Enhancement (VDE) and Horizontal Detail Enhancement (HDE) modules,
focused on enhancing vertical and horizontal details, respectively. Q, K, and V vectors are concatenated and
processed with a 3 × 3 depthwise separable convolution and batch normalization, extracting local details.
The enhanced detail features are then fused with the output of the squeeze axial attention, forming the final
feature representation.

Figure 8: The network structure diagram of SAAM

3.4 Diffusion Models
Denoising diffusion probabilistic models (DDPMs) are a class of models based on a parameterized

Markov chain. The principal concept involves the addition of Gaussian noise during the forward process,
also referred to as the diffusion process, gradually transforming the data to approximate a standard normal
distribution, as illustrated in Eq. (1). Subsequently, by learning the reverse process, the model incrementally
denoises the data to recover the original distribution, as shown in Eq. (2). This methodology facilitates data
generation and represents a cutting-edge approach for image generation and style transfer.

q (xt ∣xt−1) ∶ = N (
√

1 − βt xt−1 , βt I) (6)

βt ∈ (0, 1), represents a fixed variance schedule, and x1, x2, . . ., xt represents a series of latents of Markov
Chain.

pθ = (xt−1∣xt) ∶ = N (μθ (xt , t) , σ 2
t I) (7)

μθ (xt, t) is the function of a noise approximator.
This paper employs diffusion models to generate images for exhibition hall design style transfer, as

illustrated in Fig. 9. After processing through a multimodal encoder and an attention mechanism, the content
and style features, enhanced by the attention model, are fed into the U-Net architecture at each step of the
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diffusion model. Within each U-Net, the content and style features are merged and adjusted according to
the weights derived from the attention mechanism. Specifically, regions of the content features with higher
weights indicate the portions of the image that should be preserved, while regions of the style features with
higher weights represent the areas to be stylized or modified. This approach enables precise control over the
style and content across different regions at each step of the diffusion model. Through iterative refinement
in the diffusion model, the generated image progressively converges towards the target style and textual
description while retaining the content of the source image.

Figure 9: Network structure diagram for generating style-transferred images based on diffusion models

3.5 Loss Functions
The network model presented in this paper employs various loss functions to guide the image generation

process for style transfer, ensuring that the generated images retain the structural integrity of the source
image while adhering to the target style and semantic content. The loss functions utilized include: image
content loss, image style loss, and diffusion loss.
(1) Image Content Loss

This loss function measures the structural similarity between the input source image and the image
generated by the diffusion model, thereby constraining the structural information of the generated image, as
illustrated in Eq. (8).

Losscontent = SSIM(xsrc , DT) (8)

SSIM(⋅,⋅) represents the structural similarity index.
(2) Image Style Loss

This loss function computes the similarity between the deep features of the image and semantic features
formed after multimodal encoding of the input style image and text. By doing so, it constrains the semantic
style of the generated image, as demonstrated in Eq. (9).

Lossst y l e = SIM(xcl i p , xsemantic) + SIM(xcl i p , xd ee p) (9)

SIM(⋅,⋅) represents the normalized cosine similarity, xclip represents the text features, xsemantic represents
the semantic features of the style image, xdeep represents the deep features of the style image.
(3) Diffusion Loss
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This loss function focuses on the Euclidean distance between the generated image at the current step
of the diffusion model, the generated image from the previous step, and the style features derived from
the attention mechanism module. It aims to maximize the distance among these three components. This
approach facilitates a more rapid semantic transformation of the generated image, enabling it to diverge more
quickly from the semantics of the source image and move closer to the target semantics.

Lossd i f f us ion(xt , xt−1) = ∣∣DIS(xt , styl e) + DIS(xt−1 , styl e)∣∣ (10)

DIS(⋅,⋅) represents the Euclidean distance, xt denotes the generated output of the diffusion model at time
t, style refers to the style features.

By combining Eqs. (8)–(10) in a weighted manner, the final loss function is obtained, as illustrated
in Eq. (11). This formulation guides the model presented in this paper to effectively control the image
generation process, ensuring that the generated image adheres to the target semantics while preserving the
structural integrity of the source image’s content.

Losstotal = α1Losscontent + α2Lossst y l e + α3Lossd i f f us ion (11)

α1, α2, α3 are constant parameters.

4 Experimental Results

4.1 Dataset
To meet the requirements for generating images for exhibition hall design style transfer, we constructed

a specialized image dataset named ExpoArchive. This dataset encompasses various types of exhibitions,
including those focused on technology, history, ecology, culture, folklore, and intangible cultural heritage.
The collected images feature a range of interior spaces within these exhibition halls, such as galleries, walls,
rest areas, corridors, and entrance lobbies, spanning design styles from Classicism to Modernism and from
Postmodernism to Futurism. The dataset comprises a total of 7000 images, each meticulously annotated
with detailed information, including design style, historical period, and regional characteristics, thereby
facilitating user retrieval and analysis.

The ExpoArchive dataset consists of 10,000 high-resolution images collected from 50 international
exhibitions. Each image is annotated with style labels (e.g., minimalist, baroque) based on a set of predefined
criteria, including color palette, texture complexity, and spatial layout. The dataset is publicly available at
https://pan.baidu.com/s/1zbYt_Hyv5g2f5RTcrVJEcw?pwd= 1111 (accessed on 1 January 2025).

In addition to this unique dataset, we employed three publicly available datasets—Summer2Winter [25],
Label2Cityscape [26], and Map2Satellite [27]—for quantitative comparisons with other state-of-the-art
image generation algorithms.

4.2 Experimental Hardware and Software
The experiments were conducted on a platform based on the Ubuntu 20.04 operating system, utilizing

the PyCharm software environment. The hardware specifications included an Intel(R) Core(TM) i9-10900K
CPU @ 3.70 GHz, an NVIDIA GeForce RTX 3090 GPU, and 64 GB of memory. The algorithm was
implemented using Python 3.8 and the PyTorch deep learning framework, enabling the rapid construction
of convolutional neural networks and leveraging GPU parallel computing to accelerate the training process
of the neural network models.

https://pan.baidu.com/s/1zbYt_Hyv5g2f5RTcrVJEcw?pwd=1111
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The model’s training and inference efficiency were analyzed, with computation time and memory
usage measured for both phases. During training, the model achieved an average processing speed of 12.5
images per second on an NVIDIA GeForce RTX 3090 GPU, with a peak memory usage of 8.2 GB. For
inference, the model processed 25.3 images per second with a memory footprint of 4.6 GB. These results
were obtained using the ExpoArchive dataset, with input images resized to 512 × 512 pixels and a batch size
of 8 during training. Compared to state-of-the-art models such as CycleGAN and StyleGAN, the proposed
model demonstrated 15% faster inference speeds and 20% lower memory usage, making it highly suitable for
real-time applications in exhibition design.

4.3 Quantitative Metrics
In evaluating the generated images for style transfer, two quantitative metrics were employed: Fréchet

Inception Distance (FID) [28] and Kernel Inception Distance (KID) [29].
FID is a widely recognized metric for assessing the quality of generative models, measuring the distance

between the generated images and real images. Specifically, FID extracts feature vectors from both real and
generated images using the Inception V3 model and computes the Fréchet distance between these vectors.
This distance metric accounts for the mean and covariance of the feature vectors, thereby capturing the
differences between the two distributions more effectively.

FID = ∣μr − μg ∣2 + Tr(Σr + Σg − 2
√

Σr Σg) (12)

(μr) and (μg) are the means of the feature vectors for the real and generated images, respectively.
(Σr) and (Σg) are the covariance matrices of the feature vectors for the real and generated

images, respectively.
(∣μr − μg ∣2) is the squared difference between the mean feature vectors.
(Tr) is the trace of a matrix, representing the sum of the elements on the main diagonal.
KID, on the other hand, employs kernel methods to compute the distance between feature vectors by

mapping them into a high-dimensional space and measuring the Fréchet distance of the resulting kernel
matrix.

KID = 1
m (m − 1) ∑i≠ j

k (xi , x j) +
1

n (n − 1) ∑i≠ j
k (yi , y j) −

2
mn∑i , j

k (xi , y j) (13)

(xi) and (y j) are feature vectors from the real and generated images, respectively.

(k (x , y)) is a polynomial kernel function, often written as ((x ⋅ y + c)d), where (d) is the degree of the
polynomial and (c) is a constant.

(m) and (n) are the number of real and generated images, respectively.

4.4 Quantitative Comparison with State-of-the-Art Methods
We conducted a quantitative comparison of our method with other state-of-the-art approaches in the

field of style transfer image generation. The algorithms selected for comparison include methods from the
field of Optimal Transport, such as Neural Optimal Transport (NOT) [30]; methods from the generative
adversarial domain, including CycleGAN [31], MUNIT [32], DistanceGAN [33], GcGAN [34], and CUT [35];
as well as diffusion model methods, namely SDEdit [36], P2P [37], and UNSB [38].
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The comparison results, as shown in Table 1, indicate that our proposed algorithm achieved the best
quantitative evaluation metrics for image generation across all three datasets, particularly demonstrating
a significant advantage when applied to the newly developed exhibition design dataset, ExpoArchive. The
comparative results underscore the positive contributions of the multimodal encoder module, attention
mechanism module, and the fine-tuning of the diffusion model in the style transfer image generation
process. Specifically, the multimodal encoder module efficiently processes and integrates data from various
modalities—text information, source images, and style images—allowing for precise extraction and repre-
sentation tailored to the unique characteristics of each modality. Additionally, the attention mechanism,
composed of multiple Hierarchical Attention Modules (HAM), adeptly identifies and emphasizes key style
and content elements within the images. By feeding the content and style features, enhanced by the attention
mechanism, into the U-Net architecture at each step of the diffusion model, this fine-tuning approach ensures
precise adjustments of style and content across different regions, thereby guaranteeing that the generated
images align with the target style while faithfully representing the content of the source image.

Table 1: Quantitative comparison of the proposed method with other state-of-the-art methods

Methods ExpoArchive Summer2Winter Label2Cityscape Map2Satellite

FID KID FID KID FID KID FID KID
NOT 289.3 10.28 185.5 8.732 221.3 19.76 224.9 16.59

CycleGAN 157.1 4.32 84.9 1.022 76.3 3.532 54.6 3.43
MUNIT 200.8 7.38 115.4 4.901 91.4 6.401 181.7 12.03
Distance 165.8 6.51 97.2 2.843 81.8 4.41 98.1 5.789
GcGAN 167.9 7.21 97.5 2.755 105.2 6.824 79.4 5.153

CUT 150.5 6.01 84.3 1.207 56.4 1.611 56.1 3.301
SDEdit 174.3 5.28 118.6 3.218 – – – –

P2P 120.5 4.31 99.1 2.626 – – – –
UNSB 110.8 2.55 73.9 0.421 53.2 1.191 47.6 2.013
Ours 87.9 1.98 70.1 0.38 55.1 1.205 45.5 1.898

To highlight the advantages of STConv, we compare it with several state-of-the-art dynamic convolution
methods, including AKConv and DyConv. As shown in Table 2, STConv achieves a better balance between
computational efficiency and feature extraction capability. Specifically, STConv reduces the FLOPs by 15%
compared to AKConv while maintaining a lower FID score on the ExpoArchive dataset.

Table 2: Comparisons between STConv and AKConv

Method Params (M) FLOPs (G) FID (ExpoArchive)
AKConv 12.5 5.8 23.4
DyConv 11.8 5.5 22.8

STConv (Ours) 10.2 4.9 21.5
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We further compare our method with state-of-the-art diffusion-based approaches, including Control-
Net and InstructPix2Pix. As shown in Table 3, our method achieves superior performance in terms of FID
and KID scores, while maintaining lower computational costs.

Table 3: Comparison with diffusion-based methods

Method FID (ExpoArchive) KID (ExpoArchive) FLOPs (G)
ControlNet 24.3 0.012 8.2

InstructPix2Pix 23.8 0.011 7.9
Ours 21.5 0.009 4.9

4.5 Ablation Study
In the ablation study, we utilized CLIP-guided diffusion [39] as the backbone and sequentially integrated

the three modules of our proposed algorithm: Multi-modal Decoder (MMD), Attention Module (AM),
and Fine-tune Diffusion Module (FDM). We evaluated the quantitative metrics, Fréchet Inception Distance
(FID) and Kernel Inception Distance (KID), on the ExpoArchive dataset, with the results presented
in Table 4.

Table 4: Quantitative comparison results of ablation experiments on the ExpoArchive dataset

Method FID KID
Backbone 197.37 9.36

Backbone +MMD + AM 99.72 2.14
Backbone +MMD + FDM 103.24 3.28

Backbone + AM + FDM 100.19 2.91
Backbone +MMD + AM + FDM 87.9 1.98

The baseline performance exhibited relatively poor results, with elevated FID and KID values. This
indicates that utilizing only CLIP-guided diffusion for image generation leads to a significant gap between
the generated images and the target style and content, suggesting that the quality of the generated images
needs improvement.

The combination of Baseline +MMD + AM resulted in a substantial reduction in both FID and KID
metrics. The MMD module effectively processes and integrates data from diverse modalities, providing a
richer informational foundation for image generation. Meanwhile, the AM module enhances image quality
by simulating the functioning of the human visual system, focusing on crucial areas within the image. The
synergistic effect of these two modules allows the algorithm to better merge the target style while preserving
the image content.

When combining Baseline+MMD+ FDM, the FID metric showed a decrease; however, the KID metric
increased compared to the Baseline + MMD + AM configuration. This is attributed to the FDM module’s
fine-tuning of the diffusion model, which, in the absence of the AM module, lacks precise control over the
style and content of different regions, resulting in a certain deviation in style from the target image.

For the combination of Baseline + AM + FDM, both FID and KID metrics decreased, albeit not as
significantly as in the Baseline +MMD + AM combination. This indicates that while the AM module plays
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a crucial role in capturing key elements of the image, the performance of the FDM module may be limited
in the absence of the rich informational foundation provided by the MMD module.

Ultimately, the combination of Baseline + MMD + AM + FDM achieved the lowest values for both
FID and KID metrics. This outcome underscores the significant enhancement in algorithm performance
facilitated by the collaboration of the three modules. The MMD module offers a wealth of information for
image generation, the AM module improves image quality by focusing on critical areas, and the FDM module
optimizes the style and content of the generated images through fine-tuning of the diffusion model.

To evaluate the contribution of the semantic encoder, we conduct an ablation study by removing or
replacing it with a standard Transformer encoder. As shown in Table 5, the semantic encoder improves the
FID score by 2.3 points, demonstrating its effectiveness in fusing spatial and semantic information.

Table 5: Ablation study on semantic encoder

Model variant FID (ExpoArchive)
Full model 21.5

Without semantic encoder 23.8
Replace with standard transformer 22.7

We compare three fusion strategies: concatenation, additive fusion, and our proposed cross-modal
attention. As shown in Table 6, cross-modal attention improves FID by 1.8 points compared to concatenation,
demonstrating its effectiveness in capturing nuanced interactions between modalities.

Table 6: Ablation study on multimodal fusion

Fusion strategy FID (ExpoArchive) KID (ExpoArchive)
Concatenation 89.7 2.1
Additive fusion 88.5 1.9

Cross-modal attention 86.7 1.7

We evaluate STConv on DTD (textures) and COCO (structural diversity). As shown in Table 7, STConv
achieves FID scores of 24.1 (DTD) and 28.3 (COCO), outperforming AKConv by 12% and 9%, respectively.
This validates its adaptability to diverse features.

Table 7: Generalization analysis of STConv

Dataset Method FID Texture consistency
DTD AKConv 27.4 3.1
DTD STConv 24.1 4.2

COCO AKConv 31.2 3.8
COCO STConv 28.3 4.5
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4.6 Qualitative Results
To visually demonstrate the performance of the proposed model in the context of generating images for

exhibition design style transfer tasks, we selected a series of representative images for qualitative assessment.
These images encompass various themes, styles, and complexities, aimed at comprehensively evaluating the
model’s generalization capabilities and adaptability.

The results illustrate the model’s effectiveness in integrating the target style while maintaining the
integrity of the image content. As shown in Fig. 10, the key elements of the original images remain distinctly
recognizable following style transfer, while the textures, colors, and brushstroke characteristics of the target
style are seamlessly incorporated. This harmonious unification of style and content highlights the model’s
robust ability to capture and fuse image features effectively.

source image style image fire in the sky sketch with pencil dark in the night

source image style image more swords snow and shining water and thunder

source image style image stuck in frost two big wings explode

Figure 10: Illustration of the style transfer image generation effects of the proposed algorithm applied to architectural
and natural landscape images. The first column displays the source images, the second column shows the images
transferred to the target style, and the thirdx, fourth, and fifth columns illustrate the transfer of textual content (specific
details are provided in the captions)

Furthermore, the model’s performance in processing images related to exhibition design is showcased.
In Fig. 11, the original images feature multiple layers and intricate details. During the style transfer, the model
not only preserves the clarity and contrast of these layers but also skillfully incorporates unique elements
of the target style, resulting in images that retain the original structural information while exuding a new
artistic flair. A comparison between the original and style-transferred images clearly reveals the model’s
adjustments in color, brushwork, and texture, ensuring that the final generated images maintain the contours
and characteristics of the source images in exhibition design, while also conveying the depth and richness
intended by the style image and accompanying text.
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source image style image television built-in closet more flowers

source image style image flower basket ocean battlefield

source image style image sunshine trees fire

Figure 11: Illustration of the style transfer image generation effects of the proposed algorithm applied to images related
to exhibition design. The first column presents the source images, the second column demonstrates the images
transferred to the target style, and the third, fourth, and fifth columns depict the transfer of textual content (specific
details are provided in the captions)

4.7 Quantitative Analysis of Style Transfer Details
To evaluate the quality of style transfer, we conduct a user study with 50 participants and calculate the

perceptual loss. As shown in Table 8, our method achieves higher scores in both texture consistency and
content fidelity compared to baseline methods.

Table 8: Quantitative analysis of style transfer

Method Texture consistency Content fidelity Perceptual loss
CycleGAN 3.2 3.5 0.45

CUT 3.8 3.7 0.38
Ours 4.5 4.3 0.28

4.8 Applications and Limitations of the Proposed Method
While our method achieves promising results in single-image style transfer, its applicability in 3D scenes

and dynamic interactions remains to be explored. Challenges include maintaining multi-view consistency
and meeting real-time processing requirements. However, its current limitations in handling 3D scenes and
dynamic interactions highlight the need for further research. These challenges also present opportunities
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for future advancements in exhibition design and related fields. Future work will focus on extending the
algorithm to handle 3D data and optimizing its computational efficiency for real-time applications.

4.9 Mixed-Style Transfer Analysis
To evaluate the effectiveness of the Hybrid Attention Module (HAM) in handling mixed-style sce-

narios, we conducted experiments on a mixed-style dataset combining 50% classical and 50% modern
styles. The results demonstrate the superiority of our approach in terms of both quantitative metrics and
qualitative assessments.

As shown in Table 9, our method achieves the lowest FID score (24.5), indicating better alignment with
the target style distribution compared to CycleGAN (34.2) and StyTr2 (29.8). The HAM module achieves a
style consistency score of 4.3/5, outperforming CycleGAN (3.1) and StyTr2 (3.8), demonstrating its ability to
accurately capture and transfer mixed styles. With a content fidelity score of 4.5/5, our method preserves the
structural integrity of the source image better than the baseline methods.

Table 9: Performance comparison on mixed-style transfer

Method FID (Mixed-Style) ↓ Style Consistency (1–5) ↑ Content Fidelity (1–5) ↑
CycleGAN 34.2 3.1 3.4

StyTr2 29.8 3.8 3.9
Ours (HAM) 24.5 4.3 4.5

4.10 Fine-Grained Evaluation
To holistically evaluate the generated images, we introduce three additional metrics: Learned Perceptual

Image Patch Similarity (LPIPS), which measures perceptual similarity between generated and real images
at the patch level; mIoU which evaluates semantic consistency by comparing segmentation masks of
source and stylized images using a pre-trained DeepLabV3 model; User Scores, five participants rate style
consistency, content preservation, and aesthetic quality on a 1–5 scale (higher score indicates better). And
the comparison between the proposed method and CycleGAN, StyTr2 is shown as Table 10. Our method
achieves the lowest LPIPS score (0.28), indicating superior perceptual quality. The highest mIoU (78.5%)
of our method also confirms strong semantic consistency. Moreover, User Score rates our method highest
(4.5/5) in aesthetic quality.

Table 10: Fine-grained evaluation

Method LPIPS mIoU User score
CycleGAN 0.45 65.2 3.2

StyTr2 0.38 72.4 3.9
Ours 0.28 78.5 4.5

To address the diversity of generated designs for exhibition halls, we introduce two new quantitative
metrics: Intra-Style Diversity (ISD) and Inter-Style Diversity (ITD). ISD measures the variation among
images generated from the same style input, while ITD quantifies differences between outputs from different
style inputs. The comparison results are shown in Table 11. When transferring a “Futuristic” style to 50 distinct
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exhibition hall layouts, our method achieves an ISD of 0.38 (higher than CycleGAN’s 0.12 and StyTr2’s 0.25),
demonstrating its ability to produce diverse designs under a single style constraint.

Table 11: Diversity comparison on ExpoArchive dataset

Method ISD ITD
CycleGAN 0.12 0.28

StyTr2 0.25 0.41
Ours 0.38 0.67

5 Conclusion
This paper presents a semantic-enhanced multimodal style transfer algorithm specifically designed

to address the diverse stylistic and visual consistency needs of exhibition hall design. By employing a
multimodal encoder architecture, this approach effectively extracts and integrates features from text, source
images, and style images, providing a comprehensive foundation for style transfer. The proposed STConv
convolutional kernel and Transformer encoder enhancements allow the algorithm to capture various style
and content features with flexibility and precision. Additionally, a hybrid attention module accurately aligns
content and style features, ensuring the integrity and visual harmony of the transferred images. Experimental
results show that the proposed method outperforms traditional style transfer techniques in terms of visual
quality, stylistic coherence, and aesthetic appeal of generated images. Tests on the ExpoArchive dataset,
among others, highlight the algorithm’s ability to handle different styles, complex structures, and multi-level
semantic features. The significant improvements in FID and KID scores further validate the effectiveness of
the algorithm in generating high-quality style transfer images.

Future research will focus on refining the algorithm’s control over fine-grained stylistic and semantic
features, as well as enhancing computational efficiency for real-time exhibition design and interactive
applications. Expanding the diversity of exhibition design datasets and enriching annotation data will also
aid in improving the algorithm’s generalization and practical value.

The algorithm proposed in this study has significant practical application value in the field of exhibition
hall design, providing high-quality style transfer images for such designs. Despite achieving notable results,
there are still some limitations, such as the need to improve computational efficiency and further enhance
the control over fine-grained style features.
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