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ABSTRACT: Hematoxylin and Eosin (H&E) images, popularly used in the field of digital pathology, often pose
challenges due to their limited color richness, hindering the differentiation of subtle cell features crucial for accurate
classification. Enhancing the visibility of these elusive cell features helps train robust deep-learning models. However,
the selection and application of image processing techniques for such enhancement have not been systematically
explored in the research community. To address this challenge, we introduce Salient Features Guided Augmentation
(SFGA), an approach that strategically integrates machine learning and image processing. SFGA utilizes machine
learning algorithms to identify crucial features within cell images, subsequently mapping these features to appropriate
image processing techniques to enhance training images. By emphasizing salient features and aligning them with
corresponding image processing methods, SFGA is designed to enhance the discriminating power of deep learning
models in cell classification tasks. Our research undertakes a series of experiments, each exploring the performance
of different datasets and data enhancement techniques in classifying cell types, highlighting the significance of data
quality and enhancement in mitigating overfitting and distinguishing cell characteristics. Specifically, SFGA focuses
on identifying tumor cells from tissue for extranodal extension detection, with the SFGA-enhanced dataset showing
notable advantages in accuracy. We conducted a preliminary study of five experiments, among which the accuracy of the
pleomorphism experiment improved significantly from 50.81% to 95.15%. The accuracy of the other four experiments
also increased, with improvements ranging from 3 to 43 percentage points. Our preliminary study shows the possibilities
to enhance the diagnostic accuracy of deep learning models and proposes a systematic approach that could enhance
cancer diagnosis, contributing as a first step in using SFGA in medical image enhancement.

KEYWORDS: Image processing; feature extraction; deep learning; machine learning; data augmentation

1 Introduction

Tumour condition evaluation, deep learning is being used as a function to recognize cells and other
objects of interest at cell level over a H&E image as accurate as possible. So, achieving high classification
performance is a key objective. The effectiveness of a deep learning model is significantly influenced by
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the quality and variety of the training data. In order to improve model accuracy, researchers have explored
various techniques for enhancing training images. Our proposed method is called Salient Features Guided
Augmentation (SFGA), which leverages machine learning and image processing to enhance the salient
features in training images, thereby improving the discriminating power of deep learning models.

The motivation for utilizing enhanced training images in deep learning training arises from the
challenge of distinguishing subtly appearing cell features on H&E image tiles. Deep learning models are
designed to learn the patterns and features that differentiate between different cell types. However, these
features, such as morphology and structural characteristics, are inherently subtle and can be difficult to
discern in images extracted as small square tiles from H&E images [1-4].

One of the main limitations of H&E images is their limited colour richness, which can hinder the
visibility of crucial cell features. Moreover, the manifestation of these cell features on images is often noisy,
unstructured, and messy, further complicating their distinguishability. To overcome these challenges and
enhance the discriminating power of deep learning models, image processing methods can be employed to
improve the visibility and clarity of these cell features.

Image processing methods can be used to make the relevant features from the H&E images outstanding,
which can then be utilized as prominent information in the training process. These remarkable features can
capture specific characteristics of cell structures and morphology, providing valuable insights to the deep
learning model. Feature enhancement techniques, such as edge detection, texture analysis, or shape analysis,
can be applied to identify and quantify important features that may not be readily distinguishable by visual
inspection alone.

However, the exploration of which image processing techniques should be used for different types of cell
classifications, corresponding to specific cell features, has not been extensively investigated in the research
community. This area remains relatively unexplored, lacking an unanimously agreed-upon standard for
mapping cell features to appropriate image processing techniques. As a result, there is a need to address this
knowledge gap and establish a consistent framework.

To address this challenge, we propose the concept of “guided augmentation.” This approach initially
involves fast and simple machine learning techniques to identify relevant cell features from the cell image
samples. By identifying these salient features, we can determine which image processing techniques should be
employed to enhance the training samples effectively. In essence, the selection of image processing techniques
is guided by the salient features discovered from each new cell image sample.

By employing this guided augmentation approach, we ensure that the chosen image processing tech-
niques align effectively with the identified salient features. This pairing is crucial in enhancing the training
samples to highlight and emphasize the discriminative aspects of the cell features. It ensures that the image
processing techniques are selected purposefully and contribute to improving the overall discriminating
power of the deep learning model. Fig. 1 shows the design of the SFGA framework.

By adopting this guided augmentation methodology, researchers can establish a more systematic and
consistent approach to selecting and applying image processing techniques in conjunction with the identified
salient features. As a result, the deep learning model can better capture these subtle differences and achieve
improved classification performance.
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Figure 1: The design of DL-SFGA framework

2 Related Work

Cell detection tasks rely heavily on feature extraction and enhancement methods. These methods
include texture, color, and shape features as well as Histogram of Oriented Gradients (HOG) features, deep
activation features, and multi-scale feature extraction [5-9]. By using these methods, the accuracy of cell
detection and classification tasks can be improved [10-13].

Several methods have been proposed to achieve precise segmentation of cervical cell nuclei and
cytoplasm. One such method [14] combines Multi-Scale Convolutional Networks (MSCN) and graph
segmentation, achieving an accuracy rate of 93.5% and 92.7% for nucleus and cytoplasm segmentation,
respectively. Deep Convolutional Neural Networks (CNN) have also been used to segment and classify
epithelial and stromal regions in histopathological tissue images. Color histogram and color moment
methods are employed to extract cell color features, with high accuracy rates compared to other methods [15].

A comprehensive review article [16] covers various methods, including shape feature extraction meth-
ods such as edge detection and shape descriptors like Hu moments, for cell nucleus detection, segmentation,
and classification. Additionally, some methods employ Histogram of Oriented Gradients (HOG) features to
capture local shape information.

For example, a CNN-based approach [17] has been proposed to detect invasive ductal carcinoma,
achieving superior detection performance compared to traditional approaches. Another method [18] uses
pre-trained deep CNNs (e.g., VGG, ResNet) to extract deep activation features to detect and classify cell
nuclei in routine colon cancer tissues. A multi-scale feature extraction method, which employs HOG
and SIFT, has also been proposed to automatically segment mutually contacting cells in breast cancer
histopathological images, with promising results.
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However, in recent years, research on feature extraction and enhancement methods has been relatively
limited, primarily due to the rapid development of deep learning techniques, particularly CNNs. Neural net-
works can automatically learn features in images, diminishing the significance of manually designed feature
extraction and enhancement methods. Many researchers have shifted their focus towards designing more
efficient and accurate neural network architectures to extract useful features directly from raw images [19].
Nevertheless, feature extraction and enhancement methods still hold value in certain scenarios. For instance,
in situations with limited data or imbalanced categories, feature extraction and enhancement methods
can aid in improving model performance. Furthermore, task-specific feature extraction and enhancement
methods may complement deep learning models, enhancing their accuracy in specific domains. Overall,
while deep learning has largely replaced traditional feature extraction and enhancement methods, these
methods still hold value in certain contexts. The proper application of both deep learning and traditional
feature extraction and enhancement methods is crucial for effectively training robust deep learning models
on a given dataset. However, the research community has not systematically explored the selection and
application of such enhanced image processing techniques, necessitating the need for a well-defined and
consistent framework. Therefore, we propose the SFGA approach.

3 Method
3.1 Subsection Sample

The SFGA approach selects the best machine learning algorithm from a group of algorithms. This
algorithm is the one that can best understand the dataset. We then use feature importance ranking strategies
to rank the most important features using that algorithm. By using these strategies, we can quickly determine
the most important features out of 200.

The second feature strategy uses the SHAP algorithm, which provides a measure of feature importance
specifically for linear models when dealing with multicollinearity. The salient features are extracted from the
training samples, providing insights into the distinctive characteristics that aid in classification.

Once the salient features are identified, the SFGA method maps these features to corresponding image
processing techniques to enhance the training images. The objective is to emphasize and highlight the salient
features, making them more prominent and distinguishable. By augmenting the training images in a way
that enhances the discriminative features, the deep learning model can learn more effectively and improve
its classification performance.

To achieve this, SFGA applies various image processing methods that align with the salient features iden-
tified by the machine learning algorithm. These methods include contrast enhancement, edge enhancement,
texture enhancement, color enhancement.

By incorporating these image processing techniques based on the identified salient features, the SFGA
method enhances the training images, thereby improving the deep learning model’s discriminating power.
The augmented training dataset, with enhanced salient features, is then used to retrain the deep learning
model, allowing it to learn more effectively and make more accurate classifications.

To help with this process, we introduce a supporting process called “Domain Knowledge Mapping”
(DKM). DKM involves exploring existing literature to identify prior image processing techniques that have
successfully enhanced H&E training images for classification tasks. By relying on well-established techniques,
we can avoid using unverified information. We can find the DKM mapping tables in Tables A1-A5 of the
appendix. An example is shown in Table Al, which is about the enhancement of tumor-immune-epithelial
cells. Fig. 2 shows the corresponding enhancement results.
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Original Enhanced

Figure 2: Examples for original (left) and enhanced (right) images

With DKM, a toolbox of image processing techniques is readily available for enhancing the deep
learning training images after identifying the salient features of the cells involved in the classification task.
To facilitate the semi-automatic procedure of SFGA, the image processing tasks should be automated by
programming the mapping of the salient features and image processing techniques and their parameters as
software codes or scripts. It is important to standardize the image processing techniques and their parameters
being used across all training samples for a certain cell classification task.

3.2 SFGA Formulation

The Salient Features Guided Augmentation (SFGA) method is formulated through a series of definitions
and methods. It involves converting an original image set into a matrix of data instances and features
(p x q matrix) in Definition 1. In Definition 2, a candidate model is selected from a model set based
on its performance in training using the features, accuracy, error, and F1 score. Definitions 3 and 4
describe how important and salient features are chosen based on performance changes and Shapley values,
respectively. Finally, in Definition 5, the selected features are used to enhance images through established
image enhancement methods.

Definition 1 (Cells Matrix). Suppose that there is an original image set X, convert the image set into data set
Z, the data set Z are represented as a p x g matrix, where p is the number of data instances (cells) and g is
the number of features.

Definition 2 (Candidate Model). In order to select an appropriate Training/Testing ML Model, we should
build up a model set M which contains Machine learning methods M = {m;m,m; - - - my }. Then using all the
q cell features in the dataset to train the model and calculate their performance respectively. The performance
can be measured by accuracy, error and F1 score. Denote the performance data set P = {p;, p2, p3,- - Pn -
There is a mapping relationship f between set M and set P, i.e, f: M — P. We select m where m =
7! (max {P}). The model with highest performance will be selected to be the candidate model.

Definition 3 (Important Features). The top-h important features can be selected by the following method.
For each feature, where i € the features set, compute the initial performance P; under the candidate model
and a chosen evaluation metric (e.g., accuracy or ROC). Create a copy of the original data set Z and shuffle the
values of feature i randomly while keeping other features unchanged. Recompute the performance measure
P; using the shuffle dataset. Compute the permutation importance PH value. PH value is the difference
between the initial performance P; and the recompute performance P;, can be formulated to be:

PH; =Py, - P; 1
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Then define a set PH which contains all elements PH; for each i that belongs to the features set. Choose
the largest h elements in PH set where H = {PH,, PH,,---,PH;,---,PH q}. The elements are the top-h
important features and construct set H with them.

Definition 4 (Salient Features). The top-k salient features can be selected by the following method. Let W
denote the whole features set, and S denote the subset of W, i.e., S ¢ W. Denote j as the feature that is not in
the set S but it is in the set W, i.e., j € % Then train the set S U j and compute the corresponding prediction
result g (1 (X su{ j}) the same train the set S and compute the corresponding prediction result g; (Xs). To
compute the effect changes on the model prediction after containing feature j when training the model, we
make a difference between the two prediction results mentioned before, can be formulated to be:

g.j (Xsuj) —&, (Xo) )

And the Shapley values can be computed and used as feature attributions. The formula of the Shapley
values are:

¢j_ Z

e !

[sf! (fwl = [s[ - 1)!

[gsu{j} (®s00i1) — & (xs)] (3)

Define a set PK = {¢1,¢2,- - ¢, -, ¢4 }. Where the elements of the set are the Shapley values ¢;.
Choose the largest h elements in PK set. The elements are the top-k salient features and construct set K
with them.

Definition 5 (Enhance Images Features). The features for enhancing the images can be selected by the
following method. First, choose the features both are important features and salient feature. These features are
contained in the set E where set E is defined : = H n K. Then we use well-established image enhance method
to processing the images, denote set F to contain these methods. Then there exists a mapping function h that
can map image enhance features to image enhance method h: E — F.

SFGA method combines these definitions to guide the selection and enhancement of features for image
processing and model training.

4 Experiments
4.1 Data Preparation

In this paper, our experimentation utilizes the CAMELYEON 2017 dataset [20]. The CAMELYEON
2017 dataset is publicly available at https://iciar2018-challenge.grand-challenge.org/ (accessed on 10 Jan
2025). Which contains 1399 H&E-stained breast cancer sentinel lymph node sections. In collaboration with
medical experts, we selected 50 Whole-Slide Images (WSI) featuring various characteristics, including ENE.
Each WSI has a resolution of approximately 200,000 x 100,000 pixels in 3-channel RGB format, with an
uncompressed data size of 55.88 GB per level. For practical handling, we used the compressed version at 40x
magnification, with file sizes averaging 2 to 4 GB.

Given that a typical region of interest (ROI) within an H&E-stained image contains at least 20,000
cells along with various other materials, it presents a considerable labeling effort. To facilitate this, we
employ the Watershed cell segmentation algorithm [21], which leverages intensity and texture differences to
segment individual cells accurately. The algorithm defines markers representing cell locations and fills the
space between them to create segmented regions of uniform intensity, ensuring precise and non-overlapping
cell segmentation.

The primary objective of our data preparation process is two-fold. Firstly, it involves creating doctor’s
annotations to establish ground truth for training samples in the construction of a deep learning model.
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Secondly, it aims to identify salient features from cell characteristics, which are essential for enhancing
deep learning training images using our novel Salient Features Guided Augmentation (SFGA) method. The
important initial step in this process is the creation of annotations by a doctor with more than a decade
of experience, who was engaged from the First People’s Hospital of Foshan. The tasks in our experiment
encompass cell instance segmentation, mitotic counts, nuclear pleomorphism, tubule formation, and capsule
skin recognition.

4.2 Deep Learning

The SFGA approach selects the best machine learning. We conducted a series of experiments to test
the effectiveness of our deep learning-based concept for enabling Cell-Level Analytics (CLA), which is a
crucial part of ITA. Our objective was to verify the performance of deep learning and our proposed SFGA-
enhanced model in various cell-level recognition tasks, including tumour-immune-fibroblast classification,
proliferating cell recognition, mitotic cell recognition, nuclear pleomorphism classification, and capsule
skin recognition.

We used ResNet 48 as the deep learning model. The design of the experimentation is shown in Fig. 3.
The experimental design included two types of data augmentation: standard augmentation (rotations from
0 to 360 degrees in 5-degree increments, scaling with six zoom levels from 0 to 5, and random shifts of 20
pixels) and light augmentation (only image rotation). Six combinations were tested: Original, Original +
Augmentation, Original + (Light)Augmentation, Enhanced, Enhanced + Augmentation, and Enhanced +
(Light) Augmentation.
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Figure 3: Design of experimentation with ResNet 48 for cell-types classification

Using breast cancer metastasis at the lymph node as the source, we split the dataset into 80% training and
20% validation. After data acquisition, training image tiles were enhanced using SFGA, and salient features
were identified to determine suitable image processing techniques for improving model accuracy. The model
was trained using 5-fold cross-validation to avoid overfitting and generate performance metrics, followed by
performance evaluation.

Our results show that deep learning-based CLA tools can support higher-level pattern-level analytics.
DL-SFGA provides satisfactory inference accuracy, meeting high-performance expectations for cancer
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metastasis medical evaluation. Figs. 4 and 5 present radar charts comparing different DL-SFGA + augmen-
tation combinations for cell type recognition, and butterfly charts highlighting the performance gains of
DL-SFGA over the original dataset.
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Figure 4: Performance of training. (a) Radar chart of performance comparison of deep learning wrt cell recognition,
in training accuracy. (b) Butterfly chart of performance comparison of deep learning wrt DL-SFGA enhancement, in
training accuracy
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5 Results
5.1 Experiment 01: Tumor-Immune-fibroblast Cell

Fig. 6 shows the training and validation accuracy curves for tumor-immune-fibroblast cell type classi-
fication under various data augmentation settings. The ‘Original’ dataset delivers strong performance with a
final training accuracy of 78.375% and an average of 92.398%. The loss converges to 0.642 at the final training
stage, averaging 0.208 overall. On the validation set, the model achieves 85.67% accuracy at epoch 200, with
an average of 94.26%, and loss values of 0.509 and 0.176.
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Figure 6: Deep learning performance curves—the training and validation accuracy diagram of tumour-immune-
fibroblast cell types classification. (a) is original, (b) is original + augmentation, (c) is original + augmentation (light).
(d) is enhanced, (e) is enhanced + augmentation, (f) is enhanced + augmentation (light)

Applying standard augmentation to the ‘Original’ dataset led to a slight decrease in performance, with
final training accuracy dropping to 72.5% and validation accuracy to 80.12%. However, using a lighter
augmentation strategy improved performance, achieving a final training accuracy of 80% and validation
accuracy of 874%. Using an ‘Enhanced’ dataset without further augmentation resulted in substantial
performance gains, with final training accuracy reaching 86.75% and validation accuracy hitting 91.6% at
epoch 200. Reapplying augmentation to this ‘Enhanced’ dataset, however, caused a decline in performance,
particularly in the average validation accuracy.

In conclusion, for cell detection tasks, the best performance was achieved using a high-quality enhanced
dataset without additional augmentation, highlighting the importance of superior data quality. Future
research could explore more advanced augmentation techniques.
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5.2 Experiment 02: Proliferating Cells

This study aims to evaluate the impact of data augmentation and enhancement on model performance
for identifying Ki67 positive cells in Haematoxylin and Eosin (H&E) stained samples through six different
dataset configurations. The ‘Original’ dataset served as a benchmark, achieving a final training accuracy
of 75.625% and an average training accuracy of 92.134%; its performance on the validation set was equally
impressive, with final and average accuracies of 81.02% and 93.58%, respectively.

However, applying standard augmentation to the ‘Original’ dataset led to a decline in all metrics, likely
due to overfitting. Light augmentation improved this situation. When using the ‘Enhanced’ dataset, there
was a significant performance boost, with training accuracy reaching 77.375% and averaging at 95.10%, while
validation accuracy soared to 96.49%. Yet, standard augmentation on the ‘Enhanced’ dataset caused a sharp
drop in validation performance, indicating that excessive augmentation on already enhanced data may lead
to overfitting. Light augmentation once again showed better results.

The experimental findings suggest that although data augmentation can expand and diversify training
data, it must be applied cautiously to avoid issues like overfitting. Data enhancement clearly benefits model
performance, underscoring the importance of investing in high-quality, enhanced datasets for complex tasks
such as Ki67 positive cell detection.

5.3 Experiment 03: Mitotic Cell

In the pursuit of identifying mitotic cells in H&E stained samples, our study involved investigating six
distinct data configurations and their subsequent impact on model performance.

Using the ‘Original’ dataset, the model performed well on the training set with a final training
accuracy of 69.125% and an average training accuracy of 83.119%. However, validation performance showed
a decline with final and average accuracies of 53.85% and 42.43%, respectively, indicating overfitting.
Increasing the original dataset did not improve this situation and may have exacerbated overfitting. Applying
light augmentation, however, improved the average validation accuracy to 49.56%, suggesting that it can
aid generalization.

Transitioning to the ‘Enhanced’ dataset significantly boosted performance, with the average validation
accuracy rising to 81.039%. Further augmenting the enhanced dataset increased the average validation
accuracy to 82.14%, despite a slight drop in final training accuracy to 63.75%. This suggests that data
augmentation introduces additional diversity and robustness, positively impacting model performance.

In summary, our study shows that data enhancement is crucial for improving model performance and
generalization but requires careful calibration. Future research should focus on optimizing these techniques
to enhance model performance and generalizability in detecting mitotic cells in H&E-stained samples.

5.4 Experiment 04: Nuclear Pleomorphism

In the process of identifying polymorphic cells in H&E-stained samples, our study provides signifi-
cant insights.

For the ‘Original’ dataset, the model achieved a training accuracy of 63.75% at epoch 200, with an
average of 80.27%; validation accuracy was 63.31% at epoch 200, averaging 50.82%. The notable discrepancy
between training and validation performance suggests potential overfitting. For the ‘Original + Augmenta-
tion’ dataset, despite slight decreases in both training (61.75%) and validation (61.57%) accuracies at epoch
200, this decline may be attributed to the introduction of unnecessary complexity by the augmentation
strategy. In contrast, the ‘Original + (Light)Augmentation’ dataset showed improved validation accuracy
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(61.82% at epoch 200, averaging 61.16%), suggesting that lighter augmentation can reduce noise or distortion,
thereby enhancing model performance.

When applied to the ‘Enhanced’ dataset, enhancement techniques significantly boosted model per-
formance: training accuracy reached 89.5% at epoch 200 (averaging 94.63%), and validation accuracy was
92.42% (averaging 95.16%). This indicates that appropriate enhancement methods, such as denoising or
contrast adjustment, can substantially improve learning outcomes by reducing irrelevant variations and
emphasizing key features. The ‘Enhanced + (Light)Augmentation’ dataset demonstrated the best results,
achieving training and validation accuracies of 82.88% (averaging 89.84%) and 85.70% (averaging 92.20%),
respectively, at epoch 200.

5.5 Experiment 05: Capsule Skin

This analysis aims to evaluate the impact of various data enhancement techniques on the performance
of models detecting extranodal extension (ENE) in H&E-stained lymph nodes. The results highlight the
importance of dataset manipulation and its effect on model performance. Fig. 7 shows the training and
validation accuracy curves for capsule skin recognition under various data augmentation settings.
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Figure7: Deep learning performance curves—the training and validation accuracy diagram of capsule skin recognition
classification. (a) is original, (b) is original + augmentation, (c) is original + augmentation (light). (d) is enhanced, (e)
is enhanced + augmentation, (f) is enhanced + augmentation (light)

Models trained on the ‘Enhanced’ dataset showed significant advantages, with training accuracy
reaching 85.24%, far exceeding the ‘Original’ dataset’s 66.21%. For validation data, the ‘Enhanced’” dataset
achieved a validation accuracy of 83.46%, markedly higher than the ‘Original’ dataset’s 51.72%. This indicates
that the enhanced dataset not only improves training effectiveness but also enhances the model’s adaptability
to new, unseen data.
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However, not all augmentation methods yield positive outcomes. Excessive augmentation led to
decreased training and validation accuracies in the ‘Original + Augmentation’ dataset, dropping to 40.32%
and lower levels, respectively. This suggests that improper or excessive use of augmentation can harm model
performance. In contrast, the ‘Enhanced + (Light)Augmentation’ approach showed promise, achieving
average training and validation accuracies of 72.66% and 71.42%, respectively. However, further application
to an already ‘Enhanced’ dataset provided limited improvements. In terms of loss, the ‘Enhanced’ dataset
exhibited the lowest training and validation losses, with averages of 0.437 and 0.486, respectively, signifi-
cantly lower than those of the ‘Original’ and ‘Augmented” datasets. This underscores the robustness of the
enhanced dataset.

Overall, these results demonstrate that appropriate data enhancement can significantly improve ENE
detection performance in H&E-stained lymph nodes.

6 Conclusion

In conclusion, SFGA, or Salient Feature Guided Augmentation, stands as an innovative and promising
approach in the field of machine learning and image processing. By utilizing machine learning methods to
identify and enhance the most influential features within the model, SFGA addresses the critical challenge
of improving the input data for deep learning models. This approach offers several distinct advantages that
can significantly impact the field of computer vision and image analysis. It not only facilitates the systematic
and consistent application of image processing techniques but also enhances the discriminative power of
models, ultimately leading to improved performance in various tasks, including image classification and
object recognition. SFGA is a noteworthy contribution to the ongoing efforts to enhance the accuracy and
efficiency of deep learning models, making it a valuable tool for researchers and practitioners in the domain
of artificial intelligence and computer vision. With its potential to advance the state-of-the-art in image
analysis, SFGA demonstrates its significance as a novel method that can empower machine learning models
to better understand and interpret complex visual data, ultimately contributing to advancements in fields
like healthcare, autonomous systems, and beyond. Nevertheless, SFGA approach offers several advantages.

Higher Accuracy. By identifying the features that have the most impact on the model and focusing on
adjusting them, this method can improve the model’s performance compared to directly training it with
original images. It may achieve higher accuracy in specific tasks compared to training models solely with
raw images.

Improved Generalization. Targeted adjustments to input images can effectively reduce the influence of
noise and irrelevant information on the model, thereby enhancing its generalization ability. This means the
model may exhibit better predictive performance when faced with new, unseen data.

Data Augmentation. Based on the identified key features, input images can be selectively enhanced,
thereby increasing the diversity of the training data. This helps improve the model’s generalization ability,
especially in situations with limited data.

Enhanced Explainability. Analysing feature importance using machine learning methods enhances
the interpretability of the model. This is particularly helpful for understanding the model’s behaviour in
specific tasks and identifying potential issues, especially in fields like medical imaging where interpretability
is crucial.

Rapid Iteration and Optimization. After identifying the features that have the most impact on the
deep learning model which may take a long time to converge, the model can be iterated and optimized
more quickly by focusing only on these key features. This reduces training time and computational resource
requirements, improving the efficiency of model optimization.
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7 Future Works

The Salient Features Guided Augmentation (SFGA) approach, as outlined in this research, offers a
promising avenue for enhancing the accuracy of deep learning models in the realm of medical image analysis,
particularly for tasks such as cancer diagnosis and cell feature recognition. As we look ahead, several potential
avenues for future work and research directions emerge.

Firstly, it is necessary to explore more advanced augmentation techniques and optimize SFGA param-
eters. Although experiments have demonstrated the advantages of SFGA in data augmentation, further
research should focus on developing new strategies to mitigate overfitting, improve model generalization
capabilities, and enhance the effectiveness of SFGA by optimizing algorithm selection, fine-tuning image
processing techniques, and exploring the optimal combination of different augmentation techniques. This
will not only contribute to the performance of existing models but may also reveal new features or patterns,
which are crucial for medical image analysis. We are planning a refined model, SFGA-II, which will tune the
model parameters to suit the diversity of data. By then, a wide range of datasets will be used, similar to Simon
Graham’s HoverNet paper, where the team tests pan-cancer datasets over a million.

Secondly, integrating SFGA into real-world clinical settings and ensuring its robustness and scalability
is key to achieving practical applications. Collaboration with medical institutions and pathologists can
validate the effectiveness and practicality of this method in clinical practice. For proof of concept, as a naive
SFGA model for the first time, we focused on distinguishing three basic classes of tissue cells, prioritizing
accuracy over robustness. Future work will include robustness and performance analysis, which are crucial
for clinical applications. To address the challenges of scalability in dealing with the diverse and extensive
datasets commonly encountered in clinical practice, future work needs to ensure that SFGA operates stably
and efficiently on large datasets and under various pathological conditions.

Additionally, it is nowadays a trend to apply large language models in guiding model building. Our work
is one of the early steps towards this goal, although we proposed a narrow application domain on histological
image analysis. Future research should include meticulous comparisons with other works, which will require
significant efforts in reprogramming and setting up large language models as part of our comparison.

Furthermore, future work will involve conducting theoretical and experimental error analysis to explain
any obvious decline in performance by conducting large-scale empirical verification. For the experiments
conducted so far, default parameters were used. It is our plan to work on hyperparameter optimization to fine-
tune those parameter settings for the model as well as for feature extraction and enhancement techniques.
Computational overhead or dependency on feature importance rankings are indeed important, and we plan
to write further analysis as a separate paper in the future.

Future research and development in the areas mentioned above especially on the aspects of rigorous
performance assessment such as the model’s specificity, sensitivity and balanced Fl-scores will contribute to
the continued advancement of Al in healthcare and have a positive impact on patient outcomes and the field
of medical image analysis.
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Appendix A
Table Al: DKM mapping for tumour-immune-epithelial cell images transformation
Class Salient features Guided transformation sequence in Image]J format Ref.
Tumour Max optical density of hematoxylin in cell 1. Simulate Color Blindness (mode = Typical [22-24]

cytoplasm | moderately Monochromacy)

RationaleReducing the hematoxylin staining 2. Enhance Contrast (saturated = 0.35 equalize)

intensity, which means decreasing the Median Filter (radius = 1)
maximum optical density of hematoxylin in 4. Gaussian Blur (sigma = 0.5)
the cell cytoplasm, helps the deep learning
model to more accurately distinguish between
types of tumor cells, thereby improving

classification accuracy.

©

Immune Max optical density of hematoxylin in cell 1. Enhance Contrast (saturated = 0.35 equalize) [23-26]
cytoplasm 1 40% 2. Normalize Local Contrast (block_radius_x =
Rationale: Applying a median filter, CLAHE 40, block_radius_y = 40, standard_deviations =
technique, and threshold processing enhances 3, center stretch)
the visibility of immune cells. Increasing 3. Gaussian Blur (sigma = 3)

contrast and brightness makes immune cells 4. Unsharp Mask (radius = 1, mask = 0.60)
more distinct from surrounding tissues. This

helps deep learning models more easily
differentiate between various types of tumor

cells.
Epithelial Max cell calliper — needs to appear more 1. Simulate Color Blindness (mode = Typical [21,23,27]
prominently Monochromacy)
Rationale: Enhancing image features makes it 2. Find Edges
easier for deep learning algorithms to 3. Gaussian Blur (sigma = 2)
distinguish between different types of cells. For 4.  Enhance Contrast (saturated = 0.35 equalize)
example, using contrast stretching to enhance 5. Enhance Local Contrast (CLAHE) (blocksize =
specific cellular features, CLAHE to highlight 127, histogram = 256, maximum = 3, mask =
cell edges, and median filtering to reduce noise *None* fast_ (less_accurate))

all contribute to improving image quality. 6.  Maximum Filter (radius = 9)
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Table A2: DKM mapping for proliferating cell images transformation
Class Salient features Guided transformation sequence in Image]J format Ref.
Positive GLCM saturation HAR contrast — needs to 1. Simulate Color Blindness (mode = [Protanopia  [28-30]
appear more prominently (no red)])
Rationale: Suppress the red channel, enhance ~ 2. Sharpen
green and blue features to highlight non-red
attributes (texture, shape, intensity), and
increase contrast and sharpness to enhance cell
edges and details for improved model
classification.
Negative GLCM hematoxylin min value 1 100% 1. Simulate Dichromacy (mode = Protanope) [31-34]
Rationale: Simulating red color blindness 2. Subtract Background (rolling = 10, light create)

reduces excess colors, simplifies the
background, and highlights foreground cells,
aiding the algorithm in focusing on key features
(like high GLCM hematoxylin minimums).

Table A3: (a) DKM mapping for mitotic cell images transformation; (b) DKM mapping for mitotic cell images

transformation
(a)
Class Salient features Guided transformation sequence in Image]J format Ref.
Mitotic Cluster mean: Delaunay should be higher 1 1. Find Edges [35-38]
Number of neighbhours in Delaunay should be 2.  Top Hat (radius = 1light don’t create)
higher 1 3. Gaussian Blur (sigma = 2)
Hematoxylin optical density mean of cell 4. Enhance Contrast (saturated = 0.35)
nucleus should be higher 1 5. Equalize Histogram
Rationale: Tophat transformation enhances
local structures; Gaussian blur reduces noise
and smooths images; contrast enhancement
improves feature visibility and differentiation
from the background.
(b)
Class Salient features Guided transformation sequence in Image]J format Ref.
Non-mitotic Cluster mean: Delaunay should be lower | Find Edges [39,40]

Number of neighbhours in Delaunay should be

lower |
Hematoxylin optical density mean of cell
nucleus should be lower |

Rationale: Find edge highlights cell boundaries;

minimum filter emphasizes low-intensity
structures; contrast enhancement improves
visibility and classification accuracy.

LN

Minimum Filter (radius = 1)
Gaussian Blur (sigma = 0.80, scaled)
Enhance Contrast (saturated = 0.35)
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Table A4: DKM mapping for pleomorphism type cell images transformation

Class Salient features Guided transformation sequence in Image]J format Ref.

High GLCM: Green Haralick Sum entropy 1 1. Find Edges [41-45]

Nucleus: Hematoxylin Optical density sum -~ 5 o o b1 Bitter (sigma = 1)

keep low 3. Unsharp Mask Filter (radius = 1, mask = 0.60)
Cell circularity — keep low

Rationale: High GLCM Green Haralick features
highlight complex textures. Low nuclear
hematoxylin density ensures uniform staining.
Low cell circularity emphasizes irregular
shapes, improving recognition accuracy.

Moderate GLCM Residual Min — keep low 1. Find Edges [46-48]
Cell area v lo.wer . . 2. Kuwahara Filter (sampling = 3 filter)
Nucleus: Hematoxylin Optical density min — 3. Top Hat Filter (radius = 0.5 light don’t)
' keep lqw o 4. Gaussian Blur Filter (sigma = 2)
Rationale: Edge detection highlights cell 5. Enhance Contrast (saturated = 0.1 equalize)
boundaries; Kuwahara filtering reduces noise
while preserving edges; Top Hat
transformation enhances local contrast;
Gaussian blur smooths images and emphasizes
key features; contrast enhancement improves
cell distinction.
Low GLCM: Hematoxylin: Haralick Contrast | 1. Simulate Dichromacy (mode = Protanope) [49-52]
lower 2. Subtract Background (rolling = 10 light create)

Nucleus: Eccentricity | lower
Nucleus area — keep low
Nucleus perimeter— keep low
Rationale: Simulating dichromacy reduces
emphasis on certain colors, helping the
algorithm focus on other features. Background
subtraction removes unnecessary details,
enhancing visibility and contrast of low
pleomorphic cells.

Table A5: (a) DKM mapping for skin capsule type cell images transformation; (b) DKM mapping for skin capsule type
cell images transformation; (¢) DKM mapping for skin capsule type cell images transformation

(a)

Class Salient features Guided transformation sequence in Image]J format Ref.

Fat GLCM lszéiar alick qurelzition 1 higher 1. Simulate Color Blindness (mode = [Typical [53-56]
reen: min T
Rationale: Simulagti;eg monoihfxrelatic vision Mon.o chrgmacy]) .
2. Median Filter (radius = 2)
reduces color impact, focusing the algorithm
on texture and structure for better fat cell
recognition. The median filter reduces noise
and smooths images, enhancing the clarity of
fat cell features. This minimizes interference
and improves detection accuracy.

(Continued)
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Table A5 (continued)

(b)

Fat- GLCM Green: Haralick information measure L Auto Local Threshold [57-60]
skin of correlation | lower 2

Simulate Color Blindness (mode = [Typical
GLCM blue: Haralick difference variance | Monochromacy])

) keep low . 3. Enhance Local Contrast (CLAHE) (blocksize =
Rationale: Auto Local Threshold automatically 127 histogram = 256 maximum = 3 mask =
segments cells from the “None*)

background, extracting regions of interest.

Simulating monochromacy reduces color
influence to improve the distinction of stromal
cell features within fat tissue. CLAHE enhances

local contrast, highlighting fine details and

characteristics of stromal cells and adipose

tissue.

(©)

Skin GLCM: Red: Haralick Correlation 1 higher

1. Simulate Color Blindness (mode = [Typical [61,62]

Monochromacy])

Median Filter (radius = 1)

Gaussian Blur Filter (sigma = 0.5)

. ; ; Enhance Contrast (saturated = 0.10 equalize)
noise, enhancing structure clarity. CLAHE Enhance Local Contrast (CLAHE) (blocksize =

improves local contrast, revealing subtle 127 histogram = 256 maximum = 3 mask =
details, which together improve the accuracy of “None*)

cell detection and classification.

GLCM: Green: Min | lower
Rationale: Simulating monochromatic vision
reduces color influence, focusing on key cell
features. Median and Gaussian filters reduce

S
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