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ABSTRACT: This study presents an enhanced convolutional neural network (CNN) model integrated with Explainable
Artificial Intelligence (XAI) techniques for accurate prediction and interpretation of wheat crop diseases. The aim is
to streamline the detection process while offering transparent insights into the model’s decision-making to support
effective disease management. To evaluate the model, a dataset was collected from wheat fields in Kotli, Azad Kashmir,
Pakistan, and tested across multiple data splits. The proposed model demonstrates improved stability, faster conver-
gence, and higher classification accuracy. The results show significant improvements in prediction accuracy and stability
compared to prior works, achieving up to 100% accuracy in certain configurations. In addition, XAI methods such as
Local Interpretable Model-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) were employed
to explain the model’s predictions, highlighting the most influential features contributing to classification decisions.
The combined use of CNN and XAI offers a dual benefit: strong predictive performance and clear interpretability of
outcomes, which is especially critical in real-world agricultural applications. These findings underscore the potential
of integrating deep learning models with XAI to advance automated plant disease detection. The study offers a precise,
reliable, and interpretable solution for improving wheat production and promoting agricultural sustainability. Future
extensions of this work may include scaling the dataset across broader regions and incorporating additional modalities
such as environmental data to enhance model robustness and generalization.

KEYWORDS: Convolutional neural network (CNN); wheat crop disease; deep learning; disease detection; shapley
additive explanations (SHAP); local interpretable model-agnostic explanations (LIME)

1 Introduction
Wheat is the third most consumed food in the world after corn and rice. It provides essential vitamins

and minerals, having a significant impact on human nutrition. According to the Food and Agriculture
Organization of the United Nations (FAO), one in ten people worldwide suffers from severe malnutrition
due to insufficient food. The yield per hectare in developing countries is lower than that in developed
countries [1]. The difference is due to the use of modern technology and methods in agriculture. Currently,
the Fourth Industrial Revolution is transforming industries, including agriculture [2]. Artificial intelligence
(AI), machine learning, and deep learning play crucial roles in transforming the agricultural industry. These
technologies facilitate precision farming, leading to reduced resource waste and increased profits [3,4].

Approximately 90% of the world’s wheat-growing area is exposed to at least one type of wheat disease,
resulting in annual production losses of more than 62 million tons. This loss represents approximately 8.5%
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of the world’s wheat production, which is enough to meet the nutritional needs of up to 173 million people
each year [5]. In Egypt, wheat diseases severely affect farmers, leading to losses of up to 42.94% [6].

Traditionally, wheat diseases have been detected through manual inspection of each plant. However, this
method is subjective, slow, and often inaccurate [7,8]. With technological advancements, machine learning
and deep learning are increasingly being used for rapid detection and identification of wheat diseases, helping
to prevent grain waste and ensure high crop yields, thereby maximizing farmers’ profits [9,10].

Deep learning methods, such as convolutional neural networks (CNNs), have achieved high accuracy
in image classification tasks. Unlike traditional feature-based supervised learning methods like random
forests and support vector machines (SVMs), deep learning approaches are end-to-end. These methods
automatically extract and learn features from data without the need for manual feature engineering.
Nowadays, deep learning models are increasingly used in image analysis. Many deep learning models have
been trained on large datasets.

The use of XAI adds a crucial dimension to these advancements, enabling transparency and inter-
pretability in model predictions. XAI techniques, such as LIME and SHAP, allow stakeholders to understand
how and why the model reaches specific decisions. This is particularly valuable in agriculture, where trust
and transparency are essential for adoption. By providing visual and numerical explanations, XAI not only
enhances model reliability but also helps farmers and agricultural experts make informed decisions, ensuring
broader acceptance of AI solutions in the field.

The quality of wheat grains affects many aspects of people’s lives. Global food shortages persist, and
developing countries, especially in Asia and Africa, struggle with hunger and malnutrition. Low food
production affects the overall health and happiness of rural families [11]. As information and communication
technology tools improve, farmers are gaining access to better technological solutions. Consequently, mobile
applications utilizing artificial intelligence are becoming useful in classifying wheat diseases [12,13].

In this study, the main objectives are to (1) develop an enhanced CNN model for wheat disease detection,
(2) integrate Explainable AI techniques (LIME and SHAP) to provide transparent insights into the model’s
decision-making, and (3) evaluate the model’s accuracy and stability against recent benchmark studies.

The rest of this paper is organized as follows: Section 2 provides a description and comparison
of related work. Section 3 presents the proposed method. Section 4 discusses the experimental results.
Finally, Section 5 concludes the paper and suggests future work.

2 Literature Review
Numerous studies have utilized machine learning and deep learning methods to develop robust models

for the detection of wheat and plant diseases. This literature review examines various studies that have worked
with different machine learning and deep learning methods to identify wheat and plant diseases, highlighting
the datasets used, methodologies, and performance outcomes. Multiple approaches, including traditional
ML and deep CNN architectures, have been proposed to enhance classification accuracy.

The authors of [14] used a dataset of tomato leaf samples showing six different diseases. Histogram
equalization was used to improve image quality, and k-means clustering was used for dividing the images into
regions showing signs of disease. They proposed multiple feature extraction methods, such as discrete wavelet
transform (DWT), principal component analysis (PCA), and gray level co-occurrence matrix (GLCM), for
machine learning algorithms including SVM, k-nearest neighbors (K-NN), and CNN. The model showed
classification accuracy with SVM (88%), K-NN (97%), and CNN (99.6%) on tomato disease samples.

The study in [15] used a dataset collected from different wheat fields in Pakistan, comprising 3150
images categorized into brown rust, severe yellow rust, and healthy leaves. The images were processed using
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segmentation methods such as mask-based and resizing to differentiate between healthy and unhealthy areas.
Various machine learning models were proposed and trained on the preprocessed data. The primary model
developed is a fine-tuned random forest classifier (RFC), optimized to achieve high accuracy and efficiency.
The proposed framework achieved a very high accuracy of 99.8%, better than the performance of existing
machine learning techniques used for wheat disease classification.

Some researchers consider lightweight CNN models for the detection of wheat and plant diseases
because they are computationally efficient and can be deployed on edge devices. The authors of [16] used a
dataset collected from wheat fields in the district of Kotli, Azad Kashmir, Pakistan. A total of 3750 images
were initially captured, reevaluated, and faulty images removed, leaving 1567 images. They proposed a
lightweight CNN model consisting of eight layers, including three convolutional layers with 16, 32, and 64
filters each using a 3 × 3 kernel size. The model uses a training-validation-test split with three variations
(S1: 70%:15%:15%, S2: 75%:15%:10%, S3: 80%:10%:10%) to evaluate the performance. The S3 variant (80%
training, 10% validation, 10% testing) demonstrated superior performance, achieving 93% accuracy. The
lightweight CNN architecture is emphasized as being suitable for real-time applications, potentially even
on smartphones.

The study in [17] used a wheat disease dataset with seven classes, including six disease classes and
one healthy class. Some data were collected from the LWDCD2020 dataset, and other images captured
using mobile phone photography. The dataset was filled with images showing various stages of disease
and varied backgrounds. After augmentation, they proposed a lightweight multiscale CNN integrating
Inception, ResNet, and attention mechanisms, achieving 98.7% accuracy and outperforming classic and
lightweight CNNs.

In [18], the images were collected from the Anhui Agricultural University Industry-University Research
Base. The images contain healthy wheat ears and those affected by scab and glume blight, totaling 568 images.
The images were preprocessed using the Retinex algorithm to enhance them by reducing lighting effects and
augmenting the data through transformations like rotation and flipping. They proposed a lightweight CNN
model, SimpleNet, which utilizes an attention mechanism and feature fusion to enhance model performance
for disease identification in complex background settings.

Other researchers have used CNN models. For instance, Ref. [19] used a dataset (LWDCD2020),
containing approximately 12,000 images across nine different classes of wheat diseases and one normal class.
All images were preprocessed to ensure dimensional uniformity, resized to 224× 224 pixels, and standardized
before being split for training and testing. They proposed a new deep convolutional neural network model
consisting of 21 convolution layers, 7 max-pooling layers, achieving 97.88% accuracy and outperforming
popular models like VGG16 and RESNET50. The study in [20] used a dataset composed of 4800 images of
eleven different wheat diseases like leaf rust and powdery mildew, and images of healthy crops, achieving
98.84% accuracy with a CNN-based classifier.

The study in [21] used two datasets. They proposed CNN-CA-I (image-based) and CNN-CA-W
(weather-based), reporting accuracies of 92.6% and 90.1%, respectively. The authors of [22] tested a CNN
model on 5932 rice leaf images and 1500 potato leaf images, achieving 99.58% and 97.66% accuracy,
respectively.

Several researchers have used pre-trained CNN models. The authors of [23] used the dataset
WheatRust21, which consists of 6556 images collected from field conditions. They proposed a fine-tuned
EfficientNet B4 model, which outperformed other models with testing accuracy of 99.35%. In [24] a CNN
for Powdery Mildew wheat disease, combined with transfer learning, achieved up to 89.9% accuracy. In [25],
a modified VGG19 showed high performance (96.08%) on rice leaf diseases.
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The authors of [26] used the PlantVillage dataset, which consists of approximately 10,000 images
representing various crop diseases and healthy plants. They proposed multiple CNNs (VGG-16, VGG-
19, ResNet-50) with transfer learning. The ResNet-50 model integrated into a web application achieved
98.98%. In [27], a VGG16 model pretrained on ImageNet classified wheat rust diseases with 99.54%
accuracy. In [28], 5170 images in 27 disease classes were analyzed using MobileNet, VGG16, InceptionV3,
and InceptionResNetV2, with MobileNet showing strong results.

The study in [29] used two datasets—PlantVillage and FWDI—and seven different CNN archi-
tectures, including VGG-16, Inception-v3, ResNet-50, DenseNet-121, EfficientNet-B6, ShuffleNet-v2, and
MobileNetV3. Three training strategies were applied (scratch, fixed feature extraction, fine-tuning), with
Inception-v3 reaching 92.5% accuracy. Additionally, the integration of XAI in plant disease diagnosis has
gained traction, offering insights into model decision-making processes. The study in [30] demonstrated the
efficacy of CNNs for early crop disease detection, combined with XAI visualization to explain predictions,
achieving 89.75% accuracy. Another work [31] explored early diagnosis of plant stress using hyperspectral
and thermal imaging, highlighting how XAI can enhance interpretability.

Finally, a dataset of 147,500 images representing 58 plant leaf classes was improved by three augmen-
tation techniques: basic image manipulation (BIM), deep convolutional GAN (DCGAN), and neural style
transfer (NST). A 14-layer DCNN trained for 1000 epochs reached 99.9655% accuracy. The related work
shows there are existing knowledge gaps that are primarily related to stability in training and prediction
accuracy fluctuations. In summary, these diverse studies highlight the need for stability, high accuracy, and
interpretability—gaps our proposed model addresses with batch normalization, hyperparameter tuning, and
XAI (LIME, SHAP).

Batch normalization is used to stabilize the learning process, thus reducing accuracy fluctuations. Addi-
tionally, a carefully tuned learning rate leads to more precise parameter updates and improved convergence,
enhancing the model’s overall robustness.

3 Materials and Methods
In today’s technologically advanced era, the early detection of plant diseases is critical for ensuring

timely and effective treatment, which directly supports consistent agricultural productivity and food security.
Transitioning from traditional manual disease detection methods to automated systems can significantly
benefit farmers by providing accurate, scalable, and real-time solutions.

This study focuses on enhancing wheat disease detection by developing a modified version of the
lightweight CNN model introduced in [16]. The proposed methodology integrates advanced techniques
to improve prediction accuracy and model stability while maintaining computational efficiency, making it
suitable for real-world agricultural applications.

The workflow of the proposed method consists of several key modules: dataset collection, image pre-
processing, feature extraction using convolutional layers, classification, model compilation, training, and
evaluation. These modules collectively ensure a streamlined and robust process for disease detection. The
training experiments were conducted on Google Colab using default Python settings with GPU support. The
overall workflow, illustrating the step-by-step methodology, is presented in Fig. 1.
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Figure 1: The workflow of the proposed method

3.1 Dataset Description
The dataset for this research work involved images taken from wheat fields of Kotli district in Azad

Kashmir, Pakistan, using mobile phones in different states. In all, 3750 images—kept safe at various angles
and locations inside the fields—were used in the initial study. After examining, they carefully removed faulty
and poor-quality photos and produced 1567 much-refined images. Annotated manually from the field expert
side, these images attained the credibility and precision of the tags. From this set, 450 images were chosen
for experiment purposes, equally divided under the subjects “healthy” and “unhealthy” into 225 each.

Figs. 2 and 3 show sample images from that dataset, taking typical examples of healthy and unhealthy
wheat plants. Their use also refers to the method used in Ref. [16], to be able to compare directly with results
and validate improvements on the proposed model. It is also recognized that the relatively small dataset size
(450 images) may limit the model’s generalizability. Additionally, collecting images from a single district is
acknowledged as a limitation to geographical diversity. Future efforts should aim to expand the dataset across
varied regions. With this relatively more modest data set, these enhancements don’t penalize the proposed
CNN by significantly affecting its performance. Several aspects are due to the model’s light architecture,
which was designed to learn efficiently from less data. Batch normalization and dropout integration while
training also lead to better generalization within the model and reduce overfitting issues. These steps further
ensured the model could reach the level of accuracy and stability it had manifested within real-world working
agricultural environments from the achieved features and benefits.

Figure 2: Sample healthy images from the captured dataset in [16]. Reprinted with permission under CC BY 4.0 License
from Tech Science Press

To ensure a fair comparison with the work in [16], the dataset was divided into three distinct split ratios:
S1 (70% training, 15% validation, 15% testing), S2 (75% training, 15% validation, 10% testing), and S3 (80%
training, 10% validation, 10% testing). These splits were designed to evaluate the model’s performance across
varying amounts of training and testing data while maintaining consistency with previous research. The
proposed model was trained and validated on each of these splits, allowing for a thorough analysis of its
robustness and learning behavior under different data configurations.
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Figure 3: Sample unhealthy images from the captured dataset in [16]. Reprinted with permission under CC BY 4.0
License from Tech Science Press

3.2 Dataset Pre-Processing
The preprocessing step readied the dataset for input into the CNN model by preparing the photos. The

photographs were resized to a specific dimension so that each one has dimensions of 200 × 200 pixels and
fits the model’s input requirements. Data augmentation techniques (e.g., flipping, rotation) were applied to
address potential overfitting.

The datasets were randomly shuffled during the training and validation phases to ensure a greater
diversity of samples available to the model, prevent biases due to image ordering, and allow assumptions for
better generalization throughout the data. These preprocessing steps play a vital role in modernizing the data
and increasing efficiency in learning the model.

3.3 Convolutional Neural Network
The CNN would involve wheat plant photo processing through convolution operations, resulting in

a feature mapping to extract significant semantics while conserving the spatial relationship. The basic
CNN architecture typically has convolutional layers that apply filters to learn patterns, pooling layers for
dimensionality reduction of feature maps, and a final classification in fully connected layers.

The proposed CNN model structure begins with an input layer designed for 200 × 200 × 3 (RGB)
images. It is followed by three convolutional layers embedding 32, 64, and 64 filters, each with a 3 × 3 kernel
size. A stride of (1, 1) and ‘same’ padding are adopted in all convolutional layers to keep spatial dimensions
unchanged in the inputting image. The ReLU activates and propagates it to the model through each layer to
accommodate diverse models in capturing complicated patterns.

In each convolutional layer, the learning process shifts toward a better and more general image when
intersecting toward being followed by batch normalization for stabilizing the learning process and boosting
generalization. The outputs from the intermediate layers are normalized, accelerating the pace of training,
regularizing the models, and making them less sensitive to initialization. Sometimes, max pooling is applied
in the batch normalization layer with a pool size of 2 × 2 and stride of 2 to reduce the dimensionality of the
features maps and reduce the complexity computationally.

After all features have been extracted, the flattened layer comes in and turns the feature maps into
a one-dimensional vector, which qualifies the data for fully connected layers. The final dense layer con-
tains only two units representing the other classes for the other pair of classifications. The dense layer
with softmax activation also provides an output probability distribution over the two classes to facilitate
model classification.

The implementation of this CNN is very lightweight to ensure efficient computational services. It has
great potential for real-time applications and, hence, edge-based agricultural applications, as is evident
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from Fig. 4, where the holistic architecture of the proposed model is illustrated, detailing every component
of it in the classification process.

Figure 4: Proposed CNN model structure

3.4 Explainable Artificial Intelligence
To ensure transparency in the decision-making process of the proposed CNN model, this study

incorporates XAI techniques, specifically LIME and SHAP [32,33]. These methods provide insights into
the model’s behavior, allowing stakeholders to understand how predictions are made and fostering trust in
the system.

LIME focuses on explaining individual predictions by approximating the complex CNN model with a
simpler, interpretable model, such as a linear regression or decision tree, in the vicinity of a specific input. By
perturbing the input and observing the effects on the model’s predictions, LIME identifies the key features or
regions of an image that significantly influence the classification decision. For instance, in this study, LIME
helps pinpoint specific areas in wheat images that the model considers crucial for determining whether the
crop is healthy or unhealthy. This localized explanation is particularly valuable for non-technical users, as it
provides intuitive visual feedback on the model’s reasoning.

SHAP complements LIME by offering both local and global interpretability. It explains how individual
features contribute to the model’s predictions by distributing the output among the input features based on
their importance. Unlike LIME, which focuses on instance-specific explanations, SHAP provides an over-
arching view of feature importance across the entire dataset. Specifically, SHAP is grounded in cooperative
game theory, treating each feature as a ‘player’ in a coalition and computing Shapley values to quantify feature
contributions, thus reflecting the theoretical basis and assumptions behind its calculation of importance. In
this study, SHAP reveals patterns and trends that the model relies on to distinguish between healthy and
diseased wheat, offering a broader perspective on the model’s decision-making process. This insight is critical
for validating the model’s behavior against domain knowledge and identifying any potential biases.

The combination of LIME and SHAP in this research ensures a comprehensive understanding of the
CNN model’s predictions, both at the instance level and across the dataset. These techniques not only enhance
the interpretability of the model but also improve its usability for agricultural experts and farmers by building
confidence in the system’s outputs. Additionally, the insights provided by XAI facilitate iterative model
refinement and ensure alignment with real-world requirements.
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3.5. Performance Evaluation
Several key metrics are employed to evaluate the proposed model’s performance, including accuracy,

precision, recall, and F1-score, which are standard for classification tasks. These metrics provide a compre-
hensive view of the model’s performance by considering both correct predictions and errors, enabling robust
assessment across different aspects of classification. Class-wise performance evaluations are also conducted
to analyze the classifier’s performance for each class individually.

Accurac y = TP + TN
TP + TN + FP + FN

(1)

Recal l = TP
TP + FN

(2)

Precision = TP
TP + FP

(3)

F1 = 2 × Precision × Recal l
Precision + Recal l

(4)

where TP is the True Positive, TN is the True Negative, FP is the False Positive, and FN is the False Negative.
These metrics are evaluated at both overall and class levels to ensure the model’s reliability and

robustness, particularly in distinguishing between healthy and unhealthy wheat images.

4 Results and Discussion

4.1 Model Training with Multiple Dataset Splits
The dataset comprised images of healthy and unhealthy wheat crops organized into two directories.

Given the relatively small size of the dataset, multiple experiments were conducted to investigate the potential
for model underfitting and to evaluate the model’s performance under various dataset splits.

The proposed model was trained on all three splits. Fig. 5 shows the training and validation loss curves
for the splits S1, S2, and S3, while Fig. 6 presents the corresponding accuracy curves. These visualizations
provide insights into the model’s learning behavior across epochs. In the baseline model reported in [17], the
training process showed significant fluctuations in accuracy, ranging from 20% to 100% across epochs. These
fluctuations indicate instability in the learning process, leading to inconsistent performance. To address
these issues, batch normalization was integrated into the CNN architecture. Batch normalization normalizes
the inputs to each layer for each mini-batch, effectively reducing internal covariate shifts and stabilizing
the training process. Additionally, the learning rate was reduced to 0.0009, allowing the model to perform
smaller, more precise updates to its parameters. This modification improved convergence and ensured greater
stability during training. The impact of these enhancements is evident in the loss and accuracy curves for S1,
S2, and S3.

In Fig. 5, the loss curves for both training and validation datasets show smooth convergence with
minimal fluctuations, indicating consistent learning across epochs. Similarly, Fig. 6 demonstrates stable and
steadily improving accuracy for both training and validation datasets. Unlike the results in [16], where
validation accuracy fluctuated significantly, the proposed model maintains a stable and high accuracy
throughout training. This improvement highlights the effectiveness of batch normalization and learning
rate tuning in addressing the instability observed in prior work. Across all three splits, the model exhibits
strong performance, with convergence observed within 20–30 epochs for each split. The consistent behavior
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across S1, S2, and S3 demonstrates the robustness of the proposed model, even when the amount of training
data varies.

Figure 5: Training and validation loss for S1, S2, and S3 dataset splits

Figure 6: Training and validation accuracy for S1, S2, and S3 dataset splits

4.2 Model Testing with Multiple Dataset Splits
The proposed model was evaluated using three dataset splits: S1 (70% training, 15% validation, 15%

testing), S2 (75% training, 15% validation, 10% testing), and S3 (80% training, 10% validation, 10% testing).
These splits allowed for a thorough assessment of the model’s performance and its ability to generalize
under varying data distributions. Table 1 presents a class-wise comparison of precision, recall, and F1-scores
between the proposed model and the baseline. The confusion matrices for these splits, shown in Fig. 7,
highlight the model’s classification results for both healthy and unhealthy wheat images.

Table 1: Comparison of Class-wise performance evaluation between the related work [16] and this research

Dataset
split

Image
class

Precision
study [16]

Precision
proposed

model

Recall
study [16]

Recall
proposed

model

F1-Score
study [16]

F1-Score
proposed

model

S1 Healthy 0.77 97% 97% 100% 86% 99%
Unhealthy 0.96 100% 71% 97% 81% 99%

S2 Healthy 0.87 100% 85% 100% 83% 100%
Unhealthy 0.86 100% 83% 100% 84% 100%

S3 Healthy 0.95 100% 91% 100% 93% 100%
Unhealthy 0.94 100% 93% 100% 93% 100%
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Figure 7: Confusion matrix for S1, S2, and S3 dataset splits

For the S1 split, the model achieved a true positive rate of 1.00 for healthy crops and 0.97 for unhealthy
crops, resulting in an overall accuracy of 99%. The class-wise evaluation metrics, including precision, recall,
and F1-scores, were consistently high. For the healthy class, precision, recall, and F1-scores were 0.97, 1.00,
and 0.99, respectively, while for the unhealthy class, they were 1.00, 0.97, and 0.99. These results demonstrate
the model’s ability to accurately classify wheat images with minimal errors.

For the S2 and S3 splits, the model achieved perfect classification, as evident from the confusion
matrices showing no false positives or false negatives. The precision, recall, and F1-scores for both healthy
and unhealthy classes were 1.00, resulting in a perfect accuracy of 100%. This exemplary performance across
splits demonstrates the robustness of the model and its capacity to generalize effectively, even with varying
amounts of training and testing data.

A comparison with the related work in [16], as presented in Table 2, underscores the improvements
brought by the proposed model. In particular, the addition of a batch normalization layer and fine-tuning of
the learning rate significantly enhanced class-wise metrics, especially for the healthy class, where precision,
recall, and F1-scores consistently outperformed the baseline.

Table 2: Comparison of weighted average performance evaluation between the related work [16] and this research

Dataset
split

Precision
study [16]

Precision
proposed

model

Recall
study [16]

Recall
proposed

model

F1-Score
study [16]

F1-Score
proposed

model
s1 86% 99% 84% 98% 84% 99%
s2 85% 100% 85% 100% 85% 100%
s3 94% 100% 93% 100% 93% 100%

The key contributions to these improvements include the integration of batch normalization, which
stabilized the learning process by normalizing the inputs to each layer, and a reduced learning rate of 0.0009,
which allowed for smaller, more precise updates to the model parameters. Additionally, using dropout
layers helped address overfitting concerns, especially given the relatively small dataset of 450 images. These
adjustments not only minimized fluctuations in training accuracy but also enhanced the model’s overall
stability and performance. The results clearly demonstrate that the proposed model is well-suited for wheat
disease classification and can serve as a reliable tool for agricultural applications.
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4.3 Comparative Performance with Other Models
A comparison with other CNN methodologies is provided in Table 3 below for a better understanding

of the proposed model’s effectiveness. The comparative metrics of various models, such as dataset size, target
crop, and reported accuracy, are included in the table showing where our approach has distinct advantages
over the others in wheat disease detection.

Table 3: Comparative analysis of the proposed model with other studies

Model Crops Dataset Accuracy
Proposed Model (CNN) Wheat In-field dataset of 450 images 100%

CNN [16] Wheat In-field dataset of 450 images 93%
CNN [34] Wheat 100% 83%

VGG16 [35] Common wheat, weeds,
cleavers, sugar wheat

Dataset of 1922 images 92%

MobileNet [36] Multiple Dataset of 942 images 81.90%–87.20%
CNN Inception v3 [37] Cassava Own dataset of images collected

from Tanzania
93%

Furthermore, the weighted average performance metrics shown in Table 3 reveal similar enhancements,
with the proposed model achieving higher precision, recall, and F1-scores across all dataset splits compared
to [16]. These improvements validate the effectiveness of the modifications made to the model architecture.

Table 3 shows that the Proposed Model performs better than several other CNN versions. It achieved
an accuracy of 100% on its in-field wheat dataset. This accomplishment illustrates the effectiveness of batch
normalization, the use of lower learning rates, and dropout techniques to control overfitting even when the
dataset size is relatively small.

Also, the variation in dataset size, the target crops, and the reported accuracies demonstrate the
necessity of diversity in data and custom-tailored architectural choices. Some models, like CNN [16] try to
utilize a more or less similar dataset. Still, their accuracy is lower (93%) due to inadequate adjustment of
hyperparameters coupled with insufficient addition of stabilization layers. However, VGG16 [35] and CNN
Inception v3 [37] differ since they achieve results above 90% accuracy over different crops, but they differ
significantly in designs and contextual datasets. This suggests that no single model outmatches all other
models without considering specific domains.

In summary, the flawless accuracy of the model might be considered overfitting, especially when using a
small dataset, but strong guarantees of interpretability are provided through LIME and SHAP. Further, a more
diverse dataset or other forms of augmentation are suggested to improve generalizability. In any case, the
results confirm the potential of our modified CNN design for practical and precise wheat disease detection
using image analysis in field agriculture.

4.4 Explainable AI Explanations
In order to make the CNN model’s predictions transparent and interpretable, two XAI methods were

used: LIME and SHAP, which provided highly descriptive insights on how the model categorizes wheat crops
in healthy and unhealthy states, with entirely complementary views of interpretability on the model.

Instead, LIME was employed to provide localized explanations for the CNN model’s predictions
by highlighting specific areas of input images that affected the classification outcome. Results of LIME
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experiments for healthy and unhealthy wheat images are shown in Fig. 8, where the original images are above
the corresponding LIME explanations.

Figure 8: Visualization of healthy and diseased wheat crops with LIME explanations for class predictions

For healthy wheat images, LIME highlighted areas with a distinct green color and structural uniformity
among the spikes. Consistent with long-standing domain knowledge, this feature suggests that the model
spots meaningful and biologically valid criteria for defining a healthy crop. LIME thus made the model’s
decision to classify an image as “healthy” appear well-founded.

Conversely, LIME identified discolorations, rough surfaces, and large patches indicative of diseases like
rust or fungal infections as areas of interest for unhealthy wheat images. For example, it highlighted areas
with yellowing or brown spots, demonstrating that the model pays attention to some of the most common
signs of diseases. Such localized explanations help tie the predictions to the model’s reasoning and provide
actionable insights for farmers, who can estimate the extent of disease-affected regions on their farms.

On a broader scale, the LIME outputs reveal crucial spots from the images, improving the model’s
overall transparency at an instance-specific level. This can be highly compelling for end-users like farmers
and agricultural experts, helping them understand what drives the model’s decisions.
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SHAP was also employed to provide both local and global explanations by quantifying the contribution
of individual features to the model’s predictions. Fig. 9 presents SHAP visualizations for healthy (left) and
unhealthy (right) wheat images. The SHAP color maps overlay the input images, where red regions indicate
a positive contribution to the predicted class, and blue regions represent a negative contribution.

Figure 9: SHAP visualizations showing feature contributions for healthy and unhealthy wheat image classifications

In the context of global and local explanations, SHAP quantified the value of each feature in predicting
a model’s output. The SHAP visualizations for healthy and unhealthy wheat images in Fig. 9 use red regions
to highlight positive contributions to class predictions, while blue regions show negative contributions.

SHAP maps for healthy wheat images marked regions with green hues, smooth textures, and uniform
crop structures. These features contributed significantly to the correct classification of the healthy class, as
shown by the red regions in the SHAP maps. This illustrates how the model identifies valid biological patterns
for predicting healthy crops.

For unhealthy wheat images, SHAP maps highlighted discolorations, irregular textures, and visible signs
of diseases like rust or late blight. These areas indicate where the model extracts features associated with
wheat diseases.
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Moreover, SHAP provides a top-down view by aggregating the importance of features across the
whole dataset. This helps to understand which features the model systematically relies on and to assess the
robustness and generalization of the model.

The combined use of SHAP and LIME methods characterized a reliable understanding of the CNN
model, enhancing interpretability. LIME captures localized, instance-specific explanations for single images,
while SHAP attributes feature contributions at a regional and global scale across the dataset. Together, they
improve the interpretability and trustworthiness of the model by demonstrating that its classifications are
grounded in biologically meaningful features.

Particularly for agricultural professionals and farmers, the visual explanations provided by LIME and
SHAP, as reflected in Figs. 8 and 9, are valuable. They enable users to understand the model’s predictions,
identify problematic regions in unhealthy crops, and take informed actions for crop management. This
demonstrates convincingly how models can be applied in realistic agricultural settings.

5 Conclusions and Future Work
This study provided a comprehensive model of wheat disease classification based on previous under-

standing from [16]. With the use of batch normalization and an optimized learning rate of 0.0009, training
instability was minimized, allowing accurate rates as high as 100% in inevitable data splits. The selected
lightweight design aimed at real-time, edge-computing applications critical for practical implementation
in resource-constrained farming regions. The conclusion was drawn to emphasize these stability and
performance improvements while incorporating contemporary precision agriculture requirements.

Even so, some boundaries were still related to the small size of the data set (450 images) and its
limited geographical region. A high rate of dropout of 70%, along with standard augmentation strategies
such as flipping and rotation, were used to control overfitting, but the creation of a more expansive and
geographically diverse set remains a necessity. In the future, more sophisticated augmentation techniques,
like those based on GANs, and larger transfer learning architectures, such as the vision transformer in [38],
will be used to improve overfitting resistance. Subsequent refinement of XAI techniques, specifically LIME
and SHAP, will also aim toward greater transparency in the classification process to foster trust among
end users.

Refinements such as dataset expansion, advanced augmentation, transfer learning, and comprehensive
XAI can create a more accurate, stable, and interpretable automated system for wheat disease detection. These
endeavors are believed to tremendously improve precision agriculture by providing a reliable and easy-to-use
system for crop health management.
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