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ABSTRACT: Ciphertext data retrieval in cloud databases suffers from some critical limitations, such as inadequate
security measures, disorganized key management practices, and insufficient retrieval access control capabilities. To
address these problems, this paper proposes an enhanced Fully Homomorphic Encryption (FHE) algorithm based on
an improved DGHV algorithm, coupled with an optimized ciphertext retrieval scheme. Our specific contributions
are outlined as follows: First, we employ an authorization code to verify the user’s retrieval authority and perform
hierarchical access control on cloud storage data. Second, a triple-key encryption mechanism, which separates the
data encryption key, retrieval authorization key, and retrieval key, is designed. Different keys are provided to different
entities to run corresponding system functions. The key separation architecture proves particularly advantageous
in multi-verifier coexistence scenarios, environments involving untrusted third-party retrieval services. Finally, the
enhanced DGHV-based retrieval mechanism extends conventional functionality by enabling multi-keyword queries
with similarity-ranked results, thereby significantly improving both the functionality and usability of the FHE system.
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1 Introduction
In the current era of informatization and big data. Data has the characteristics of massive information,

massive distribution, and strong timeliness. Therefore, data-oriented storage and sharing systems demand
enhanced confidentiality, integrity, authenticity, and availability. As a result, cloud storage with cost-
effectiveness, robust security, operational efficiency, and scalability gradually supplants traditional local
database storage, garnering widespread attention and adoption across various industries.

When it is necessary to ensure data security and user identity privacy during cloud storage opera-
tions, data is maintained in a ciphertext state within cloud databases. To retrieve and query data in the
ciphertext state, Song et al. [1] pioneered the concept of ciphertext retrieval in 2000, which can reduce
privacy leakage risks. Research on ciphertext retrieval bifurcates into two categories: attribute-preserving
encryption [2] and Searchable Encryption (SE) [3], with this study focusing on the latter [4]. In 1978,
Rivest et al. [5] first proposed the concept of homomorphic encryption, which enables direct arithmetic
operations (addition/multiplication) on the ciphertext while maintaining plaintext-equivalent computation
results. As a cryptographic technique rooted in mathematical hard problems, homomorphic encryption
provides exceptional algorithmic security, rendering Homomorphic Encryption-based Ciphertext Retrieval
(HECR) schemes particularly promising for secure data processing.
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The fundamental principle of HECR schemes involves performing homomorphic operations between
encrypted data and ciphertext search terms, followed by similarity comparisons to ensure retrieval accuracy.
HECR technology demonstrates significant practical value across privacy-sensitive domains, including
healthcare [6], IoT systems [7], deep learning [8], and cloud services [9]. Our current research concentrates
on implementing HECR solutions in cloud storage environments. While effectively addressing third-party
storage concerns regarding data security, sharing efficiency, and access control, these implementations
significantly enhance both security and accuracy in ciphertext retrieval through its implementation of
homomorphic encryption algorithms. Our primary objectives are to reduce algorithmic computational
complexity and cloud computing operational costs while resolving key management challenges in cloud
storage scenarios. This study is based on the integer-based FHE scheme DGHV proposed by Van Dijk
et al. [10] and Coron et al. [11], whose security foundation relies on the Approximate Greatest Common
Divisor (Approximate GCD) problem [12]. Compared with other FHE algorithms, DGHV demonstrates
superior operational security and computational efficiency with lower complexity. Consequently, it has been
extensively adopted in HECR systems for cloud storage environments, exhibiting significant potential for
scheme optimization and providing a robust theoretical foundation for cryptographic research.

Building upon research methodologies for enhancing the DGHV algorithm, our proposed fully homo-
morphic encryption (FHE) scheme integrates data retrieval access control capabilities and implements a
triple-key encryption mechanism where distinct cryptographic entities manage separate keys to execute cor-
responding system functionalities. The designed HECR mechanism extends beyond conventional ciphertext
comparison approaches, enabling multi-keyword queries with similarity-ranked results. Simultaneously, the
proposed scheme confines key-sharing scopes while maintaining compatibility with application scenarios
involving either multi-verifier coexistence or third-party retrieval service providers. Through rigorous
theoretical analysis and comprehensive simulation experiments, we demonstrate that the scheme enhances
algorithmic security and operational usability, thereby significantly increasing the practical applicability of
HECR mechanisms. The principal contributions to our work are outlined as follows:

1. A fully homomorphic encryption scheme based on a triple-key encryption mechanism is proposed.
The keys in the scheme are divided into the encryption key, retrieval key, and retrieval authorization
key, which are assigned to different system entities. The solution reduces the scope of key sharing,
decentralizes the centralized data control authority, and mitigates cascading impacts caused by single-
point failures. Specifically, the separation of the encryption key and the retrieval key addresses the key
security issue in the untrusted third-party cloud storage scenario. The verification key can be used
independently by retrieval authorization verifiers to implement access control over retrieval requests
without compromising the security or operational processes of the other two keys.

2. An authorization code is introduced into the algorithm, which enables data owners to implement
hierarchical control of ciphertext data and configure retrieval authorizations. This enables the retrieval
of files of different security levels and retrievers with different retrieve authorizations to influence
retrieval results, thereby enhancing the security of HECR to a certain extent.

3. The DGHV ciphertext retrieval mechanism is improved to support multi-keyword retrieval and
similarity-based ranking of results, enhancing the retrieval scheme’s functionality and practicability.

4. The correctness and security of the scheme are theoretically analyzed in detail, and the security of
the algorithm, key, and retrieval is proved. The proposed FHE scheme is formulated and imple-
mented. Comparative evaluations with existing schemes demonstrate its enhanced security, efficiency,
and usability.

The rest of this paper is organized as follows. We briefly introduce related work in Section 2 and detail the
design of the HECR scheme in Section 3. Section 4 provides a theoretical analysis of the scheme’s correctness
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and security, and Section 5 presents the simulation implementation and comparative performance analysis.
We conclude the paper in Section 6.

2 Related Works
HECR technology has remained a research hotspot since its proposal. In 2010, Van Dijk et al. [10]

introduced an integer-based homomorphic encryption algorithm and discussed its corresponding ciphertext
retrieval mechanism. In 2019, Wang et al. [13] proposed ECRS, an encrypted ciphertext retrieval scheme
for enterprise cloud storage using fully homomorphic encryption. Gong et al. [14] developed a Quantum
Homomorphic Encrypted Ciphertext Retrieval (QHECR) scheme in 2020 based on the Grover algorithm. In
2021, He et al. [15] proposed an efficient Ciphertext Retrieval scheme based on Homomorphic encryption for
Multiple data owners in a hybrid cloud, incorporating an encrypted balanced binary index tree structure and
a large-integer arithmetic-based homomorphic encryption method. Wang et al. [16] designed an efficient and
privacy-preserving encrypted data range query scheme under a dual-server architecture in 2022. In 2023,
Wang et al. [17] proposed an approximate homomorphic encryption-based ciphertext image content retrieval
scheme for mobile cloud computing. Song et al. [18] designed an effective privacy information retrieval model
based on hybrid fully homomorphic encryption, significantly improving the computational efficiency of
schemes. In 2024, Cheng et al. [19] proposed a secure quantum homomorphic encryption ciphertext retrieval
scheme. Current research primarily focuses on addressing key management, computational efficiency, and
security challenges in homomorphic encryption systems.

Our work proposes a DGHV improvement scheme targeting cloud storage security. Existing DGHV
optimization studies generally aim to enhance security, usability, and efficiency, falling into two categories:
key-related improvements and cloud storage security solutions. The former involves technical enhancements
in key quantity, key-sharing scope, encryption/decryption efficiency, ciphertext expansion rate, and multi-
bit ciphertext processing capabilities. The latter adds algorithmic functionalities to support encrypted cloud
database operations across multiple scenarios. Xi et al. [20] proposed an algorithm with reduced public key
size and 2-bit plaintext encryption capacity while concealing private keys during retrieval, countering cloud
data theft risks. Hong et al. [21] developed the G_DGHV algorithm for direct cloud platform implementation,
enhancing retrieval security and user privacy. Kumar et al. [22] introduced a lightweight dual-encryption
scheme with efficient tamper detection. These solutions assume trusted cloud providers and unrestricted key-
sharing scopes, neglecting potential security vulnerabilities like key exposure during retrieval. Qin et al. [23]
pioneered the SDC homomorphic encryption algorithm using dual-key separation (encryption/retrieval
keys) to address untrusted third-party cloud storage scenarios. Ping [24] enhanced SDC security through
randomized parameters. Li et al. [25] improved SDC to create the HES algorithm with compact public keys
and accelerated retrieval.

Existing schemes primarily resolve key-related cloud storage issues but fail to consider: (1) malicious
query attacks using valid ciphertext keywords; (2) separated retrieval authorization verifiers and service
providers; (3) lack of retrieval access control capabilities. Our work effectively addresses these gaps,
providing significant theoretical value for cloud storage security and reliable technical support for cloud
computing platforms.

3 The Proposed Scheme

3.1 Homomorphic Encryption Algorithm
Our work proposes six novel cryptographic algorithms: the Key Generation algorithm (Keygen()),

Encryption algorithm (Encrypt()), Authorization Upload algorithm (Upload()), Authorization Verification
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algorithm (Verification()), Return algorithm (Return()), and Decryption algorithm (Decrypt()). This crypto-
graphic framework demonstrates comparable security characteristics to the DGHV scheme. The following
provides detailed descriptions of these algorithms.

1. Keygen(): Randomly generate secure large prime number P with secure parameter λ as the number of
digits, obtain the generators g1 and g2 of Zp, and select the secret numbers x1 and x2 so that g1

x1 and
g2

x2 are the idempotent elements of the finite semigroup ⟨Zp , ∗⟩. Let the encryption key p1 = g1
x1 , the

verification key p2 = g2
x2 , use the generated secure large prime number P as the retrieval key p3 and

ensure that p1 , p2 ≪ p3. Among them, the function of the encryption key p1 is to protect plaintext data,
which the data owner exclusively enjoys. The verification key p2 is provided to the retrieval authorization
verifier to run the Verification(). The retrieval key p3 can be shared with the cloud database and runs
an improved ciphertext retrieval mechanism.

2. Encrypt(): Randomly generate large prime numbers q of length α. The encryption process is Formula (1).
The algorithm is fully homomorphic encryption and satisfies additive and multiplication homomor-
phism.

c = m × p1 × p2 + q × p2 × p3 (1)

3. Upload(): Randomly generate smaller prime numbers r of length β. The operation object of this
process is the keywords extracted by the data owner from the ciphertext data, in which the retrieval
authorization level of the ciphertext data is set, and the data retrieval authorization code s is added to
control the retrieval access of the retriever. As shown in Formula (2).

cr = c + r × s (2)

among them, c is the ciphertext encrypted by Encrypt(), r is a random prime number that is used to
increase the randomness of the algorithm and protect the privacy of the authorization code, s is the data
retrieval authorization code (s ≪ p2), that is, the retrieval authorization level set by the data owner for
ciphertext data.

4. Verification(): This process is used to verify whether the authorization level of the retriever is greater
than the retrieval authorization level of the ciphertext document. It requires the retrieval authorization
verifier to request the verification key p2 from the data owner and, simultaneously, find the retrieval
authorization level in the retriever’s identity information through other authoritative methods, the user
retrieval authorization code s’. As shown in Formula (3).

(cr mod p2) mods
′

⎧⎪⎪⎨⎪⎪⎩

= 0 Veri f ication success f ul
≠ 0 Veri f ication f ail ed

(3)

among them, cr is the ciphertext keyword carrying the data retrieval authorization code s. The algorithm
requires the random number r to be a small prime number so that the algorithm r × s is not affected
by mod p2. If the result of the Formula (3) is 0, the retriever’s authorizations are higher, and ciphertext
retrieval is allowed; if the result is not equal to 0, the retrieval request is rejected, and the information
that the retriever’s authorizations do not meet the requirements is returned.

5. Return(): Before the retrieval authorization verifier sends the ciphertext retrieval keywords to the cloud
database, the data retrieval authorization code s specified by the data owner for the ciphertext must be
removed. The formula is shown in (4).

c = cr − (cr mod p2) (4)
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The result of this step is the retrieval request value c. It separates the retrieval authorization process
and the data retrieval process so that their keys are relatively independent. It ensures that the ciphertext
retrieval scheme running on the cloud database can correctly retrieve the ciphertext and guarantee the
confidentiality of the data retrieval authorization code s.

6. Decrypt(): As Formula (5) shows, the final decryption obtains plaintexts m.

m = (c × p1
−1 × p2

−1) mod p3 (5)

The large-integer authorization code introduced in the aforementioned Upload() algorithm serves to
embed data owners’ predefined retrieval authorization levels into ciphertext data. This enables the scheme to
verify requesters’ access privileges through the retrieval authorization verification server or database before
initiating ciphertext retrieval operations, thereby achieving retrieval service access control. The authorization
code configuration is specified as follows:

Set the authorization code identifier as s, generated via s = a × rs , where a is the authorization code seed,
and rs is the power exponent that specifies the authorization level. The following is the process in detail.

1. The authorization code seed a is a cryptographically secure large prime number requiring confiden-
tial storage.

2. Power exponent rs = ei , and different i determines different rs :
(1) e is the base (fixed positive integer, with smaller values required when the retrieval authorization

level increases; post-configuration values remain immutable and confidential).
(2) i is the exponent representing privilege levels (a positive integer where higher values correspond

to lower access privileges).
3. The authorization code s = a × rs represents differentiated user retrieval authorizations. By integrating

this authorization code into the FHE scheme, granular control over users’ retrieval privileges is
systematically enforced.

3.2 Ciphertext Retrieval Scheme
The DGHV retrieval scheme exhibits advantageous characteristics, including low computational over-

head, operational simplicity, and efficient retrieval performance. However, its implementation necessitates
that cloud databases possess the secret key p to execute correct ciphertext retrieval. This single-key sharing
mechanism presents inherent security vulnerabilities, rendering it unsuitable for deployment scenarios
involving untrusted retrieval service providers. Such architectural constraints may potentially compro-
mise data confidentiality during retrieval operations and diminish the scheme’s practical applicability.
Furthermore, while the retrieval mechanism of DGHV functionally equates to ciphertext comparison,
the computational efficiency of homomorphic encryption algorithms remains fundamentally inferior to
conventional encryption paradigms. Consequently, ciphertext comparison operations under homomorphic
encryption inherently incur higher computational costs than standard encrypted data comparisons. Without
substantial improvements to the ciphertext retrieval mechanism of DGHV and enhanced functional capa-
bilities, these inherent limitations of homomorphic retrieval mechanisms cannot be effectively mitigated.

This scheme retrieves the complete ciphertext file C, formed by encrypting the plaintext block with an
improved algorithm, as shown in Fig. 1.
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Figure 1: Flow chart of ciphertext retrieval based on homomorphic encryption
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1. Retrieval Preparation
(1) Before retrieval, the retriever must ensure the retrieval authorization verifier can query the user’s

retrieval authorization code through the authoritative channel.
(2) The retriever provides the retrieval authorization verifier with the ciphertext keyword cr carrying

the data retrieval authorization code, and provides personal identity information. It is convenient
for the retrieval authorization verifier to verify the authenticity of the retriever’s identity and
whether it is higher than the retrieval authorization level set on the ciphertext keyword.

(3) Firstly, Verification() described in the previous section is called to verify that the retrieval
authorization has passed; secondly, the retrieval authorization verifier removes the data retrieval
authorization code with the Return() to obtain the retrieval request value; finally, the retrieval
authorization verifier sends the retrieval request value to the cloud database for retrieval.

(4) Before retrieval, the cloud database needs to have the ciphertext file C as the retrieval object:
(1) Plaintext block: the plaintext is grouped, and the length of the plaintext block is l bit, that is

M = m1 , m2, ⋅ ⋅ ⋅ , mt, where t = ∣M∣ /l ;
(2) Block encryption: The Encrypt() is called to encrypt mi (1 ≤ i ≤ t);
(3) Ciphertext block merge: Ciphertext blocks are concatenated to form a complete ciphertext

file C = c1c2, ⋅ ⋅ ⋅ , ct .
(5) The cloud database generates a retrieval counter count and initializes count = 0.

2. Retrieval Process
(1) Read the ciphertext blocks ci (1 ≤ i ≤ t) in sequence from the encrypted file C.
(2) The cloud database uses the retrieval key p3 to calculate the retrieval value of each ciphertext block

ci in turn.

wi = ci mod p3 = mi p1 p2,

then calculate W:

W =∏wi .

(1) Retrieve single keyword cr
Cloud database uses the retrieval key p3 to calculate the retrieval value wr = cr mod p3 =
mr p1 p2 of the keyword cr , and calculate (W/wr)mod wr . If the result is 0, the keyword
matches the document and count + 1; otherwise, it does not match the document, and the
retrieval process ends, as shown in the following formula.

w1 , w2, ⋅ ⋅ ⋅ , wt

wr
mod wr =

p1
t p2

t m1 , m2, ⋅ ⋅ ⋅ , mt

p1 p2mr
mod p1 p2mr

⎧⎪⎪⎨⎪⎪⎩

= 0 count + 1
≠ 0 Retrieval end

Let W =W/wr and recalculate (W/wr)modwr . If the result is still 0, count + 1 again and
repeat this step; otherwise, the retrieval process ends, and the retrieval counter count is
output, as shown in the following formula.

w1 , w2, . . . , wr−1 , wr+1 , . . . , wt

wr
mod wr

=
p1

t−1 p2
t−1m1 , m2, . . . , mr−1 , mr−1 , . . . , mt

p1 p2mr
mod p1 p2mr

⎧⎪⎪⎨⎪⎪⎩

= 0 count + 1
≠ 0 Retrieval end
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(2) Retrieve multiple keywords cr i
Cloud database uses the retrieval key p3 to calculate the retrieval value wr i = cr i mod p3
(1 ≤ i ≤ n) of multiple keywords cr i , where n is the number of keywords. Calculate the
multiple keywords cumulative Wr = ∏wr i , then calculate (W/Wr) modWr . If the result
is 0, multiple keywords match the document, count = 1, and output the retrieval counter;
otherwise, it is not matched, count = 0, and the retrieval process ends, as shown in the
following formula.

W
Wr

mod Wr =
p1

t p2
t m1 , m2, ⋅ ⋅ ⋅ , mt

p1 n p2 nmr1 , mr2, ⋅ ⋅ ⋅ , mrn
mod Wr

⎧⎪⎪⎨⎪⎪⎩

= 1 Retrieval successful
= 0 Retrieval failed

3. Retrieval Result
The cloud database can use the retrieval value wi as the final retrieval result returned to the retriever,

and then the formula of Decrypt() is changed as follows:

m = wi × p1
−1 × p2

−1

This process can protect the security of the retrieval key p3 and reduce the sharing scope of the key
p3. At the same time, the computation of Decrypt() can also be reduced, and the system efficiency can
be improved.

When retrieving a single keyword cr , according to the value count of the retrieval counter, the cloud
database sorts the matching similarity of the documents containing keywords to reflect the correlation of
different files and increase the correctness of the retrieval results. When retrieving multiple keywords cr i , the
retrieval counter count = 1 indicates that the multiple keywords are successfully matched, and the matching
documents are output directly. Cloud databases can finally return one or more retrieval results with high
matching similarity according to the needs of the actual scenario.

4 Theoretical Analysis

4.1 Correctness Proof
Theorem 1: In the improved algorithm, users holding keys p1, p2, and p3 can restore plaintext m; or when
retrieval value wi as the final retrieval result, users only holding keys p1 and p2 can restore the plaintext m.
Proof of Theorem 1: For any plaintext m, we know p1 , p2 ≪ p3, so the decryption operation of the ciphertext
result c or the retrieval value wi is as follows:

Decr ypt (c) = (c × p1
−1 × p2

−1) mod p3#
= [(m × p1 × p2 + q × p2 × p3) × p1

−1 × p2
−1] mod p3#

=m#

Decr ypt (wi) = wi × p1
−1 × p2

−1 = (mi × p1 × p2) × p1
−1 × p2

−1 = mi

It is necessary to ensure that m × p1 × p2 ≪ p3, so that the ciphertext m × p1 × p2 will not be affected
during the decryption process. ◻
Theorem 2: The improved algorithm is a fully homomorphic encryption algorithm.
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Proof of Theorem 2: The plaintexts m1 and m2 are encrypted separately to obtain:
⎧⎪⎪⎨⎪⎪⎩

c1 = m1 × p1 × p2 + q1 × p2 × p3

c2 = m2 × p1 × p2 + q2 × p2 × p3

1. Additive Homomorphism Verification
Ciphertext addition operation Encrypt (m1 +m2) = (m1 +m2) × p1 × p2 + (q1 + q2) × p2 × p3.
Ciphertext decryption operation Decr ypt (c1 + c2) = ((c1 + c2) × p1

−1 × p2
−1) mod p3 = m1 +m2. The

decryption result is the same as the addition result of the original plaintext.
2. Multiplicative Homomorphism Verification

Ciphertext multiplication operation Encrypt(m1 ×m2) = (m1 × p1 × p2 + q1 × p2 × p3) × (m2 × p1 ×
p2 + q2 × p2 × p3).

Ciphertext decryption operation Decr ypt (c1 × c2) = ((c1 × c2) × p1
−1 × p2

−1) mod p3 = m1 ×
m2, where p1 = g1

x1 and p2 = g2
x2 . In the decryption process, there will be an operation step of

[(m1 ×m2 × g1
2x1 × g2

2x2) × g1
−x1 × g2

−x2] mod p3, which is transformed into (g1
2x1 × g1

−x1) mod p3

and (g2
2x2 × g2

−x2) mod p3. Considering that the retrieval key p3 is a large prime number P, and g1
x1

and g2
x2 are the idempotent elements of the finite semigroup ⟨Zp , ∗⟩, then g1

2x1 mod p3 = g1
x1 mod p3 and

g2
2x2 mod p3 = g2

x2 mod p3. The result of decrypting c1 × c2 is still m1 ×m2, and the algorithm satisfies the
multiplicative homomorphism.

The improved algorithm in this paper satisfies both additive homomorphism and multiplication homo-
morphism. Since addition and multiplication can realize subtraction and division, it has been theoretically
proved that it is a fully homomorphic encryption algorithm. ◻

4.2 Security Analysis
1. Algorithmic Security Proof

Definition 1 (Advantage Function): In the process of attacking the cryptographic scheme, the absolute value
of the difference between the probability of the adversary A winning and 1/2 is recorded as the adversary’s
advantage, which is recorded as:

Adv (A) = ∣Pr [succ] − 1/2∣

Theorem 3: The improvement of the algorithm in this paper has achieved provable security; that is, the security
of the encryption algorithm can be regarded as the solution to the approximate GCD problem. The scheme has
semantic security. It has indistinguishability (IND) and non-malleability (NM) under chosen plaintext attack
(CPA).
Proof of Theorem 3: In the scheme, after the data sent by the data owner is processed by Encrypt() and
Upload(), the final ciphertext form is cr = m × p1 × p2 + q × p2 × p3 + r × s.
(1) IND-CPA

Set up the attack model of a challenger and an adversary. The specific attack and defense stages are as
follows:
(1) Initial stage: The challenger has the encryption key p1, verification key p2, retrieval key p3, i.e.,

Ke ygen() → (p1 , p2, p3).
(2) Access phase: Under the bounded polynomial degree, the adversary can request the challenger to

encrypt any plaintext multiple times.
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(3) Challenge stage: The adversary selects two distinguishable plaintexts m0 and m1 of equal length,
sending them to the challenger. The challenger randomly selects 1-bit b(b ε {0, 1}) and uses the random
numbers q and r to encrypt plaintext mb , that is, Cb = mb × p1 × p2 + qb × p2 × p3 + rb × sb . The
ciphertext Cb is sent to the adversary, where b is kept secret.
If b = 0, C0 = m0 × p1 × p2 + q0 × p2 × p3 + r0 × s0
If b = 1, C1 = m1 × p1 × p2 + q1 × p2 × p3 + r1 × s1.

(4) Guessing stage: After the adversary receives the ciphertext, it operates on the ciphertext Cb , judges
whether it is C0 or C1, and guesses the result of the plaintext b′.

When b = b′, the adversary successfully guesses the value of b in polynomial time, then the adversary
wins, and the adversary has at least a 1/2 probability of winning. The final winning advantage of the adversary
under the CPA of this scheme is Adv (A) = ∣Pr [b = b′] − 1/2∣, and its value is infinitely close to 0 in the
following several cases: (1) The random prime numbers q and r in each encryption process are not equal,
which results in the algorithm being a probability polynomial. (2) The authorization code s with high
randomness is composed of a large prime number a and a power exponent ei , which can be introduced into
the encryption algorithm to improve the randomness of the algorithm to a certain extent. (3) In the algorithm
scheme using the three-key encryption mode, the keys can protect and balance each other, making it difficult
for the adversary to obtain a single key. The security of the key is based on the discrete logarithm problem
(DLP), and the algorithm’s security is based on the approximate GCD problem, so the scheme’s security is
high. Therefore, even if the same data is encrypted, different ciphertexts will be obtained, and the plaintext
and ciphertext have a one-to-many mapping relationship. The adversary cannot guess the plaintext and
ciphertext relationship and has no advantage under the CPA. The improved scheme has IND or semantical
security under CPA. A more detailed proof process is shown in [10].

(2) NM-CPA

We can encrypt the plaintext m and obtain ciphertext c = m × p1 × p2 + q × p2 × p3 + r × s, in which
the existence of random numbers q, r, and authorization code s makes it extremely difficult for the adversary
to construct another ciphertext c′ whose corresponding plaintext m′ has some connection with the original
plaintexts. The proposed algorithm in this paper is NM and can resist CPA.

(3) Cryptographic hard problem

Definition 2 (Approximate-GCD): For a randomly selected large prime number q of α bits and a small prime
number r of β bits, the distribution of multiple sets of ciphertexts c is:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c1 = m1 × p1 × p2 + q1 × p2 × p3 + r1 × s1
c2 = m2 × p1 × p2 + q2 × p2 × p3 + r2 × s2

⋮
ci = mi × p1 × p2 + qi × p2 × p3 + ri × si

In the ciphertext distribution, polynomial number samples are sampled, where c1, c2, . . . , ci can be seen as
an approximate multiple of the key p1. The adversary’s process of solving the key p1 is computationally difficult,
and this is the solution to the approximate GCD problem.

The parameters q, r, and authorization code s in the algorithm make it computationally difficult for
the adversary to infer the key from the ciphertext, which can ensure that the encryption process satisfies
the approximate GCD problem. It increases the encryption result’s randomness and reduces the similarity
between ciphertexts. The improved scheme based on two cryptographic hard problems can resist CPA and
is semantically secure.
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2. Key Security

(1) Three-key encryption mode

The improved algorithm adopts the three-key homomorphic encryption mode of the encryption key
p1, the retrieval authorization key p2, and the retrieval key p3. Different keys can be assigned to different
identity objects within the system. The keys protect and balance each other and jointly protect the security
of the retrieved data. The following are the objects, system functions, and security analysis of different keys:

(1) The encryption key p1 is unique to the data owner, which keeps the data in the ciphertext state during
storage and retrieval and guarantees the security of the data.

(2) The retrieval authorization verifier owns the retrieval authorization key p2 and is the ability given by
the data owner to control access to data retrieval. After the verification is successful, the retrieval autho-
rization verifier needs to run the Return() to generate ciphertext keywords that can be successfully
retrieved by the cloud database and do not carry the data retrieval authorization code. The verification
key can prevent illegal retrievers with correct ciphertext keywords from maliciously sending a large
number of retrieval requests to the cloud database, resulting in low operation efficiency of the cloud
database or inability to process other legitimate search requests quickly, and resulting in waste of system
resources, low retrieval efficiency, error results. It can prevent illegal retrievers from holding correct
ciphertext keywords and retrieve correct ciphertext data from the database. It can separate the ability
of access control from the retrieval service provider and provide it to a more authoritative retrieval
authorization verifier, improving the security and efficiency of the data sharing system.

(3) The retrieval key p3 is owned by the retrieval service provider, that is, owned by the cloud database
set in the scheme of this paper, which gives the database the normal retrieval ability to the data. This
key can solve the trust problems of the retrieval service of the single-key homomorphic algorithm;
that is, the third-party retrieval service provider has the correct ciphertext keywords but does not have
the correct retrieval key, and the retrieval mechanism still cannot be operated normally. It can reduce
the shared scope of the single key and reduce the security threat to the data caused by the third-party
retrieval service provider.

From the analysis of the above-mentioned various keys, the retrieval authorization verifier does not have
the conditions to retrieve and decrypt the ciphertext, and the retrieval service provider does not have the
conditions to verify the authorizations and decrypt the ciphertext. When the algorithm is applied to scenarios
where multiple retrieval authorization verifiers coexist or retrieval service providers are not trusted, it can
ensure the keys’ security, data confidentiality, and retrieval accuracy.

(2) High Security of Encryption Key

In the improved algorithm, the data security is protected by the encryption key p1, only taken by the
data owner, a power exponent composed of a generator g and a secret number x, which satisfies DLP. The
encryption key p1 has high security, and guessing the secret x from p1 = gx is also difficult. The keys p2 and
p3, random numbers q and r, jointly participate in the homomorphic encryption process to protect plaintext
m, improving the security of encryption key p1.

(3) The Uniqueness of Verification Key

In the improved scheme designed in this paper, the structure of the verification key is the same as that
of the encryption key. As a retrieval authorization key p2, it is used in the encryption part m1 × p1 × p2 in the
function Encrypt() and can protect the original data m in the ciphertext state. At the same time, it is flexible
that we can choose whether to share it with the retrieval authorization verifier. Moreover, when shared with
the retrieval authorization verifier, the encryption key p1 required in the Decrypt() will not be leaked, and the
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plaintext m is safe. The algorithm adds random numbers q and r, increasing noise interference and improving
plaintext security.

(4) Anti-Brute Force Cracking of Key

The length of the retrieval key p3 in the improved algorithm is set as the security parameter λ, the value
of which is a randomly generated secure large prime number P, and the key space size is 2λ. If an adversary
wants to crack the key violently, he may need to try 2λ times cracking calculation. It means that when the
pre-specified security parameter λ is larger, the probability of the key being cracked violently by an adversary
is lower.

3. Retrieval Security
The authorization code is introduced into the improved algorithm, which can give priority to verifying

the retrieval authorization of the retriever before implementing the large-scale ciphertext data retrieval
process and effectively controlling the retrieval service request of the retriever. If the data owner does
not need the retrieval authorization service, the following steps can be completed to remove the retrieval
authorization:

(1) The data owner does not generate the retrieval authorization code s and does not need to send the
verification key p2 to the retrieval authorization verifier.

(2) The data owner does not add the data retrieval authorization code s to the ciphertext keyword; that is,
skip the algorithm step of Upload().

(3) The retriever does not need to send a retrieval authorization request to the retrieval authorization
verifier; that is, skip the algorithm step of Verification().

(4) The retrieval authorization verifier does not execute the Return().

The ciphertext keywords and encrypted files in the retrieval mechanism are in one-to-one or many-
to-one correspondence. They are encrypted with the same three kinds of keys, but the encryption process’s
random numbers q and r are different. It requires the retrieval service provider to have a retrieval key p3
and perform retrieval value calculation on ciphertext blocks or ciphertext keywords to ensure the correct
execution of the subsequent retrieval mechanism. An authorization code can improve the security of the
retrieved data and restrict the retrieval behavior of the retriever. Verification key p2 enables the data owner
to set the range of persons allowed to retrieve data according to different retrieval authorization verifiers
or retrievers. It can achieve multi-level retrieval authorization control of different types of private data and
grade the security of ciphertext retrieval. ◻

5 Performance Analysis

5.1 Comparative Analysis
1. Performance Comparison and Analysis
The application value of the algorithm scheme is analyzed by comparing it with DGHV, and the specific

results are shown in Table 1.
It can be seen from Table 1 that the scheme in this paper is consistent with DGHV in terms of security

and continuity. When the number of keys increases, the key size increases, but multiple kinds of keys can
protect and balance each other. Compared with the DGHV algorithm, this scheme reduces the sharing
scope of a single key, can adapt to application scenarios where multiple third-party service providers
exist, and improves key security. At the same time, the improved ciphertext retrieval mechanism based on
homomorphic encryption becomes complicated due to the participation of multiple keys. The proposed
scheme sacrifices a small part of the operational efficiency but greatly improves the functionality and usability
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of the fully homomorphic encryption scheme. Table 2 compares various homomorphic encryption schemes
based on the DGHV improvement.

Table 1: Comparison between DGHV and this paper

Algorithm Sustainability1 Security Retrieval algorithm Encryption
efficiency

Key-Size Functionality

DGHV [10] The noise
upper bound is
P/2. Superior.

Approximate-
GCD and

discrete subset
sum problem

res = (c − cr) mod p,
(p is a single key, andcr
is a retrieval keyword.)

High Public key:
o (n10)

Private key:
o (n2)

Encryption,
retrieval.

This
paper

The noise
upper bound is
min (P1 , P2) S/2,

where S is an
adjustable

authorization
code. Relatively

superior.

Approximate-
GCD and

DLP

W = ∏ ci mod p3
wr = cr mod p3

res = (W/wr) mod wr,
(p3 is a retrieval key,
and w is a retrieval

value.)

Relatively high Retrieve key
p3

2: o (n2)
Encryption,

retrieval,
retrieval

authorization,
the retrieval of

multiple
keywords, and

similarity
sorting of
retrieval
results.

Note: 1Computation Sustainability refers to the scheme’s capability to support unlimited homomorphic operations on
ciphertexts, with the comparative evaluation primarily focusing on noise control mechanisms. 2The keys p1 and p2 in
the improved scheme are idempotent elements g x composed of the generator g and the secret numberx. Among them,
the steps of judging the correctness of the generator g and calculating the secret number x have high randomness,
and it is necessary to ensure that it is an idempotent element of the finite semigroup ⟨Z p , ∗⟩, so the keys p1 and p2
cannot be accurately calculated time complexity.

Table 2: Performance comparison of improved schemes

Ref. Encryption
mode

Security Retrieval
authorization

control

Retrieval mecha-
nism/Function

Retrieval algorithm

Xi et al. [20] Single-key
encryption

Approximate-
GCD

problem

× The large prime
number participates

in the retrieval
process instead of the
key, and the security

of the key is
increased.

res =
(cindex − ci) mod Q,
(Q is a random large

prime number.)

Hong
et al. [21]

Single-key
encryption

Approximate-
GCD

problem,
achieve

IND-CPA
semantic

safety

× Retrieve and process
the user ciphertext
data on the cloud

storage platform. The
retrieval process does
not require a key, and

the mathematical
problem of product
decomposition of

large prime numbers
is used to ensure the
security of the key.

res =
(cindex − ci) r′q mod N,

(r and q are large
prime numbers,

N = r × q)

(Continued)
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Table 2 (continued)

Ref. Encryption
mode

Security Retrieval
authorization

control

Retrieval mecha-
nism/Function

Retrieval algorithm

Qin et al. [23]/
Ping [24]

Double-key
encryption

Approximate-
GCD

problem

× The encryption key is
separated from the

retrieval key to solve
the problem of the

third-party retrieval
service provider is not

trusted.

res =
(cindex − ci) modp,
(p is a retrieval key,
separated from the

encryption key.)

Li et al. [25] Single-key
encryption

Approximate-
GCD

problem

× Large prime numbers
participate in the
retrieval process

instead of keys, and
the accuracy of
retrieval results

increases when the
keywords are short.
The scheme reduces

the key size and
increases the
efficiency of

encryption and
retrieval.

res =
(cindex − ci) mod Q,
(Q is a random large

prime number.)

This Paper Three-key
encryption

Approximate-
GCD and
discrete

logarithm
problem

√
Only the retrieval key

is required, and the
retrieval mechanism
has the functions of
multiple keywords

retrieval and
similarity sorting of

retrieval results.

wi = ci mod p3
(Ciphertext)

wr = cr mod p3
(Keyword), (Retrieval

value calculation,
where p3 is the
retrieval key)

W = ∏wi
res =

(W/wr) mod wr

As can be seen from Table 2, the literature [20] and [21] are single-key encryption modes, and random
large prime numbers replace the key to participate in the retrieval process, ensuring that the key is not
shared with third-party retrieval service providers, and ensuring the encryption key security. The double-key
encryption mode adopted in literature [23] and [24] separates the encryption key from the retrieval key and
improves the security of the key. Literature [25] proposed an improved scheme with more advantages than
the double-key encryption algorithm in the single-key encryption mode. None of the above schemes can
control the retrieval authorization, and the retrieval mechanism is based on comparing the ciphertext. The
retrieval process cannot highlight the advantages of the homomorphic encryption algorithm. The scheme of
this paper introduces the authorization code, which has a low correlation with the user’s identity information,
and its relative independence protects the user’s identity privacy to a certain extent. The combination
of the authorization code and the homomorphic encryption algorithm will not affect the security of the
encryption algorithm, and it has the advantages of simple operation, a small amount of computation, and
strong functionality. It is suitable for application scenarios that require access authorization to ciphertext
data. From the comparison of the retrieval mechanism/function and retrieval algorithm in Table 2, the



Comput Mater Contin. 2025;84(1) 951

retrieval mechanism of the improved scheme also has functions such as multiple keywords retrieval and
similarity sorting of retrieval results. It is more functional than other schemes, and the application value of
the homomorphic encryption algorithm is greater. The specific advantages are as follows:

(1) Extracting multiple keywords with different attributes from the original file for retrieval can improve
retrieval efficiency and accuracy and broaden the application scenarios of the scheme.

(2) The similarity sorting of retrieval results can make the retrieval results have a correlation range, meet
the multi-value requirements of the retrieval results in different application scenarios, and improve the
correctness of the retrieval results.

(3) In the improved retrieval scheme, the retrieval key p3 is used to calculate the retrieval value of the
ciphertext, and then the ciphertext retrieval scheme is run. It can reduce the retrieval cost and improve
the retrieval efficiency.

2. Computational Comparison and Analysis
The improved scheme of this paper and several other existing schemes are compared and analyzed

from the computation of the algorithm. In Table 3, Tp represents the time to generate random numbers
(large prime numbers, integers), Te represents the time of exponentiation, Ta represents the time of
addition or subtraction, To represents the time of multiplication or division, and Tm represents the time of
modulo operation.

Table 3: Computational comparison

Ref. Algorithm computation

Keygen() Encrypt() Decrypt() * Retrieval()
Xi et al. [20] Tp 2Tp + 2Ta + 2To 2Tm Ta + Tm

Hong et al. [21] 2Tp + To Tp + 2Ta + 2To Tm Ta + Tm + 2To
Qin et al. [23] 2Tp Tp + Ta + 3To To + Tm Ta + Tm

Ping [24] 2Tp 2Tp + 2Ta + 4To To + Tm Ta + Tm
Li et al. [25] Tp Tp + Ta + To + 2Tm 2Tm Ta + Tm
This paper 2Te + Tp Tp + Ta + 4To 2Te + 2To + Tm 3Tm + To

Note: *The retrieval mechanism adopted in this scheme is special, with additional functions
such as multiple keywords retrieval and similarity sorting of retrieval results: Therefore, the
computation of its Retrieval() is related to the number of ciphertext blocks, and the table shows
the retrieval calculation amount of a single ciphertext block.

5.2 Simulation Analysis
1. Simulation Environment
Our experiments were conducted on a CentOS 7 Operating System utilizing the GNU Multiple

Precision Arithmetic Library (GMP) for large-number computations. The simulation employed C language
programming through the VSCode environment, with result visualization performed in MATLAB. The
scheme ingests custom-designed plaintext data documents to emulate authentic operational environments,
while authorization codes were randomly generated at specified bit lengths, and security parameters were
configured according to the DGHV framework. Comprehensive evaluations validated the full workflow,
including key generation, document encryption/decryption, access-controlled retrieval, and ciphertext
search operations, conclusively demonstrating the scheme’s cryptographic security and functional viability.
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2. Analyzing Algorithm Efficiency
The simulation implements multiple improvement schemes listed in Table 3 in the previous subsection.

The running time of Keygen(), Encrypt(), and Decrypt() in the test scheme is shown in Fig. 2 for the
comparison results.

Figure 2: The running time comparison of the improved algorithm [20,21,23–25]

Because the scheme in this paper needs to generate additional retrieval authorization key p2 and
retrieval key p3 and increases the generation process of secure large prime number P and idempotent element
gx , the running time of Keygen() is relatively high. Although the Encrypt() and Decrypt() algorithms need to
call three keys to participate, the running time is still close to the average. This scheme improves the security
of the data storage and retrieval process by generating keys with different functionalities at the expense of
algorithm efficiency.

To prove that the overall algorithm is more efficient, the bit-by-bit encryption of data documents
with different plaintext digits is tested and then compared with the DGHV scheme and the double-key
improvement scheme in reference [24]. This process only needs to run the Keygen() once; the key is the
same. Table 4 below shows the number of bits of encrypted documents selected during the test. Under the
same conditions, the comparison results of the encryption and decryption running times are shown in Fig. 3.

Table 4: Experimental data

Serial number Number of plaintexts (bits)
1 10,000
2 80,000
3 100,000
4 150,000
5 180,000
6 200,000
7 250,000
8 300,000

As seen from the above figure, the algorithm’s running time is closely related to the number of bits of the
encrypted plaintext. The fully homomorphic encryption scheme encrypts and decrypts plaintext of different
lengths bit by bit and draws the conclusion on the premise of ensuring the correctness of the operation result:
The operation efficiency of the proposed scheme in the three-key encryption mode is higher than that of
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DGHV, and there is little difference compared with the operation efficiency of the scheme in the double-
key encryption mode. The scheme in this paper only sacrifices a small part of the efficiency in exchange
for the high security of the algorithm. It added a retrieval authorization key, a separate encryption key, and
a retrieval key. The joint participation of multiple keys can significantly improve the security of the fully
homomorphic encryption scheme and is suitable for more application scenarios than the double-key and
single-key schemes.

Figure 3: Comparison of the running time of encryption and decryption of different bit documents [24]

3. Analysis, Retrieval Access Control
In the above process of encrypting and decrypting a 1-bit plaintext, Upload(), Verification(), and Return()

algorithms are added to simulate the process of verifying the retrieval authorization and test the running
time. First, only run the encryption and decryption algorithm on the 1-bit plaintext, then add the retrieval
authorization process. Compare the running time test of the before and after solutions. The results are shown
in Table 5 below.

Table 5: Running time comparison

Test items Operation hours (s)
Encrypt & Decrypt 0.85 × 10−4

Encrypt & Decrypt + Verify the retrieval authorization 1.36 × 10−4

The test results show that the verification process of the retrieval authorization code is highly efficient.
It does not increase the extra algorithm operating cost but can better protect the retrieved data’s security and
verify the retriever’s legal identity.

4. Analysis of the Ciphertext Retrieval Mechanism
Fig. 4 is a time comparison of the ciphertext retrieval mechanism based on homomorphic encryption for

each improved scheme for different numbers of data documents. This paper’s scheme takes longer to retrieve
data than other schemes. However, the algorithm of the retrieval mechanism is not a simple ciphertext
comparison but adds the function of retrieving multiple keywords and sorting the similarity of retrieval
results. It improves the retrieval scheme’s security, functionality, and application value, and it is enough to
compensate for the lack of efficiency.
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Figure 4: Retrieval time comparison [20–25]

6 Conclusions
This paper proposes an enhanced fully homomorphic encryption scheme for ciphertext retrieval

applications, specifically designed as an improved variant of the DGHV algorithm tailored for cloud
storage environments. Building upon the original DGHV framework, our solution introduces three critical
innovations: verifiable search authorization, a triple-key cryptographic mechanism, and enhanced ciphertext
search functionality. The research encompasses four principal components: (1) homomorphic encryption
scheme design, (2) ciphertext retrieval protocol development, (3) formal verification of scheme correctness
and security properties, and (4) theoretical benchmarking and simulation-based validation of scheme
performance. The final theoretical analysis and simulation results demonstrate that, compared with existing
improved schemes, the enhanced FHE solution proposed in this paper exhibits measurable advantages. It
effectively guarantees both the security of cloud-stored data and the precision of retrieval operations, while
simultaneously ensuring the legitimacy of searcher identity authorizations, the cryptographic integrity of
data owners’ keys, and the functional versatility of ciphertext retrieval mechanisms. Although cryptographic
primitives (key generation, encryption/decryption algorithms) and retrieval operations demonstrate lower
throughput than comparative studies, this limitation is counterbalanced by the scheme’s highly efficient
authorization verification protocols and its robust key management architecture. Our work addresses
evolving requirements in cloud storage applications through novel methodologies that resolve critical
security challenges, providing both innovative cryptographic mechanisms and practical implementation
frameworks, the cryptographic integrity of data owners’ keys, and the functional versatility of ciphertext
retrieval mechanisms.
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