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ABSTRACT: Micro-expressions, fleeting involuntary facial cues lasting under half a second, reveal genuine emotions
and are valuable in clinical diagnosis and psychotherapy. Real-time recognition on resource-constrained embedded
devices remains challenging, as current methods struggle to balance performance and efficiency. This study introduces
a semi-lightweight multifunctional network that enhances real-time deployment and accuracy. Unlike prior simplistic
feature fusion techniques, our novel multi-feature fusion strategy leverages temporal, spatial, and differential features
to better capture dynamic changes. Enhanced by Residual Network (ResNet) architecture with channel and spatial
attention mechanisms, the model improves feature representation while maintaining a lightweight design. Evaluations
on SMIC, CASME II, SAMM, and their composite dataset show superior performance in Unweighted F1 Score (UF1)
and Unweighted Average Recall (UAR), alongside faster detection speeds compared to existing algorithms.
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1 Introduction
Facial micro-expressions are involuntary, spontaneous facial muscle movements that typically last no

more than half a second [1], occurring when individuals try to suppress or mask emotions, revealing
underlying feelings. Accurate recognition of micro-expressions has significant applications in fields like
various domains criminal investigations [2], clinical diagnostics [3], and social interactions [4], improving
emotion recognition and decision-making. Micro-expression recognition can be utilized to detect subtle
emotional cues that patients may conceal during psychological assessments, particularly in the early
diagnosis of emotional disorders. By identifying these hidden negative emotions, clinicians can make more
accurate assessments and provide timely interventions. Additionally, micro-expression recognition enables
therapists to monitor patients’ emotional responses in real-time during therapy sessions. This technology
can help evaluate the impact of different treatment methods on patients’ emotions, allowing therapists to
adjust their strategies accordingly for better therapeutic outcomes.

In recent years, automatic micro-expression recognition has emerged as a prominent research area.
Early studies on automatic micro-expression recognition employed methods based on Local Binary Patterns
(LBP) [5] or optical flow [6] for feature extraction, followed by classification using traditional machine
learning techniques such as Support Vector Machines (SVM) [7] or Random Forests (RF) [8].

With the advent and development of deep learning, researchers have increasingly turned to Convolu-
tional Neural Networks (CNNs) for micro-expression recognition [9], achieving significant improvements
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in system performance. More recently, large-scale Transformer-based models [10] have also been applied
to micro-expression recognition, effectively capturing long-range dependencies and global contextual
information in facial expressions.

However, most models excessively prioritize recognition accuracy, resulting in a large number of
parameters and, consequently, slower inference speeds. To address this, we propose a lightweight, high-
performance model suitable for real-time applications, such as psychological diagnostics. Our approach
features a novel multi-feature fusion strategy that dynamically combines temporal, spatial, and differential
features, enhancing recognition performance.

As depicted in Fig. 1, we present a novel tri-branch model for micro-expression identification, aiming to
utilize features from three different modalities. This paradigm is concretely realized through a network archi-
tecture termed DynamicFusionResNet (DFR-Net). Initially, shallow features are extracted independently by
each branch. The temporal branch is responsible for capturing dynamic variations over time, while the spatial
branch focuses on extracting static information from individual frames. In parallel, the differential branch
aims to detect subtle changes, which are essential for discerning micro-expressions.

Figure 1: The proposed three-branch micro-expressions recognition paradigm

Following the feature extraction stage, we employ a carefully designed multi-feature fusion strategy. This
fusion allows the model to prioritize critical expression variations across different spatial regions and adjust
its attention to various feature modalities. Subsequently, the fused features are passed through a modified
ResNet [11], which incorporates channel-spatial attention mechanisms. This augmentation is specifically
intended to enhance the recognition accuracy by enabling the model to focus more effectively on informative
regions and features within the micro-expression data.

The contributions of our work are summarized as follows:

• We propose a novel tri-branch paradigm for micro-expression recognition that leverages three distinct
modalities: temporal, spatial, and differential features. These features are fused early in the network to
enable joint learning and interaction across modalities.
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• We design a tailored multi-feature fusion strategy that adaptively integrates the different modalities
based on their inherent characteristics. This approach enables the model to effectively capture the
importance of expression variations across different spatial regions, while also adjusting the model’s
attention to specific feature modalities.

• We evaluated various modules, assessing their parameter count and inference speed, and ultimately
selected our proposed channel-spatial attention ResNet to process the fused feature maps. This module is
specifically designed to identify and focus on the most informative regions within the micro-expression
feature maps, striking a balance between efficiency and accuracy in capturing subtle micro-expressions.

• Our DFR-Net demonstrates competitive performance on three widely-used micro-expression datasets
(CASME II, SAMM, and SMIC), as well as on their combined dataset. Our model significantly reduces
the number of parameters and achieves faster convergence compared to state-of-the-art models.

2 Related Works
Traditional amicro-expression recognition algorithms typically rely on handcrafted feature extraction

followed by classification using machine learning models. These techniques can be generally classified into
texture-based and motion-based strategies. Texture-based methods, such as Local Binary Pattern (LBP) [6],
which generates binary sequences by comparing pixel values with their surrounding neighborhood, thereby
capturing texture information within images. In contrast, motion-based methods depend on optical flow
techniques, which obtain motion information by describing the displacement of pixels between adjacent
frames. Notable texture-based methods include LBP-TOP [12], LBP-SIP [13], STLBP-IP [14], LBP-MOP [15],
and DiSTLBP-RIP [16], whereas optical flow-based algorithms comprise MDMO [17], FDM [18], ALSTP [19],
BI-WOOF [20], and FHOFO [21].

As deep learning continues to evolve, Convolutional Neural Networks (CNNs) have become the go-
to approach for micro-expression recognition, showcasing remarkable performance gains [9]. For example,
Gan et al. [22] leveraged optical flow data between the starting and peak frames, feeding it into a custom
CNN model to extract and classify features. Quang et al. [23] took a different route by employing Capsule
Networks (CapsuleNet), where features were first pulled from a pre-trained Residual Network (ResNet) [11]
and then classified using a primary capsule layer and dynamic routing. Liong et al. [24] crafted a three-path
shallow neural network that taps into horizontal optical flow, vertical optical flow, and optical strain features
to boost both accuracy and model expressiveness. Xia et al. [25] introduced a method based on Recursive
Convolutional Networks (RCN), employing a shallower network structure and low-resolution input data
to reduce model complexity, while incorporating modules that do not require additional parameters to
enhance feature representation. Zhou et al. [26] proposed a micro-expression prediction method based
on attention mechanisms, which integrates expression-specific feature learning and attention extraction
modules, demonstrating excellent performance in micro-expression recognition tasks. Lei et al. [27] upped
the ante by integrating facial graph representation learning and graph convolutional networks (GCN) with
action unit information, ultimately proposing a fusion model to sharpen recognition performance. Zhao
et al. [28] proposed an apex frame detection method based on Unimodal Pattern Constrained (UPC),
combined with a local attention module, and introduced an end-to-end training approach for the ME-PLAN
framework. Verma et al. [29] introduced a refined hybrid module that integrates mixed spatiotemporal
operations with an optimal path exploration network to design a lightweight architecture. Similarly, Wei
et al. [30] combined both elementary and advanced geometric movement data to discern distinctive
characteristics, while employing a self-learning approach to dynamically model inter-node relationships and
strengthen the correspondence between facial landmarks in micro-expressions.
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In the field of micro-expression recognition, the application of Transformer models is also increasing.
For example, Zhao et al. [31] introduced a dual-path neural network that utilizes a pre-trained Swin Trans-
former as a feature extractor, enhancing computational efficiency through local window-based self-attention
mechanisms. Zhai et al. [32] designed a framework combining self-supervised learning, proposing three
Transformer-based feature fusion modules for extracting multi-level information features. Wang et al. [33]
developed a Hierarchical Transformer Network (HTNet) that partitions facial regions into distinct parts
and utilizes local self-attention mechanisms to capture subtle movements in each region. Wang et al. [34]
addressed the issue of unilateral local movements by devising a strategy that partitions facial information
into global and local regions, thereby achieving high-precision micro-expression recognition. Bao et al. [35]
developed a framework that combines self-expression reconstruction with memory contrastive learning;
they introduced a supervised prototype-based memory contrastive learning module to mine discriminative
features. Zhang et al. [36] proposed a hierarchical feature aggregation network that employs a multi-scale
attention module to capture subtle local variations while also establishing global dependencies.

In addition to above-mentioned approaches, other methodologies in the micro-expression domain
feature a temporal augmentation technique proposed by Wang et al. [37] to mitigate the challenge of limited
data through pre-training, and a dual-branch meta-auxiliary learning framework. Wang et al. [38] utilized a
primary task branch to learn micro-expression features alongside an auxiliary task to enhance the extraction
of discriminative features.

Inspired by previous research, this study aims to design a relatively lightweight network by improving
feature selection and fusion modules, while fully leveraging the characteristics of different modalities. We
propose a three-dimensional feature set consisting of temporal features extracted from optical flow, spatial
features derived from the apex frame, and differential features computed between the onset and apex frames.
Additionally, we introduce a simple yet efficient feature fusion strategy that combines convolutional layers
with attention mechanisms to effectively exploit the complementarity of different features, thereby enhancing
feature richness and model robustness. Finally, the fused features are input into a channel-space attention-
optimized ResNet for classification. Experimental results demonstrate the effectiveness of this module.

3 Method
As illustrated in Fig. 2, our proposed DynamicFusion-ResNet (DFR-Net) architecture comprises three

primary branches: a Spatial branch, a Temporal branch, and a Differential branch. The Spatial branch extracts
static information from high-resolution apex frame images, capturing detailed spatial cues. The Temporal
branch is designed to extract dynamic features by analyzing motion variations between the apex and onset
frames, leveraging optical flow to capture temporal changes. The Differential branch focuses on extracting
subtle features by analyzing static changes between the apex and onset frames. Section 3.1 elaborates on the
data preprocessing steps, including apex frame acquisition, optical flow computation, and the extraction of
differential features. In Section 3.2, we introduce a novel fusion strategy that integrates the three types of
features. Finally, Section 3.3 details the learning process of the fused features using a ResNet architecture
enhanced with spatiotemporal attention mechanisms, aiming to obtain a comprehensive representation for
micro-expression recognition.
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Figure 2: The overall pipeline of our proposed DynamicFusionResNet (DFR-Net) for micro-expression recognition.
The network architecture comprises three main branches: the spatial branch, the temporal branch, and the differential
branch. Each branch performs initial feature extraction at a shallow level before the features are fused. Subsequently,
the fused features are processed through a ResNet framework for further learning. CE denotes the cross-entropy loss
function

3.1 Data Preprocessing
3.1.1 Apex Frame Acquisition

Pinpointing the apex frame with precision is a cornerstone of micro-expression analysis, as it enables
the extraction of optical flow features that capture the most pronounced facial muscle activity. Since the
SMIC database [39] lacks ground-truth labels for apex frames, an automated detection system becomes
indispensable. In this research, we employ the Divide and Conquer based on Regions of Interest (D&C-RoIs)
technique [40] to autonomously determine the apex frame index in video sequences. This method has gained
traction in recent micro-expression studies for its consistent reliability in apex frame identification, which
in turn bolsters the accuracy of micro-expression detection.

The D&C-RoIs method begins by computing Local Binary Pattern (LBP) features [41] for each frame
within three key facial sub-regions, namely the left eye and eyebrow, right eye and eyebrow, and the mouth.
Following this, a correlation coefficient is calculated to quantify the variation in LBP features between the
onset frame and subsequent frames. This variation is mathematically expressed as:

d =

B
∑
i=1

h1i × h2i

√
B
∑
i=1

h2
1i ×

B
∑
i=1

h2
2i

, (1)

where B represents the number of bins in the LBP histograms, h1 denotes the histogram of the onset frame,
and h2 corresponds to the histograms of the other frames. The frame that exhibits the highest variation in
the Regions of Interest (RoIs) is selected as the apex frame, corresponding to the peak facial muscle activity.
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To refine the apex frame identification, the D&C strategy is applied to the rate of feature variation,
effectively searching for the frame index that corresponds to the local maximum. This systematic process
guarantees the dependable identification of the peak frame, essential for obtaining the optical flow data
pivotal in micro-expression analysis.

Let S = [s1 , s2, . . . , sn] denote a set of n micro-expression video clips, where the ith sample video clip si
is represented as:

si = { fi , j ∣ i = 1, . . . , n; j = 1, . . . , Fi}, (2)

here, Fi is the total number of image frames in the ith sequence. Each sequence has a solitary apex frame,
labeled as fi ,a , which can be located at any frame index between the onset (first frame) fi ,1 and offset (last
frame) fi ,n . Thus, the apex frame can be formally expressed as:

fi ,α ∈ { fi ,1 , . . . , fi ,Fi}, (3)

the D&C-RoIs approach is employed to predict the apex frame fi ,a for each video sequence within the SMIC
database, thereby facilitating the subsequent tasks involved in micro-expression recognition.

3.1.2 Feature Extraction
To calculate the horizontal and vertical optical flow components, vectors are derived between the onset

and apex frames. These optical flow vectors serve as an essential tool for describing motion displacements
within facial regions and have shown significant promise in micro-expression recognition tasks. The
assumption that image brightness remains constant between consecutive frames gives rise to the following
equation:

I (x , y, t) = I (x + δx , y + δy, t + Δt), (4)

where x , y represent pixel coordinates and t denotes time. By applying a Taylor series expansion, the optical
flow constraint equation can be expressed as:

∂I
∂x

u (x , y) + ∂I
∂y

v (x , y) + ∂I
∂t
= 0, (5)

in this equation, u (x , y) and v (x , y) represent the horizontal and vertical components of the optical flow
feature map, respectively. The optical flow feature map can be formulated as follows:

V = {(u (x , y), v (x , y)) ∣ x = 1, 2, . . . , X; y = 1, 2, . . . , Y}, (6)

where X and Y represent the frame’s width W and height H, respectively. The optical flow feature map V =
[Vx , Vy], and V ∈ RW×H×2.

Our method entails calculating the first-order derivatives of the optical flow field, a process termed
optical strain, for assessing variations. Optical strain essentially gives us a measure of how much the face
is moving, which is super useful for understanding the nuanced muscle movements that define micro-
expressions. By crunching the optical strain numbers, we can get a grip on the fine details of facial motion,
a key factor in pinpointing micro-expressions accurately. The specific formula is as follows:

Vz =
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finally, three-dimensional optical flow feature maps are formed and represented as Vm = [Vx , Vy , Vz] and
Vm ∈ RW×H×3.

In addition, we compute the difference between the apex frame and the onset frame to capture subtle
variations that occur between these two key frames. This difference reflects the nuanced changes in facial
expressions and is mathematically expressed as follows:

Vz = D (x , y) = ∣Iapex (x , y) − Ionset (x , y) ∣, (8)

where D (x , y) represents the difference map, Iapex (x , y) is the pixel intensity at coordinates (x , y) in the
apex frame, and Ionset (x , y) is the corresponding pixel intensity in the onset frame.

We employ three distinct feature inputs to our network architecture: optical flow maps derived from
the temporal branch, the apex frame as the spatial branch, and the absolute difference map as the differential
branch. The optical flow map, generated between the onset and apex frames, effectively encodes motion
patterns that occur over time, reflecting the dynamic changes in facial muscle movement. The apex frame
serves as the spatial representation, capturing fine-grained details of the facial expression at its peak intensity.
Finally, the absolute difference map highlights the localized changes by emphasizing the differences between
the onset and apex frames, thereby providing a focused input that captures the subtle variations critical for
micro-expression recognition.

3.2 Multi-Feature Fusion Strategy
Inspired by Gan et al. [22], who proposed an innovative descriptor merging the context derived from

optical flow with convolutional neural networks (CNNs) and drawing insights from Liong et al. [24], whose
design can extract discriminative high level features from three optical flow features, we propose a multi-
branch fusion strategy to carry out the task of micro-expression recognition. It aimed at effectively leveraging
information from different feature maps, including optical flow images, static images, and difference images.
Since these three feature maps capture various dimensions of expression changes, it is necessary to conduct
appropriate pre-processing so as to ensure effective information integration.

As illustrated in Fig. 3, we first perform preliminary shallow feature extraction on the spatial feature map
(static images) and the difference feature map. The spatial feature map captures static details of expressions,
such as facial texture and geometry, while the difference feature map reflects subtle changes between the apex
and onset frames, particularly those localized changes inherent in micro-expressions. For the shallow feature
extraction, we apply convolutional layers with 3 × 3 kernels and a stride of 1, followed by ReLU activation, to
capture low-level details such as edges and textures in both feature maps.

Figure 3: Spatial and differential features, after undergoing shallow feature extraction, are concatenated along the
channel dimension, followed by the extraction of deep-level features
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To achieve effective fusion between these two feature maps, we concatenate the spatial feature map
where Fs and the difference feature map Fd along the channel dimension. This concatenation ensures that
both the static details and subtle local changes are preserved, providing a rich feature representation for
subsequent layers. The concatenated feature map is further processed through a fusion network, consisting
of two convolutional layers and ReLU activation functions, to extract deep fused features, forming the fused
feature map Ffused. The formula is as follows:

Ffused = σ ( f2 (σ ( f1 ([Fs , Fd])))), (9)

where f1 and f2 denote the convolution kernels, [Fs , Fd] represents concatenation along the channel
dimension, and σ is the ReLU activation function.

As shown in Fig. 4, after fusing the spatial and difference feature maps, we introduce the temporal feature
map (optical flow images) for further fusion. The optical flow feature map captures motion patterns between
the apex and onset frames, effectively reflecting the dynamic changes in facial muscles. First, we perform
shallow feature extraction using the same approach. Then, we perform adaptive average pooling on the fused
and temporal feature maps to reduce them to 1 × 1 feature maps, effectively aggregating global information.
Next, these reduced feature maps are concatenated along the channel dimension and processed through
two convolutional layers and ReLU activation functions to obtain an attention weight map. The formula is
as follows:

Ffinal = Ffused ⋅ A, (10)

where ⋅ denotes element-wise multiplication.

Figure 4: The optical flow images first undergo shallow feature extraction. Subsequently, the optical flow images are
flattened and merged with the spatial-differential feature maps to obtain attention weights, which are then multiplied
with the original spatial-differential feature maps to produce the fused image

Through the above multi-branch fusion strategy, the network can effectively integrate useful informa-
tion from different feature maps. The spatial feature map provides static details of the face, the difference
feature map highlights subtle changes, and the temporal feature map captures dynamic motion information.
By rationally integrating these features, the information contained in these feature maps is effectively
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consolidated, providing a more comprehensive and accurate feature representation for the task of micro-
expression recognition. Moreover, the attention mechanism-based fusion strategy enhances the network’s
sensitivity to temporal information, thereby improving recognition accuracy.

3.3 Channel-Spatial Attention ResNet
Upon the completion of the fusion of spatial feature maps with differential feature maps, as well as

their integration with temporal feature maps, the resulting fused feature maps are subjected to further
feature extraction and classification through a standard ResNet [11] model. The architecture proposed in
this paper leverages a ResNet-based network, augmented with an attention mechanism, to enhance the
learning of salient features. ResNet is a critically important neural network architecture in the domain to
deep learning. By introducing residual blocks, it effectively mitigates the issues of vanishing and exploding
gradients that typically occur during the training of deep neural networks. In tasks involving multimodal
feature fusion, solely relying on residual connections may be insufficient to capture the intricate details of the
image features. To address this, we have incorporated Channel Attention (CA) and Spatial Attention (SA)
mechanisms into the residual blocks of ResNet, aiming to heighten the model’s focus on crucial features.
These attention mechanisms facilitate the model in capturing significant information across both spatial and
channel dimensions, thereby enhancing the model’s recognition capabilities.

The improved ResNet architecture is still composed of multiple stacked residual layers, with each layer
containing several residual blocks. The primary function of these blocks is to extract and propagate features
from the input image, progressively refining them into more abstract high-level representations through
multiple layers of stacking. A typical residual block can be mathematically represented as follows:

Fout = σ (x + f2 (σ ( f1 (x)))), (11)

here, x denotes the input feature map, f1 and f2 represent the convolutional weights of the two layers, and σ
is the ReLU activation function.

This equation illustrates that the input feature map undergoes two successive convolutions, batch
normalization, and activations, after which it is added to the original input to produce the final output.
To further optimize the feature extraction process, as illustrated in Fig. 5, we have introduced the Channel
Attention (CA) and Spatial Attention (SA) mechanisms within the residual block. The revised residual block
computation is as follows:

Figure 5: The input feature map sequentially passes through a residual block that incorporates both channel-wise
and spatial attention mechanisms, followed by a residual connection with the original input feature map. Finally, it is
processed through a ReLU activation function before outputting
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Fout = σ (x + SA(CA( f2 (σ ( f1 (x)))))), (12)

The Channel Attention (CA) mechanism dynamically adjusts the weights of different channels. Its
calculation is expressed as:

CA(x) = σ2 ( f2 (σ1 ( f1 (AvgPool (x) +MaxPool (x))))), (13)

where σ1 denotes the ReLU activation function and σ2 is the Sigmoid activation function, f1 and f2 are the
convolutional weights for channel attention, and AvgPool and MaxPool represent adaptive average pooling
and max pooling operations, respectively.

The Spatial Attention (SA) mechanism, on the other hand, modulates the spatial distribution of the
feature map, and is computed as follows:

SA(x) = σ ( f1 ([Avg (x), Max (x)])), (14)

in this expression, f1 is the convolutional weight for spatial attention, [Avg (x), Max (x)] denotes the con-
catenation operation along the channel dimension, and Avg and Max represent the average and maximum
operations along the channel dimension, respectively.

By integrating the Channel Attention and Spatial Attention mechanisms into ResNet, the model
becomes more adept at dynamically adjusting the importance of information within the fused feature maps,
significantly improving the capture of crucial features.

The Channel Attention mechanism enables the network to automatically assign different levels of
importance to each feature channel, ensuring that more discriminative channels—those that are critical for
recognizing micro-expressions—are emphasized. This attention mechanism helps the network focus on the
most informative feature channels, effectively filtering out less relevant channels, which enhances the overall
performance of the model.

Similarly, the Spatial Attention mechanism enables the model to focus on important regions of the
image, such as areas where the face undergoes subtle movements. It achieves this by assigning higher
attention weights to spatial locations that contain significant micro-expression features, thereby enhancing
the model’s capacity to identify subtle, confined alterations in facial expressions. The fusion of both attention
mechanisms allows the model to simultaneously refine feature channels and focus on critical spatial regions,
making the network more sensitive to both temporal and spatial variations.

This enhancement not only increases the model’s adaptability to various modalities, such as static
images, dynamic motion patterns, and differences between frames, but also improves its overall performance
while maintaining the network’s depth. By using attention mechanisms, the network can selectively focus on
the most relevant information in both the channel and spatial dimensions, which leads to better recognition
accuracy for micro-expressions.

4 Experiments and Discussion

4.1 Datasets
This study employed experiments across three key databases: SMIC [39], CASME II [42], and

SAMM [43,44]. The SMIC database, a creation of the University of Oulu in Finland, boasts 164 natural
micro-expression clips gathered from 16 individuals. These clips are categorized into three distinct types:
positive, negative, and surprise. The CASME II database, issued by the Chinese Academy of Sciences’ Institute
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of Psychology, contains 247 micro-expressions cherry-picked from around 3000 facial expressions. This
collection, sourced from 26 people, is divided into seven categories: happiness, surprise, disgust, suppression,
sadness, fear, and more. The SAMM database, crafted by Manchester Metropolitan University in the UK,
houses 159 micro-expression videos featuring 29 participants. The samples here are categorized into eight
groups: happiness, surprise, disdain, anger, disgust, fear, sadness, and additional categories.

In this study, we adopted the same approach as used in the MEGC2019 Challenge [45] to standardize
categories across different datasets, resulting in a unified dataset. Specifically, for the CASME II dataset,
we classified ‘happiness’ under the ‘positive’ category, while ‘disgust’, ‘repression’, ‘sadness’, and ‘fear’ were
grouped under ‘negative’. The ‘surprise’ category was retained as is, and the remaining categories were
excluded. Similarly, for the SAMM dataset, ‘happiness’ was assigned to the ‘positive’ category, while ‘con-
tempt’, ‘anger’, ‘disgust’, ‘fear’, and ‘sadness’ were categorized as ‘negative’. The ‘surprise’ category remained
unchanged, and other categories were omitted. The detailed composition of the combined dataset is provided
in Table 1.

Table 1: The experiments are implemented on SMIC, CASME II and SAMM databases

SMIC CASME II SAMM
Samples 164 145 133
Subject 16 24 28

AUs ✗ ✓ ✓

Negative 70 88 92
Positive 51 32 26
Surprise 43 25 15

4.2 Setup
For our experiments, we utilized an NVIDIA GeForce RTX 4090 GPU equipped with 24 GB of memory.

The model was fine-tuned with a learning rate set at 0.00001, leveraging the Adam optimizer alongside the
cross-entropy loss function to effectively minimize errors. Training spanned 100 epochs, incorporating an
early stopping protocol [46] that kicked in if the validation loss plateaued for 10 consecutive epochs. We kept a
close eye on the training loss to ensure it was on the right track. To strike a balance between memory efficiency
and convergence speed, we maintained a batch size of 32 throughout the training process. To enhance the
robustness of our training data and mitigate overfitting, we employed data augmentation techniques like
horizontal flipping and random cropping. Furthermore, we normalized the input images using the dataset’s
mean and standard deviation, ensuring the pixel values were centered around zero with a unit variance.

4.3 Evaluation Metrics
For this study, we employed the leave-one-subject-out (LOSO) cross-validation approach to perform

experiments on both the unified dataset and the three original datasets. The performance of the models
was evaluated using Unweighted F1 Score (UF1) and Unweighted Average Recall (UAR). The LOSO method
ensures a thorough assessment of the models generalization ability by systematically leaving one subject out
for testing while training on the others. This approach provides a robust estimate of model performance
across diverse subject-specific characteristics, enhancing the credibility and reliability of the results.
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The Unweighted F1 Score (UF1) is the mean of all class-wise F1 scores, where each F1 score is the
harmonic mean of precision and recall, expressed as:

F1 = 2 × Precision × Recal l
Precision + Recal l

, (15)

where Precision is the proportion of accurately predicted positive cases to the overall predicted positives,
while Recall is the ratio of correctly predicted positive cases to all actual positive cases. The UF1 is then
computed as:

UF1 = 1
N

N
∑
i=1

F1i , (16)

and Unweighted Average Recall is the average of recall values across all classes and is computed as:

UAR = 1
N

N
∑
i=1

Recal li . (17)

Using UF1 and UAR as performance metrics provides a more comprehensive evaluation of model
performance, especially in the context of imbalanced datasets.

To achieve a balance between model performance and lightweight design, it is essential to compute the
parameter count, FLOPs (Floating Point Operations), and inference time associated with various modules.
FLOPs serve as a metric to assess the computational load during model inference. Given that the duration
of micro-expressions typically lasts less than half a second [1], real-time micro-expression recognition
necessitates that the inference time is constrained to approximately 200 ms, which is half the duration of the
micro-expression. In our deployment experiments, we utilized an Intel i7-1165G7 CPU (2.8 GHz, 8 cores)
with 16 GB of RAM, ensuring that the selected model achieves an inference time of around 50 ms, with
a parameter count exceeding merely 3 million. This facilitates deployment in other environments, such as
embedded hardware, while maintaining commendable performance.

4.4 Comparison with State-of-the-Arts
In Table 2, we present a comparison between our proposed method and both traditional and deep

learning techniques across the composite (Full), SMIC, CASME II, and SAMM datasets. The evaluation
metrics used include UF1 and UAR.

Table 2: Comparison of micro-expression recognition performance in terms of Unweighted F1-score (UF1) and
Unweighted Average Recall (UAR) on the composite (Full), CASME II, SMIC and SAMM databases

Full SMIC CASME II SAMM

Method UF1 UAR UF1 UAR UF1 UAR UF1 UAR
LBP-TOP [12] 0.5882 0.5785 0.2000 0.5280 0.7026 0.7429 0.3954 0.4102

BI-WOOF [20] 0.6296 0.6227 0.5727 0.5829 0.7805 0.8026 0.5211 0.5139
CapsuleNet [23] 0.6520 0.6506 0.5820 0.5877 0.7068 0.7018 0.6209 0.5989

ApexNet [22] 0.7196 0.7096 0.6817 0.6695 0.8764 0.8681 0.5409 0.5392
STSTNet [24] 0.7353 0.7605 0.6801 0.7013 0.8382 0.8686 0.6588 0.6810

RCN [25] 0.7432 0.7190 0.6326 0.6441 0.8512 0.8123 0.7601 0.6715
ME-PLAN [28] 0.7715 0.7864 0.7127 0.7256 0.8632 0.8778 0.7164 0.7418

(Continued)
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Table 2 (continued)

Full SMIC CASME II SAMM

Method UF1 UAR UF1 UAR UF1 UAR UF1 UAR
FeatRef [26] 0.7838 0.7832 0.7011 0.7083 0.8915 0.8873 0.7372 0.7155

FGRL-AUF [27] 0.7914 0.7933 0.7192 0.7215 0.8798 0.8710 0.7751 0.7890
Ours 0.7657 0.7295 0.6579 0.6422 0.8669 0.8491 0.7889 0.7325

Our proposed model, which incorporates three types of feature fusion (static, optical flow, and
differential features) and leverages channel and spatial attention mechanisms within a semi-lightweight
ResNet architecture, achieves a favorable balance between recognition performance and inference speed.
Specifically, while our model outperforms most of the other models in terms of UF1 and UAR, it also
maintains competitive inference speed, achieving around 60 ms per inference. Meanwhile, our model was
evaluated on three independent datasets as well as on their combined dataset, and the results demonstrate
its robust generalization capability.

In contrast, methods that achieve faster inference times tend to have lower UF1 and UAR scores,
indicating that a trade-off between accuracy and speed is often necessary. On the other hand, methods that
show higher UF1 and UAR scores than ours generally suffer from slower inference speeds, suggesting a
potential sacrifice in real-time performance.

This highlights the primary advantage of our approach, which effectively addresses the challenge of
real-time micro-expression recognition by focusing on both accuracy and inference efficiency. Utilizing
feature fusion along with attention mechanisms enriches the model’s grasp of input data, thereby enhancing
recognition performance.

Due to the inherent complexity of nonconvex optimization [47], it is challenging to rigorously prove
the convergence of the model. Therefore, this study employs extensive experimental validation to ascer-
tain model convergence, specifically by monitoring the loss function curve and utilizing early stopping
techniques [46] to ensure convergence. To further guarantee the model’s generalizability, a Leave-One-
Subject-Out (LOSO) cross-validation scheme is adopted. Finally, evaluations on the Full, SMIC, CASME
II, and SAMM datasets demonstrate that the model exhibits excellent performance and confirm its robust
generalization capability.

To analyze the model performance more rigorously, we conducted t-tests for both UF1 and UAR to
assess their differences with other models. The significance level was set at p < 0.05. The results show:

For UF1, the differences were significant (p < 0.05) with the following models: LBP-TOP, BI-WOOF,
CapsuleNet, and RCN, while the differences were not significant (p ≥ 0.05) with the following models:
ApexNet, STSTNet, ME-PLAN, FeatRef, and FGRL-AUF.

For UAR, the differences were significant (p < 0.05) with the following models: LBP-TOP, BI-WOOF,
and CapsuleNet, while the differences were not significant (p ≥ 0.05) with the following models: ApexNet,
STSTNet, RCN, ME-PLAN, FeatRef, and FGRL-AUF.

Figs. 6 and 7 illustrate the confusion matrix for the best experimental outcomes on the composite
dataset, SMIC, CASME II, and SAMM. Due to the greater number of negative samples, the model demon-
strates higher accuracy in classifying the negative class. Additionally, the high quality of the CASME II dataset
contributes to the model’s strong performance, especially in distinguishing the negative class. However,



988 Comput Mater Contin. 2025;84(1)

the variation in lighting conditions within the SAMM dataset impacts the model’s ability to effectively
differentiate between positive and negative samples.

Figure 6: Confusion matrices of our proposed model on the composite database and SMIC with 3 classes

Figure 7: Confusion matrices of our proposed model on CASME II and SAMM datasets with 3 classes

It is noteworthy that prior research has produced models that outperform the results presented in our
experiments, with the majority being based on transformer architectures [33]. Our estimations indicate that
these models typically possess a parameter count exceeding 100 million and FLOPs surpassing 10 billion,
with inference times greater than 300 ms. Consequently, such models were not considered in our analysis.
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4.5 Ablation Studies
In this paper, we explore the impact of various modules on the model from different perspec-

tives. Section 4.5.1 investigates the effects of different features on the model’s performance. Section 4.5.2
analyzes the impact of different fusion methods on the model. Section 4.5.3 investigates the parameter count
and inference speed of the modules used after feature fusion. Section 4.5.4 evaluates the effect of attention
mechanisms in ResNet on the model’s performance. Section 4.5.5 presents experiments and discussions on
the impact of varying the number of layers in the ResNet architecture.

4.5.1 Impact of Feature Selection
Table 3 demonstrates the impact of various features on the model’s performance. An ablation study was

performed by combining each of the three input features in pairs, utilizing the fusion method proposed
in this paper. If a feature was excluded, the corresponding fusion step was omitted. Experimental results
reveal that the model primarily relies on optical flow features, which capture the motion characteristics
during micro-expression transitions. Additionally, while spatial and differential features also contribute to
the model’s performance, the impact of optical flow features is more pronounced.

Table 3: The impact of different features on the model performance. Here, T represents temporal features, S denotes
spatial features, and D refers to differential features

Full SMIC CASME II SAMM

Feature UF1 UAR UF1 UAR UF1 UAR UF1 UAR
S + D 0.6474 0.6332 0.5547 0.5896 0.7217 0.7155 0.6317 0.5782
T + D 0.7067 0.6733 0.6340 0.6208 0.7588 0.7323 0.7436 0.7107
T + S 0.7368 0.7051 0.6409 0.6273 0.8339 0.8176 0.7531 0.7236

T + S + D 0.7657 0.7295 0.6579 0.6422 0.8669 0.8491 0.7889 0.7325

4.5.2 Impact of Feature Selection
Table 4 showcases the outcomes of various fusion techniques applied to the three distinct feature types.

Initially, we standardize the dimensions of the three input feature maps, followed by the implementation of
conventional fusion methods like element-wise addition, multiplication, and concatenation. These are then
juxtaposed with the innovative fusion strategy introduced in this study. The findings unequivocally highlight
the superior performance of our proposed fusion method.

Table 4: Evaluation of Feature Fusion Techniques. The input feature maps are standardized to identical dimensions, and
conventional approaches like element-wise addition, multiplication, and concatenation are benchmarked against the
innovative fusion strategy introduced in this study

Full SMIC CASME II SAMM

Fusion UF1 UAR UF1 UAR UF1 UAR UF1 UAR
Add 0.6856 0.6563 0.6039 0.5946 0.7669 0.7609 0.6874 0.6353
Mul 0.6758 0.6422 0.6323 0.6181 0.7053 0.6803 0.6708 0.6407
Cat 0.6841 0.6500 0.6269 0.6142 0.7167 0.6907 0.6963 0.6663

Ours 0.7657 0.7295 0.6579 0.6422 0.8669 0.8491 0.7889 0.7325
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4.5.3 Analysis of Module Parameter Count and Inference Speed
Table 5 presents the parameters and performance metrics of various modules following feature fusion,

evaluated based on UF1 and UAR on a mixed dataset, as well as the parameter count and FLOPs. Additionally,
it includes the average inference time computed over 100 inference runs. Among the models, AlexNet has the
smallest parameter count but demonstrates suboptimal performance. In contrast, Vision Transformer (ViT)
achieves better performance; however, it requires significantly greater computational resources and exhibits
prolonged inference times. Consequently, we ultimately opted for ResNet, which provides a more balanced
compromise between performance and computational efficiency. ResNet strikes an effective balance between
high performance and inference speed due to its deeper architecture and residual connections. The residual
connections allow for efficient training of deeper models, improving the model’s ability to capture complex
features without significant increases in computational burden.

Table 5: Comparative analysis of parameter count, performance metrics (UF1 and UAR), FLOPs, and average inference
time of various modules following feature fusion

Module UF1 UAR Parameter Speed FLOPs
AlexNet 0.6269 0.6142 2.384 M 39.872 1.093 G

VGG 0.6741 0.6399 7.104 M 59.137 2.672 G
Inception 0.6811 0.6469 3.218 M 45.134 1.123 G

ResNet 0.7333 0.6991 3.273 M 54.713 2.229 G
ViT 0.7877 0.7418 85.892 M 308.997 17.801 G

4.5.4 Impact of Attention Mechanisms
Table 6 investigates the impact of incorporating attention mechanisms into ResNet. The study compares

the performance of the model without any attention mechanism, with spatial attention, and with channel
attention. The results indicate that channel attention is a key factor in improving the model’s performance,
showing the most significant gains on the SAMM dataset. Furthermore, the simultaneous application of both
spatial and channel attention yields improvements across all evaluation metrics on each dataset.

Table 6: The effect of incorporating attention mechanisms into ResNet. This table compares the performance of the
model without attention, with Spatial Attention (SA), and with Channel Attention (CA)

Full SMIC CASME II SAMM

Attention UF1 UAR UF1 UAR UF1 UAR UF1 UAR
None 0.7333 0.6991 0.6323 0.6214 0.8198 0.7941 0.7583 0.7103

SA 0.7436 0.7097 0.6402 0.6270 0.8461 0.8282 0.7570 0.7068
CA 0.7596 0.7248 0.6470 0.6334 0.8586 0.8386 0.7949 0.7453
All 0.7657 0.7295 0.6579 0.6422 0.8669 0.8491 0.7889 0.7325

Moreover, Table 7 presents a comparative analysis of the parameter count, FLOPs, and inference time
associated with the inclusion of the attention module. It is observed that the increase in parameter count and
FLOPs remains within acceptable limits, while the inference time satisfies real-time requirements. Further-
more, the incorporation of the attention module significantly enhances the model’s recognition accuracy.
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Table 7: Comparison of parameter count, FLOPs, and inference time before and after the inclusion of the attention
module

Attention UF1 UAR Parameter Speed FLOPs
None 0.7333 0.6991 3.273 M 54.713 2.229 G

All 0.7657 0.7295 3.296 M 65.944 2.231 G

4.5.5 Impact of ResNet Layers
Table 8 presents the experimental results for ResNet with varying numbers of layers. This study exam-

ines ResNet configurations with layer counts ranging from 1 to 4. It is observed that as the number of layers
increases, the network acquires sufficient feature representation capabilities. However, the transition from
3 to 4 layers yields only marginal improvements in these representations, while simultaneously increasing
both the model’s parameter count and inference time.

Table 8: Performance comparison of ResNet with varying numbers of layers. The table compares the performance of
ResNet models with different layer configurations (1 to 4 layers)

Full SMIC CASME II SAMM

Layers UF1 UAR UF1 UAR UF1 UAR UF1 UAR
1 0.6851 0.6504 0.6319 0.6177 0.7203 0.6907 0.6899 0.6628
2 0.7470 0.7107 0.6428 0.6285 0.8374 0.8178 0.7788 0.7197
3 0.7657 0.7295 0.6579 0.6422 0.8669 0.8491 0.7889 0.7325
4 0.7739 0.7387 0.6566 0.6410 0.8750 0.8595 0.8201 0.7675

Table 9 illustrates the impact of each layer on the model’s parameters and inference speed. When the
layer count is equal to 4, there is an observable improvement in recognition capability compared to the
scenario with 3 layers; however, this comes at the cost of a several-fold increase in parameter count and a
corresponding impact on inference speed. Therefore, this study selects the configuration with 3 layers as the
optimal choice. It is worth noting that if deployment on more lightweight devices is desired, a trade-off in
recognition accuracy may be warranted, allowing for the selection of a configuration with 2 layers.

Table 9: Analysis of the impact of varying layer counts on model parameters and inference speed. The table compares
the recognition capabilities, parameter counts, and inference speeds for ResNet configurations with 2, 3, and 4 layers

Layers UF1 UAR Parameter Speed FLOPs
1 0.6851 0.6504 0.456 M 40.108 1.404 G
2 0.7470 0.7107 1.046 M 47.282 1.817 G
3 0.7657 0.7295 3.296 M 65.944 2.231 G
4 0.7739 0.7387 11.412 M 89.513 2.640 G
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4.6 Application Prospects
Micro-expression recognition technology holds significant potential in clinical diagnosis and psy-

chotherapy [3], with the real-time recognition capability enhancing its practical value. First, in mental health
monitoring, real-time micro-expression recognition can serve as an auxiliary tool for clinicians, enabling
more accurate assessments of patients’ emotional states. By analyzing micro-expression changes in real-time,
healthcare professionals can quickly detect negative emotions such as anxiety, depression, or excessive stress
that patients may not explicitly express. Compared to traditional emotional assessment methods, real-time
recognition not only improves the timeliness and accuracy of diagnosis but also provides immediate feedback
on emotional fluctuations, helping to adjust and optimize psychological treatment in real-time.

Additionally, real-time micro-expression recognition has unique advantages in the early diagnosis of
emotional disorders. Many patients with emotional disorders find it difficult to express their true emotions
verbally, and real-time micro-expression detection can sensitively capture emotional fluctuations, offering
faster and more accurate emotional assessments. This allows clinicians to tailor more personalized treatment
plans, enhancing the overall effectiveness of therapy.

5 Conclusion
This paper introduces a novel semi-lightweight deep learning architecture, DynamicFusionResNet

(DFR-Net), which strikes a balance between lightweight design and recognition performance. The model
incorporates dynamic, static, and optical flow features as input feature maps. The DFR-Net architecture is
specifically designed to accommodate these diverse features and introduces an innovative fusion strategy to
integrate them effectively. Additionally, we employ spatial-channel attention mechanisms within ResNet to
enhance feature representation and improve the model’s discriminative power. Experimental results demon-
strate that the DFR-Net model performs exceptionally well across multiple benchmarks, proving competitive
among semi-lightweight networks. Its semi-lightweight nature also facilitates real-time inference, making it
suitable for various practical applications.

However, for micro-expression recognition tasks, the limited availability of training data constrains the
model’s learning effectiveness. Additionally, some datasets suffer from low quality due to varying lighting
conditions, which further compromises the reliability of facial feature extraction. Future research may focus
on generating realistic micro-expressions to alleviate the issue of limited training data and increase the
model’s practical relevance in practical contexts.
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