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ABSTRACT: This study introduces an Edge-Based Data Hiding and Extraction Algorithm (EBDHEA) to address
the problem of data embedding in images while preserving robust security and high image quality. The algorithm
produces three classes of pixels from the pixels in the cover image: edges found by the Canny edge detection method,
pixels arising from the expansion of neighboring edge pixels, and pixels that are neither edges nor components of
the neighboring edge pixels. The number of Least Significant Bits (LSBs) that are used to hide data depends on
these classifications. Furthermore, the lossless compression method, Huffman coding, improves image data capacity.
To increase the security of the steganographic process, secret messages are encrypted using the XOR encryption
technique before being embedded. Metrics such as the Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR),
and Structural Similarity Index Measure (SSIM) are used to assess the efficacy of this algorithm and are compared
to previous methods. The findings demonstrate that the suggested approach achieves high similarity between the
original and modified images with a maximum PSNR of 60.7 dB for a payload of 18,750 bytes, a maximum SSIM
of 0.999 for a payload of 314,572.8 bytes, and a maximum Video Information Fidelity (VIF) of 0.95 for a payload of
23,592 bytes. Normalized Cross-Correlation (NCC) values are very close to 1. In addition, the performance of EBDHEA
is implemented on Secure Medical Image Transmission as a real-world example, and the performance is tested against
three types of attacks: RS Steganalysis, Chi-square attack, and visual attack, and compared with two deep learning
models, such as SRNet and XuNet.
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1 Introduction
With the fast-paced advancements in electronic telecommunications and extensive Internet use, pro-

tecting information from unauthorized access—whether by hackers or accidental recipients—has become a
crucial issue today. To tackle this challenge, researchers have created a range of security techniques for data
transmission, such as steganography and cryptography. In the quest for better protection, some methods
combine both approaches, utilizing their strengths to reach higher security levels [1].

Cryptography involves using mathematical principles to encode and decode information, ensuring
messages remain secure by converting understandable data (plaintext) into an unreadable format (cipher
text) [2]. A cryptosystem comprises plaintext, encryption and decryption algorithms, cipher text, and a key.
Plaintext refers to data in its normal, readable form. Encryption involves converting plaintext into cipher text
using a specific key, while decryption reverses this process, extracting plaintext from the cipher text. The key
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is crucial information to manage the cryptosystem and is shared only between the sender and receiver [2].
Despite its effectiveness in data security, cryptography can be vulnerable to cryptanalysts who may break
ciphers by analyzing the cipher text contents to retrieve the plaintext.

Steganography is the process of concealing secret messages within various types of media files, such
as text, audio, image, and video, in a manner that completely hides the presence of the secret message.
This involves replacing redundant bits in the chosen medium with bits from the secret message [3]. Image
Steganography specifically focuses on using digital images as the carrier for secret data, making it a significant
area of research in recent years.

Steganography can be applied in two domains: spatial domain and frequency domain [4]. However,
applying it in the spatial domain is preferable due to its lower computational requirements, simplicity,
and higher storage capacity compared to the frequency domain. In this domain, a variety of techniques
are employed, including but not limited to Least Significant Bits (LSB), Exploiting Modification Direction
(EMD), Histogram-based techniques, Mapping-based approaches, Pixel Value Difference (PVD), Multi-
Base Notation System (MBNS), Pixel/Block Indicator methods, Pixel Value Prediction (PVP), Edge-based
strategies, Pixel Pair Matching (PPM), and applications based on Machine Learning [5,6].

In image steganography, data is hidden in a color or gray scale image called a cover image (CI), while
the image including the secret data is called the stego-image (SI).

In contrast, Steganalysis involves uncovering concealed content. Steganalysis employs statistical and/or
visual analysis techniques to unveil secret data within a stego-image [7]. Various analytical techniques have
been developed to retrieve significant concealed data from stego-images. As a result, the concealment method
proposed in this research aims to withstand new forms of visual and statistical attacks.

TAML framework that incorporates time-correlation in the sieving process of malicious application
detection techniques was proposed by AlSobeh et al. [8]. Their study demonstrated the significance of tem-
poral data in creating and applying Machine Learning algorithms for mobile malware detection. Zhang et al.
suggest an information-loud image transmission technique which uses a mapping dictionary to hide covert
data within images. Through semantic segmentation and style transfer, blend images are transformed into
powerful public images called stego-images, which conceal secret images. Subsequently, a particular trained
reconstruction network efficiently retrieves and decodes the concealed information [9]. Akram et al. attempt
to develop a ML based steganography image classification technique that uses Curvelet transformation to
capture features from both low and high payload images. As a means of classification, the image is determined
as either a stego image or a cover image by using Support Vector Machine (SVM), which is one of the widely
used classification methods [10].

Another example is the FloodDetector system, which integrates machine learning techniques to detect
DoS flooding attacks in SDN that have not been defined. This shows how intelligent systems can adapt to
such a dynamic environment. All in all, these plusses show how machine learning and context understanding
can be beneficial in boosting security across different spheres of technology.

This paper introduces an improved steganography technique leveraging the Human Visual System
(HVS), which is less sensitive to alterations in sharp-edge regions. The robustness of this technique is ensured
by utilizing the Canny edge detection method, enhanced with dilation morphological operators, for the
detection of edge regions in modified images. The effectiveness of edge detection is crucial in determining
how well an algorithm performs across different criteria. When edge detection is accurate, it allows for the
precise identification of embedding regions, which enhances embedding accuracy and stability by reducing
data loss during extraction. It also boosts capacity by expanding the number of edge pixels available for
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embedding, especially in high-contrast areas. Moreover, high-quality detection preserves visual integrity by
limiting changes to less noticeable parts of the image.

In contrast, ineffective edge detection decreases embedding capacity, introduces visible distortions,
and makes the image more susceptible to processing operations, negatively affecting the hidden data’s
robustness [11]. The method determines the number of bits used per pixel for embedding secret messages
based on the pixel’s location within the image. Pixels are divided into three categories: those within edge
regions, those adjacent to edge regions, and those outside both the edge and adjacent regions. As a result,
the number of bits used for embedding is highest for pixels in the edge regions, slightly lower for pixels
adjacent to edges, and lowest for pixels outside these areas. Since the number of bits used for embedding
varies from pixel to pixel, it is more difficult for attackers to detect and retrieve the secret message. The
proposed algorithm hides information with a high embedding rate by developing the least significant bits
(LSB) and enhancing data hiding based on edge detection, where the secret message is embedded in the image
in different proportions depending on the location of pixels. Edge areas and areas near them are included
in higher proportions than the rest of the image to reduce the possibility of revealing hidden information
while maintaining image quality. On the other hand, the hidden information was encrypted to build a highly
secure steganography algorithm. Information compression was also used to increase the upload rate within
the cover image.

The remaining sections of the paper are structured as follows: Section 2 outlines the related
work, Section 3 introduces the proposed algorithm, Section 4 discusses the experimental results, and
finally, Section 5 concludes this work.

2 Related Work
Numerous steganography techniques have been devised to preserve concealed information against

diverse threats. Some approaches take advantage of the LSB approach, incorporating enhancements to
support its security and increase the payload capacity of Secret Messages (SM).

Steganography involves embedding secret data, such as text, sounds, or videos, within another file
or into different files. This practice is becoming more necessary due to the increasing need to share
confidential information online securely. Steganalysis is the field dedicated to detecting and decoding such
hidden information.

In the work by Ref. [12], it’s noted that selecting an encryption method involves balancing speed and
security. Quick encryption methods might compromise security, whereas more straightforward methods are
fast but less secure.

Research by Ref. [13] introduced techniques that embed multiple bits into each pixel using a refined
version of the least significant bit (LSB) technique to evade detection by steganalysis. This development
was spurred by findings that statistical methods like the chi-square or K-S tests could uncover hidden
information, leading to the advancement of modified LSB (MLSB) techniques.

According to Ref. [14], the main categories of media used in steganography are text, images, audio,
and video. The first three categories hide data within the same type of file. More complex techniques aim
to disguise information within protocols or platforms. Research by Ref. [15] explored steganography using
redundant residue number system (RRNS) codes and introduced methods for RRNS-based steganography
without distorting the original data.

The challenge in hiding data within pixels revolves around the number of bits altered per pixel. The goal
is to maintain high security and balance the amount of hidden data and alteration visibility.
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The simplest method in steganography, the least significant bit (LSB) technique, alters the least
noticeable bits of data, making it challenging to detect with the naked eye but vulnerable to statistical
detection methods. Research by Ref. [16] suggested combining modified LSB with multi-directional pixel-
value differencing (MDPVD). Research by Ref. [17] and others have developed methods for embedding data
in images using variations of the LSB technique, enhancing security through different strategies, including
data shuffling and compression.

Converting data within images faces several challenges, such as ensuring data security, maintaining
image quality, optimizing the amount of hidden data, and minimizing computational demands. A method
leveraging the less detectable aspects of the LSB technique and focusing on significant features detectable
by human vision has been proposed for color images. This approach, suggested by Swain (2019), divides
the image into blocks of pixels, using two bits for LSB in each pixel and the other six for quotient value
differencing (QVD), balancing concealment, image integrity, and detection avoidance.

The image size of the multi-level system expands progressively from one level to the subsequent level.
Research by Ref. [18] combines LSB substitution and pixel-value differencing (PVD) to enhance the capacity
for hiding information in digital images. This method increases the amount of data that can be embedded and
has also proven effective in resisting RS detection attacks. As a result, it significantly enhances the security
of transmitting confidential messages.

Additionally, approaches within this domain focus on utilizing edges for improved effectiveness.
Research by Ref. [19] proposed fuzzy logic and canny edge detection for a color image, which exhibits effective
embedding capacity. Nonetheless, this approach lacks a detection mechanism for identical edge pixels within
the stego-image. Research by Ref. [20] proposed a novel approach to detect edges, tailored explicitly for
steganography, where the original image is segmented into 3 × 3 non-overlapping blocks for edge detection.
Among these blocks, four corner pixels are a benchmark for accurately identifying edge blocks within
the stego-image. The distinction between these reference pixels’ horizontal, vertical, and diagonal pairs
determines whether a block qualifies as an edge. Only five pixels are utilized for embedding, employing
a highly efficient and rapid embedding technique. This methodology underwent testing in both spatial
and transform domains, revealing superior data embedding capacity within the spatial domain. Research
by Ref. [21] proposed a steganography technique involving hybrid edge detection applied to images was
developed. Multiple edge detectors were employed on images cleared of m-bits, and the resulting edge images
were combined using the AND operator. The cover pixels were categorized as either edge or non-edge pixels.
Simultaneously, the secret message was encrypted using chaotic methods. X-bits were then embedded into
edge pixels and y-bits into non-edge pixels, with x being greater than y, creating a stego-image. Research
by Ref. [5] proposed a novel steganography method that relies on fuzzy edge detection for efficient image
data concealment. The cover image undergoes masking, and fuzzy edge detection is applied to preserve edge
details. The embedding of bits in a pixel is contingent upon its status as an edge pixel, with more bits for
such pixels. For non-edge and non-background pixels, the amount of data embedded is determined by the
Euclidean distance from the nearest edge pixel, guided by a Gaussian function.

To improve data-driven security for Internet of Things systems, an application layer that combines the
Behavior-Interaction-Priority (BIP) feature, model checking, and self-adaptation model is created. Research
by Ref. [22] provides an integrated method for IoT security. This strategy might greatly enhance mitigating
and detecting security issues like virus assaults, phony data, and safe system transactions. The framework
model comprises four main parts: Secure Threat Detection and Response, Secure Data Collection and
Storage, Data Analytics, and Continuous Monitoring.

It is essential to consider information security when exchanging sensitive data. Secret data is effectively
kept hidden via steganography and cryptography. Transforming private messages into an unreadable
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format is the primary goal of cryptography. Cryptography must be used with other more secure methods
since it raises doubts about clandestine communication. On the other hand, steganography hides private
information in a cover medium to allay suspicions of secret communication. Most practitioners employ
various steganographic algorithms chosen for their ability to convey heavy payloads together with a high-
quality cover image. Research by Ref. [23] presents a new technique with improved payload and strong
imperceptibility to hide sensitive data in digital photos using fuzzy logic. The degree to which a pixel is related
to any edge in an image is determined by fuzzy logic, which we use to identify the edges of the image. Then, a
factor is added to the data to disguise it before embedding it in the low-value pixels. Our technique generates
a high-quality stego-image that guarantees confidentiality in communication across the unreliable public
network while successfully hiding substantial amounts of secret information.

The growing reliance on cloud-assisted IoT systems for storing and retrieving images has underscored
the importance of secure and traceable methods. As highlighted by Zhang et al. [24], secure multikey image
retrieval frameworks utilize privacy-preserving techniques to guarantee that only authorized users can access
certain images. These systems combine multikey access control with traceability features to keep track of any
unauthorized activities. Such frameworks are crucial when multiple users have access to the same database,
ensuring data confidentiality and accountability. This idea enhances the proposed steganographic approach
by adding extra layers of security in cloud environments.

Advanced image analysis techniques have been created to capture more detailed image features for var-
ious applications. One significant method involves using fractional-order weighted spherical Bessel-Fourier
moments, which improve feature representation by merging spherical harmonics with fractional-order
derivatives [25]. This approach is especially effective for tasks, such as pattern recognition and image
classification, providing high accuracy and resilience against noise. While these techniques are generally
used for feature extraction, combining them with steganography could enhance the identification of optimal
embedding regions, thus improving the imperceptibility and security of concealed data.

Efficient and secure content-based image retrieval (CBIR) systems in cloud-assisted IoT environments
have attracted considerable interest due to their capability to handle large volumes of visual data securely.
Chen et al. [26] introduced a CBIR framework that merges encryption techniques with feature extraction,
ensuring the secure indexing and retrieval of images while safeguarding user privacy. This framework closely
aligns with the objectives of steganography, as it focuses on achieving a balance between security and
efficiency in cloud-based systems. By integrating CBIR principles into steganography, the effectiveness of
hidden data could be further improved, allowing for secure and efficient retrieval of embedded information
in distributed systems. Table 1 compares the proposed approach and exciting methods.

Table 1: Comparison of proposed method and existing methods

Aspect Proposed method Existing methods
Embedding capacity Higher capacity is due to

expanded edge areas and
three-pixel classes.

Limited capacity, as edge areas,
are not optimized effectively.

Imperceptibility Preserves high visual quality
with minimal distortion (PSNR

and SSIM values).

Distortion can be noticeable,
especially with larger payloads.

Robustness More resilient against
steganalysis techniques.

Vulnerable to attacks, especially
those analyzing edge or

histogram patterns.

(Continued)



1686 Comput Mater Contin. 2025;84(1)

Table 1 (continued)

Aspect Proposed method Existing methods
Computational efficiency Optimized with Canny edge

detection and dilation, ensuring
efficient processing.

Computationally intensive,
requiring more resources (e.g.,

DCT, DWT).
Flexibility Works consistently for both

grayscale and color images.
Often limited to grayscale or

requires modifications for color.
Security Improved security through

XOR encryption and complex
pixel selection.

Weaker security due to
predictable patterns or simpler

detection methods.
Complexity Slightly more complex due to

the edge detection and dilation
process.

Simpler implementation but
compromises key features like

robustness and security.

The steganography algorithm presented in this study focuses on Edge-Based Data Hiding and Extraction
Algorithm (EBDHEA). This method uses the least significant bits (LSBs) in storage. The number of
bits used in each pixel depends on how close it is to the edge areas in the cover image. This method
combines the Huffman compression algorithm and XOR encryption to improve the steganographic process.
Huffman coding is essential, offering a straightforward and efficient compression technique that reduces
data size, boosts hiding effectiveness, and maintains low computational requirements, making it suitable
for resource-limited, real-time applications. This compression maximizes the space available for hiding data
without noticeable changes between the stego-image (SI) and the cover image, preserving the invisibility
of the concealed information. XOR encryption, in contrast, adds a layer of protection by obscuring the
data, making it harder for unauthorized individuals to detect the hidden content. While XOR does not
reduce data size like Huffman coding, it ensures the data remains concealed, adding extra security to the
steganographic process. By integrating both Huffman coding and XOR encryption, the EBDHEA algorithm
achieves a balancebetween efficient data compression, maximized payload capacity, and secure data hiding,
effectively meeting the goals of improving hiding effectiveness, increasing payload capacity, and ensuring no
perceptible differences in the stego-image.

3 The Proposed Hiding Algorithm
The human visual system shows less sensitivity to density changes in sharp-edge regions than uniform

regions within an image. Leveraging this characteristic, this research proposes an Edge-Based Data Hiding
and Extraction Algorithm (EBDHEA). The proposed (EBDHEA) algorithms are implemented in two stages,
with the first stage applying the edge-based data hiding algorithm (EBDHA) and the second stage using the
edge-based data extraction algorithm (EBDEA).

3.1 Edge-Based Data Hiding Algorithm (EBDHA)
In the proposed technique, we categorize pixels within the cover image into three categories: Edge Pixel

(EP) identified through the canny edge detection method, Pixels resulting from the expansion of adjacent
edge (AEP) using the Dilation morphological operation depending on square structure of width equal 3, and
pixel that are neither edge nor part of the adjacent edge pixels (NEP), see Figs. 1 and 2. The quantity of Least
Significant bits (LSBs) utilized for concealing information depends on these categories. Three least significant
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bits (3-LSBs) are used to embed data in the first category, two least significant bits (2-LSBs) are used in the
second category, and one least significant bit (1-LSB) is used in the third category. The concealed message
(SM) is embedded within a cover image (CI) following encryption through the XOR key and compression
using the Huffman coding algorithm, see Fig. 3.

Figure 1: (a) The original image, (b) The result of converting the original image from a color image to a grayscale
image, (c) The result of applying canny edge detection, (d) The result of applying dilation morphological operation in
the image

Figure 2: Categorize pixels within the cover image into three categories: EP, AEP, and NEP

Furthermore, a color cover image has been employed to conceal a secret message (SM) by utilizing the
RGB image components. The process involves concealing information row by row within the pixels (24 bits)
of the cover image, creating the stego-image as shown in Fig. 3. The number of bits to be concealed within
a byte (i) (NBPBi) is computed according to Eq. (1) and stored in the corresponding location within a new
matrix called reference matrix (RM) of the same size as the (CI). It is observed that the maximum limit for
the replacement of bits per byte is three.

NBPBi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 i f (p is EP)
2 i f (p is AEP)
1 i f (p is NEP)

(1)

where (p) is a pixel, (EP) is an edge pixel, (AEP) is an adjacent edge pixel, and (NEP) neither an edge nor
part of the adjacent edge pixels.
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Figure 3: Proposed hiding stage

Edge-Based Data Hiding and Extraction Algorithm (EBDHEA) relies on key parameters such as
thresholds, filter sizes, dilation filter configurations, Huffman coding, XOR encryption keys, and image
properties. These elements directly impact edge detection, embedding accuracy, security, and overall image
quality. Incorrect configurations can result in inefficiencies, image distortions, or degraded performance.
To address these challenges, thresholds and kernel sizes are dynamically adjusted, secure encryption and
efficient coding are employed, and the algorithm is tested on diverse images to optimize parameters for
different scenarios. In addition, the algorithm ensures balanced embedding to maintain image quality.

3.1.1 The Hiding Algorithm
The main algorithm EBDHA (Algorithm 1) takes the secret message (SM), encryption key (EK), and

the cover image (CI) as inputs and then hides the secret message using Sub-Algorithms (1, 2, 3, and 4). The
output of the main algorithm is the stego-image

• Sub-Algorithm 1: PreProcessSecretMessage (.) This sub-algorithm encrypts the secret message (SM)
using the encryption key (EK) implemented through the XOR approach and then compresses the
result using the Huffman coding algorithm to get the compressed encryption secret message (CESM),
Algorithm 2.

• Sub-Algorithm 2: EdgeMatrix (.) This sub-algorithm applies the Canny Algorithm after converting the
cover image (CI) to the grayscale image to get the edge detection matrix (EDM), Algorithm 3.

• Sub-Algorithm 3: Adjacent EdgeMatrix (.) This sub-algorithm applies the Dilation morphological
operation depending on the square structure of width equal to 3 on EDM to get the expansion edge
detection matrix (EEDM), then subtracts EDM from EEDM to get the adjacent Edge detection matrix
(AEDM), Algorithm 4.



Comput Mater Contin. 2025;84(1) 1689

• Sub-Algorithm 4: HidingMessage (.) This sub-algorithm hides the CESM in the cover image (CI) using
an RGB order along the rows moving from left to right. The number of bits used in each pixel depends on
the calculated number of bits per byte (NBPB) according to Eq. (1) based on EDM and AEDM. Finally,
the algorithm returns to the stego-image, Algorithm 5.

Algorithm 1: EBDHA algorithm
1: Start the EBDHA
2: Initialize the following parameters:

• SM as the secret message
• EK as the encryption key
• ESM as the encryption secret message
• SI as the stego-image
• CESM as the compressed of encryption secret message
• CI as the cover image
• NBPB as the number of bits per byte
• EDM as the Edge detection matrix
• EEDM as the Expansion Edge detection matrix
• AEDM as the adjacent Edge detection matrix
• RM as the Reference matrix

3: Input SM, EK, CI
4: Convert SM into integer value representation
5: Find the total hiding pixel and total hiding data to ensure sufficient hiding
6: Call PreProcessSecretMessage(SM, EK) which return CESM
7: Call EdgeMatrix(CI) which return EDM
8: Call AdjacentEdgeMatrix(EDM) which returns AEDM
9: Call HidingMessage(CI, CESM, EDM, AEDM) which return the SI
10: Output SI
11: End

Algorithm 2: Sub-Algorithm 1: PreProcessSecreteMessage (.)
1: Input SM, EK
2: Encrypting SM using EK implemented through the XOR approach to get
3: Compressing ESM using the Huffman coding algorithm to get CESM;
4: Return CESM
5: End PreProcessSecreteMessage

Algorithm 3: Sub-Algorithm 2: EdgeMatrix (.)
1: Input CI;
2: Convert the (CI) to the grayscale image if it
3: Apply the Canny Algorithm to get EDM
4: Return EDM
5: End EdgeMatrix



1690 Comput Mater Contin. 2025;84(1)

Algorithm 4: Sub-Algorithm 3: Adjacent EdgeMatrix (.)
1: Input EDM;
2: Apply Dilation morphological operation depending on getting EEDM
3: Subtract EDM from EEDM to get AEDM
4: Return AEDM
5: End Adjacent
6: Edge Matrix

Algorithm 5: Sub-Algorithm 4: HidingMessage (.)
1: Input CI, CESM, EDM, AEDM;
2: For each pixel in CI using an RGB order along the rows moving from left to right

DO:
3: Calculate Nbpb according to Eq. (1) based on EDM and AEDM and store the result in (RM)
4: Hides several CESM bits in the pixel equal to the value calculated in the previous step
5: Shift to the next bit in the CESM.
6: End for
7: Return SI;
8: End HidingMessage

3.2 Edge-Based Data Extraction Algorithm (EBDEA)
The secret message extraction process from the stego-image has been implemented according to the

reference matrix (RM) after decrypted by the XOR decryption key and decompressed by Huffman coding,
as shown in Fig. 4.

Figure 4: Proposed extraction stage
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3.2.1 Extraction Algorithm
This algorithm inputs the stego-image (SI) and decryption key using the XOR approach (DK). The

algorithm constructs the Reference Matrix (RM), which contains the number of bits used to hide the secret
message for each pixel. The Compressed Encrypted Secret Message (CESM) is then extracted based on the
reference matrix, decompressed using the Huffman compression algorithm, and decrypted using the DK.

The steps of the proposed extraction algorithm (EBDEA) have been delineated in Algorithms 6 and 7.

Algorithm 6: EBDEA (.)
1: Start the EBDHA
2: Initialize the following parameters:

• SM as a secret message.
• DK as the decryption key using the XOR approach; // DK=EK
• ESM as the encryption secret message
• CESM as the compressed of encryption secret message.
• SI as a stego-image.
• CI be a cover image.
• RM as the Reference Matrix

3: Input SI, DK;
4: Call BuildReferenceMatrex (CI), which returns RM;
5: For each pixel in the SI, the RGB arrangement is used along the rows, moving from left to right, to

extract the CESM bits stored in the pixels according to the RM to finally obtain the CESM DO
6: Decompress of CESM to get ESM;
7: Message decrypted using same symmetric XOR DK to get SM;
8: Send SM to the output file;
9: End for
10: End EBDEA.

Algorithm 7: Sub-Algorithm 5: BuildReferenceMatrex (.)
1: Input CI;
2: Call EdgeMatrix(CI) which return EDM;
3: Call AdjacentEdgeMatrix(EDM) which returns AEDM
4: For each pixel in CI using an RGB order along the rows moving from left to right

DO:
5: Calculate Nbpb according to Eq. (1) based on EDM and AEDM and store

the result in (RM).
6: End for
7: Return RM.
8: End BuildReferenceMatrex.

3.3 Implementation of Hiding Algorithm (EBDHA)
Assume that we have one byte from the secret message, and we need to hide this byte in a cover image.

The proposed technique categorizes pixels within the cover image into three categories: Edge Pixel (EP),
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Pixels resulting from the expansion of adjacent edge (AEP), and pixels that are neither edge nor part of the
adjacent edge pixels (NEP), the quantity of Least Significant bits (LSBs) utilized for concealing information
depends on these categories. Three least significant bits (3-LSBs) are used to embed data in the first category,
two least significant bits (2-LSBs) are used in the second category, and one least significant bit (1-LSB) is used
in the third category. See Fig. 5.

Figure 5: Implementation of the hiding process in the cover image

4 Discussion the Results
In this section, we examine the experimental outcomes conducted to assess the effectiveness of the

proposed algorithm. The experimentation involved using color images sourced from the UCID v2 Database
(with dimensions of 512× 384 and 384× 512) and standard test images such as Barbara, Baboon, and Peppers.
Various metrics were employed to substantiate the achieved level of security.

4.1 Image Quality vs. Payload Capacity
The performance of the suggested method is assessed by utilizing variously sized images, as illustrated

in Fig. 6. The evaluation metrics utilized consist of Peak Signal-to-Noise Ratio (PSNR), Mean Square Error
(MSE), and Normalized Cross Correlation (NCC), as described by Eqs. (2)–(5).
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Figure 6: List of images used for testing the proposed method
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PSNR = 10 ∗ log10
255 ∗ 255

MSE
(2)

MSE = MSER +MSEG +MSEB

3
(3)

where R, G, B are the Red, Green, and Blue image colors

MSEk =
1

m ∗ n∑
m
i=1∑

n
j=1 (Ci j − Si j)

2 ; k ∈ {R, G , B} (4)

where (i, j) is the pixel in the cover image and stego-image at the same location

(NCC)i , j =
∑m

i ∑n
j ((CIi j − μCI) × (SIi j − μSI))√

∑m
i ∑n

j (CIi j − μCI)
2
√
∑m

i ∑n
j (SIi j − μSI)

2
(5)

where μSI and μCI are the average pixels of the stego-image and cover image.
The benefits of employing EBDHEA methods include achieving a Normalized Cross Correlation (NCC)

value closer to one, high Peak Signal-to-Noise Ratio (PSNR) values, and low Mean Square Error (MSE)
values, as depicted in Table 2. These characteristics make it challenging for the human eye to discern any
alterations in the cover image.

Table 2: Performance comparison of the proposed method and state-of-the-art methods

Image size
(512 × 512)

Payload
capacity

(bits) × 104

Using
MDLSB [27]
PSNR (dB)

Using MCDHEA [28] Using the proposed
EBDHEA

PSNR
(dB)

MSE
(dB)

NCC
(dB)

PSNR
(dB)

MSE
(dB)

NCC
(dB)

Baboon

2.0 59.2 0.0181 65.6 1 0.0131 67.0 0.999995
2.8 56.1 0.0250 64.2 1 0.0183 65.5 0.999992
3.6 54.9 0.0324 63.0 1 0.0240 64.3 0.999990
4.4 53.2 0.0401 62.1 0.999967 0.0298 63.4 0.999988
5.6 53.4 0.0512 61.0 0.999933 0.0380 62.3 0.999984

Peppers

2.0 61.2 0.0122 67.3 1 0.0095 68.3 0.999997
4.0 59.1 0.0212 64.9 0.999967 0.0172 65.8 0.999995
6.0 55.3 0.0296 63.4 0.999967 0.0246 64.2 0.999993
8.0 53.7 0.0390 62.2 0.999933 0.0327 63.0 0.999991
10.5 53.7 0.0501 61.2 0.999933 0.0420 61.9 0.999989

Barbara

2.0 63.2 0.0232 65.2 1 0.0113 67.6 0.999996
5.0 59.6 0.0341 64.6 1 0.0275 64.7 0.999991
7.0 58.5 0.0361 63.8 0.999986 0.0386 62.3 0.999987
10 55.9 0.0404 62.6 0.999966 0.0551 60.7 0.999982

12.5 54.8 0.0514 61.8 0.999934 0.0686 59.8 0.999978
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The proposed EBDHEA hiding algorithm is compared with the previous works: the MCDHEA algo-
rithm by Ref. [28] and the proposed algorithm by Ref. [27], as shown in Table 2, and it was found that the
proposed method achieved the best performance for the same payload for the same images.

Furthermore, the performance of the proposed method is evaluated using a different set of images with
three metrics: PSNR, MSE, and SSIM, with payload capacities of 10%, 30%, and 40%. These metrics were
applied to various images, including “Gold Hill” (a color image with a resolution of 720 × 576), “Carpet”
(a grayscale image with a resolution of 1024 × 1024), and “Malamute” (a color image with a resolution of
1616 × 1080), as illustrated in Fig. 7. The results in Table 3 demonstrate that the proposed method performs
exceptionally well across different types of images and resolutions.

Figure 7: List of images used for testing the proposed method



1696 Comput Mater Contin. 2025;84(1)

Table 3: Performance comparative of different sets of images and payload

Image type Measure Payload capacity

10% 30% 40%

Gold hill (Color image) 720 × 576
PSNR 61.90285 57.06328 55.61734
MSE 0.04196 0.127867 0.178382
SSIM 0.9996 0.9991 0.9989

Carpet (Gray image) 1024 × 1024
PSNR 54.409851 49.666738 48.419860
MSE 0.235557 0.702112 0.935609
SSIM 0.9998 0.9995 0.9993

Malamute (Color image) 1616 × 1080
PSNR 68.03097 63.09059 61.78995
MSE 0.010233 0.031919 0.043062
SSIM 0.9999 0.9998 0.9997

4.2 Structural Similarity Index Measure (SSIM)
SSIM is a tool that measures how similar the structures of two images are when compared. It’s a way of

assessing how closely the patterns and details in one image match those in another Eq. (6).

SIMM (CIM , SIM) =
(2μCIm μSIm + ((224 − 1) ∗ 0.01)2)(2σCIm ,SIm + ((224 − 1) ∗ 0.03)2)

(μ2
CIm + μ2

SIm + ((224 − 1) ∗ 0.01)2)(σ 2
CIm + σ 2

SIm + ((224 − 1) ∗ 0.03)2)
(6)

where σcIm ,2 σ 2
sIM are the variance of a cover and stego images, μCIM, μSIM are the mean of a cover and

stego images, and σCIM σSIM is the covariance of a cover and stego images. For this examination, we utilized
50 color pictures chosen at random from the UCID v2 Database. These images come in sizes of 512 × 384
and 384 × 512 pixels, and we applied payload percentages of 10%, 30%, and 40%. The proposed method was
compared with the previous works: Hardan et al. (2022) and the proposed algorithm by Elshare et al. (2018),
as shown in Table 4, and it was found that the proposed method achieved good performance for the same
payload for the images.

Table 4: The average values of SSIM by different steganography algorithms using 50 color pictures of size 512 × 384 and
384 × 512 were chosen at random from the UCID v2 database

Payload capacity SSIM using
MDLSB [27]

SSIM using
MCDHEA [28]

SSIM using
proposed
EBDHEA

10% 0.9997 0.9999 0.9999
30% 0.9998 0.9997 0.9998
40% 0.9997 0.9996 0.9997

4.3 Euclidean Norm Test
The Euclidean norm test, as described in Eq. (7), was employed to illustrate the suggested algorithm’s

effectiveness in combating visual attacks. This test involves computing the distance (D) between the stego
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image and the original cover image.

D =
√
(RCI − RSI)2 + (GCI −GSI)2 + (BCI − BSI)2 (7)

This experiment employed three color images sized at 512 × 512 pixels, each with payload percentages
of 10%, 30%, and 40%. The aim was to evaluate the effectiveness of the proposed algorithm and compare
its results with those of previous studies. MDLSB algorithm by Elshare, S., EL-Emam, N. 2018, and the
proposed algorithm by Hardan. 2022. The smallest Euclidean norm (D) was reached using the proposed
algorithm, as shown in the Figs. 8–10. Fig. 8 illustrates the Euclidean norm testing for the Lena image, Fig. 9
shows the Euclidean norm testing of the Baboon image, and Fig. 10 shows the Euclidean norm testing of the
Peppers image.

Figure 8: Euclidean norm testing of lena image

Figure 9: Euclidean norm testing of baboon image
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Figure 10: Euclidean norm testing of peppers image

4.4 Dissimilarity between Adjacent Pixels
Eqs. (8) and (9) calculate the dissimilarity between neighboring pixels in the stego-image and cover

images. Here, D(i, j)CIM and D(i, j)SIM denote the disparity between horizontal adjacent pixel pairs for the
cover image (CIM) and stego image (SIM), respectively, where P(i, j)CIM and P(i, j)SIM represent two pixels
at position (i, j).

D (i , j)CI = ∣P (i , j)CI − P (i , j + 1)CI ∣ (8)
D (i , j)SI = ∣P (i , j)SI − P (i , j + 1)SI ∣ (9)

For this examination, three color images sized at 512 × 512 pixels were utilized, each embedded with
a 40% payload. The disparity values range from −255 to +255, and the occurrence of each disparity value
is tallied. Subsequently, a graph is generated depicting the pixel disparity values on the X-axis and their
respective frequencies on the Y-axis, as depicted in Figs. 11–13. Notably, it was observed that the disparity
values between the stego image and the cover image are highly similar.

Figure 11: Dissimilarity between adjacent pixels with payload 40%
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Figure 12: Dissimilarity between adjacent pixels with payload 40%

Figure 13: Dissimilarity between adjacent pixels with payload 40

4.5 Visual Information Fidelity
The Visual Information Fidelity (VIF) test evaluates how closely a stego-image resembles its original

cover image. It utilizes the natural scene statistics (NSS), the Gaussian scale mixture (GSM) model, and
the reference denotation (RD) along with image distortion (ID) and human visual system (HVS) metrics
(REF). The VIF test is computed according to Eq. (10), which incorporates two mutual information measures.
The initial measure relates to the information transferred between the inputs and outputs of undistorted
HVS channels. In contrast, when distorted, the second measure deals with the exchange between inputs and
outputs of the HVS channels. The ultimate production analyzed is the stego-image.

V IF =
∑ jb and ∑i log2

⎛
⎝

(λCIM ,SIM
ji )

2

((λSIM
ji )

2
× (λCIM

ji )
2
− (λCIM ,SIM

ji )
2
+ λ2

μ × (λCIM
ji )

2
)
+ 1
⎞
⎠

∑ jb and ∑i log2 (
(λCIM

ji )
2

λ2
μ
+ 1)

(10)
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In each block at the jth sub-band, (λ) represents the standard deviation of the cover image (CIM)
and the stego-image (SIM) in that block. Table 5 presents the VIF measure, indicating the fidelity of
visual information. This study applies the testing to three images sourced from the standard color image
database [29], each sized at 256 × 256 pixels. The proposed hiding process is evaluated based on payload
capacities and the VIF metric. Results confirm the superiority of the proposed algorithm over other work
such as [13]. The suggested algorithm demonstrates proficient performance.

Table 5: The visual information fidelity evaluation results

256 × 256 colored stego-image Payload Proposed work on [13] Proposed work
Barbara 12% 92% 95%
Peppers 22% N.A 93%
Baboon 32% 86% 91%

4.6 Secure Medical Image Transmission
One of the main issues facing e-healthcare is the medical image authentication procedure in medical

image transfer. Medical picture transmission has extensively used digital watermarking systems as a data
authentication tool. However, the act of watermarking digital images will cause some persistent distortions
to the watermarked image, which could result in an incorrect diagnosis. One of the main problems with
using digital watermarking systems for medical picture transmission is that the watermarked image will
always be permanently distorted [30]. In this work, the EBDHEA secures the authentication process of the
medical images during the transition. The following steps show the threat model in terms of attacks and
countermeasures.
1. Attacks:

• Statistical Attack: Attackers employ statistical analysis to find anomalies in the image that can point
to hidden data.

• Visual Attack: Attackers examine the pictures visually to look for any obvious variations that suggest
data concealment.

• Cipher text-only Attack: Attackers examine the encrypted data and try to decrypt the secret message
embedded in it.

2. Countermeasures:
• Edge-Based Embedding: This technique uses the inherent noise in the edge and surrounding

regions—identified by the Canny edge detection method—to embed and conceal data.
• By encrypting the secret message before embedding it, XOR encryption adds extra protection to

guard against unwanted access.
• Huffman Coding: Message compression boosts payload capacity and further obscures the

buried data.
Table 6 shows the results of the Medical Image transmission, which achieve the following:

1. PSNR: An 18,750-byte payload can attain a maximum PSNR of 60.7 dB. This high PSNR value guarantees
little visual deterioration because it shows that the image quality is nearly identical to the original image,
even after data embedding.

2. SSIM: The highest reported SSIM for a payload of 314,572.8 bytes is 0.999. This number shows relatively
little difference between the original and stego-images, suggesting that the images’ structural integrity
is maintained after embedding.
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3. VIF: The technique attains a maximum VIF of 0.95 with a payload of 23,592 bytes. This high VIF value
indicates that the embedded data preserves the overall visual quality of the image by not appreciably
changing its visual information.

4. NCC: The NCC values are nearly 1 in every case. This high correlation proves that the embedding
process introduces no appreciable differences, indicating a great similarity between the original
and transformed.

Table 6 shows that the EBDHEA method performs safely by embedding large amounts of data while
preserving excellent image quality and structural integrity.

Table 6: Performance measures for secure medical image transmission using EBDHEA

Metric Value Payload (Byte)
PSNR (dB) 60.7 18.750

SSIM 0.999 314.57280
VIF 0.95 23.592

NCC 0.9999 N/A

4.7 Evaluation of Security Using Deep Learning Based Steganalysis
To conduct a detailed analysis of the efficacy of the proposed Edge-based Data Hiding and Extraction

Algorithm (EBDHEA), we set out to measure the algorithm’s performance using two advanced deep
learning-based models of steganalysis, SRNet and XuNet. These models are well-known in steganalysis for
their power to reveal the presence of data embedded in stego-images by the delicate changes caused by the
embedding process.

The UCID dataset and benchmark images like Baboon, Peppers, and Barbara are used to create the
stego-images analyzed in the experiments and the EBDHEA algorithm is utilized. The payload capacities are
10%, 30%, and 40% of the cover image capacities. These results are attained by measuring detection accuracy,
false positive rate (FPR) and false negative rate (FNR) measurements, which provide insight into how well
the algorithm can secure. The performance of SRNet, XuNet, and EBDHEA in detecting payload capacities
is assessed, with the findings presented in Table 7. A lower detection accuracy suggests a stronger resistance
to steganalysis attacks.

Table 7: Evaluation results using deep learning algorithms and EBDHEA algorithm

Model Payload (%) Accuracy (%) False Positive
Rate (FPR) (%)

False Negative
Rate (FNR) (%)

SRNet
10 51.8 48.2 49.6
30 58.3 41.7 42.1
40 64.7 35.3 39.2

XuNet
10 54.1 45.9 47.8
30 61.5 38.5 41.6
40 68.9 31.1 37.4

EBDHEA
10 48.7 51.3 52.0
30 55.2 44.8 45.5
40 62.4 37.6 38.9
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The findings emphasize the robust security of the EBDHEA algorithm, especially when dealing with low
to moderate payload capacities, where advanced steganalysis models struggle to detect hidden information.
By utilizing edge-based embedding and adjusting the number of bits concealed per pixel, the algorithm
creates variability that complicates the consistent detection of hidden data by steganalysis models.

4.8 Attack Analysis
This section tests the proposed method’s performance against three types of attacks: RS Steganalysis,

Chi-square attack, and Visual attack. The results achieved are compared in terms of different types of
encryption modes to show the effectiveness of the proposed work, such as RC4 and EPR.

4.8.1 RS Steganalysis
RS Steganalysis is an analytical technique designed to detect hidden information in digital images,

a common practice in steganography where data is concealed within seemingly normal media files. This
method classifies pixel groups within an image as regular or singular based on predictability from adjacent
pixels. By inverting the pixel values within these groups and analyzing shifts between these classifications, the
RS method can infer the presence of embedded data. This approach is particularly valuable because it does not
depend on knowledge of the specific steganography techniques used to hide the data, making it an effective
universal tool for uncovering concealed information in images [31]. This work employs RS steganalysis to
evaluate the proposed strategy’s effectiveness. This technique scrutinizes 500 images with embedded data to
uncover any concealed information. Through this approach, we can ascertain the efficacy of the embedding
phase model described in Eq. (11).

λ = S
[(a − b)4]

[(a − b)2]
2 (11)

In this context, the file size is labelled as S, while a represents random variables, and the mean variance
is denoted as b. Additionally, the analysis pair is symbolized as λ. Typically, λ = 3 is used for standard analysis,
whereas values of λ > 3 are considered for more advanced analysis. Table 8 shows that the EBDHEA method
surpasses the other encryption modes in terms of the detection rate of secret images.

Table 8: Performance of the proposed method against the RS steganalysis

Payload Comparative methods

RC4 EPR EBDHEA
250 0.17 0.22 0.51
450 0.15 0.17 0.49
650 0.10 0.14 0.48
850 0.09 0.11 0.43
1050 0.06 0.10 0.41
1250 0.06 0.08 0.31
1450 0.046 0.06 0.21
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4.8.2 Chi-Square Attack
A Chi-square attack is a statistical method used in cryptanalysis to help determine if there’s a relationship

between two categorical variables. It is commonly utilized in frequency analysis to study patterns within
data sets. In this attack, the attacker aims to identify weaknesses or correlations in the encrypted data
that can be exploited to decrypt the information. The Chi-square attack is based on the Chi-square test,
a statistical hypothesis test that evaluates how likely an observed distribution is due to chance [32]. In
a Chi-square attack, the attacker compares the expected frequency of specific patterns in the encrypted
data with the actual frequency of those patterns. By calculating the Chi-square statistic, the attacker can
assess whether the deviation between the expected and observed frequencies is significant enough to
indicate a potential vulnerability in the encryption algorithm. This method is particularly effective when the
encryption algorithm is not properly randomizing the data, leading to predictable patterns that attackers can
leverage [33].

Additionally, the Chi-square attack can be used to analyze the randomness of a random number
generator used in encryption schemes. If the random number generator is not producing truly random
numbers, it may introduce biases or correlations that weaken the overall security of the encryption system.
By subjecting the output of the random number generator to a Chi-square test, cryptanalysts can detect
deviations from expected randomness and potentially exploit these weaknesses [34]. Table 9 illustrates the
secret image identification of the EBDHEA method and other encryption modes; the result shows that the
EBDHEA outperforms the RC4 and EPR.

Table 9: Performance of the proposed method against the Chi-square attack

Payload Comparative methods

RC4 EPR EBDHEA
250 0.10 0.13 0.39
450 0.06 0.12 0.35
650 0.049 0.11 0.33
850 0.041 0.045 0.33
1050 0.04 0.039 0.32
1250 0.032 0.045 0.32
1450 0.028 0.045 0.18

4.8.3 Visual Attack
The visual attack stands as the most straightforward steganalysis method. It involves visually inspecting

the stego image with the naked eye to discern any concealed data. If the steganalysis model proves ineffective,
a visual attack may occur. The rule governing visual attacks dictates that the size of the hidden message must
be smaller than the higher bit-level dimension. Furthermore, visual attacks typically succeed more often with
unencrypted data [35]. Table 10 demonstrates the reading ratio of the secret image of the EBDHEA method
and other encryption modes; the result shows that the EBDHEA exceeds the RC4 and EPR.
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Table 10: Performance of the proposed method against the visual attack

Payload Comparative methods

RC4 EPR EBDHEA
250 0.06 0.12 0.35
450 0.047 0.09 0.33
650 0.037 0.047 0.31
850 0.036 0.049 0.32
1050 0.035 0.042 0.25
1250 0.028 0.043 0.18
1450 0.026 0.043 0.19

Table 11 shows the results of combinations of different algorithms for compression and encryption in
using the proposed EBDHEA. The comparison is important because it shows how different choices affect
the algorithm’s performance, image quality, and security. We assessed Huffman and LZW compression
methods and XOR and AES encryption techniques on Gold Hill, Malamute, and Baboon, three popular
images. According to the findings, Huffman compression is faster than LZW compression, leading to
better performance in real-time applications. On the other hand, LZW compression provides better data
compression at the cost of a slower processing speed. XOR encryption is also a very lightweight and quick
protocol. It works well in cases where speed is critical but does not give the most substantial security.
Moreover, AES encryption is slower but provides stronger security against attack. Depending on the
application, the speed/security trade-off becomes critical. For example, a situation that requires high-speed
processing with moderate security may prefer Huffman with XOR. In contrast, more sensitive data would
require the robust security of AES, even though it is slower. Using metrics such as MSE, PSNR, SSIM, and
NCC, it is shown throughout that the image quality is not affected while the data is embedded securely using
our algorithm. Table 11 shows that EBDHEA can be modified according to requirements. Various parameters
can be changed for practical applications, and this may be done optimally.

Table 11: Performance of the proposed method against the visual attack

Image Compression
method

Encryption
method

Payload
capacity

Time
(MS)

MSE PSNR SSIM NCC

Huffman XOR 2.82E + 04 0.040359 62.07195 0.9996 1
Huffman AES

10%

1.14E + 04 0.051450 61.01694 0.9996 1
LZW XOR 2.29E + 04 0.033994 62.81717 0.9997 1
LZW AES 2.61E + 04 0.043557 61.74032 0.9997 1

Huffman XOR 1.19E + 05 0.140433 56.65611 0.9992 1

Gold hill
(Colorful)
720 × 576

Huffman AES

30%

4.27E + 04 0.187536 55.39994 0.9991 0.9999
LZW XOR 1.17E + 05 0.089188 58.62778 0.9994 1
LZW AES 4.98E +

04
0.116097 57.48266 0.9994 1

Huffman XOR

40%

2.12E + 05 0.197435 55.17658 0.999 1
Huffman AES 6.30E + 04 0.268081 53.84815 0.9989 0.9999

LZW XOR 8.57E + 04 0.113678 57.57405 0.9993 1
LZW AES 1.18E + 05 0.149955 56.37122 0.9993 0.9999

(Continued)
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Table 11 (continued)

Image Compression
method

Encryption
method

Payload
capacity

Time
(MS)

MSE PSNR SSIM NCC

Huffman XOR

10%

4.72E + 04 0.010016 68.124 0.9999 1

Malamute
(Colorful)
1616 × 1080

Huffman AES 1.47E + 04 0.013215 66.92032 0.9999 1
LZW XOR 1.60E + 04 0.008188 68.99958 0.9999 1
LZW AES 2.41E + 04 0.010641 67.86137 0.9999 1

Huffman XOR

30%

1.12E + 05 0.032049 63.07261 0.9998 1
Huffman AES 4.72E + 04 0.042685 61.8281 0.9998 1

LZW XOR 7.37E + 04 0.02167 64.77222 0.9998 1
LZW AES 8.49E + 04 0.028495 63.58337 0.9998 1

Huffman XOR

40%

2.32E + 05 0.043844 61.71174 0.9997 1
Huffman AES 6.82E + 04 0.058449 60.4631 0.9997 1

LZW XOR 1.18E + 05 0.026465 63.90417 0.9998 1
LZW AES 8.56E + 04 0.034934 62.69844 0.9998 1

Huffman XOR

10%

1.55E + 04 0.10848 57.78781 0.9998 1

Baboon
(Colorful)
(512 × 512)

Huffman AES 8.11E + 03 0.126836 57.1065 0.9998 0.9999
LZW XOR 1.06E + 04 0.089872 58.60497 0.9999 1
LZW AES 1.53E + 04 0.104129 57.96414 0.9998 0.9999

Huffman XOR

30%

6.58E + 04 0.329434 52.96093 0.9995 0.9999
Huffman AES 2.88E + 04 0.374826 52.40267 0.9994 0.9998

LZW XOR 6.16E + 04 0.226258 54.59395 0.9996 0.9999
LZW AES 2.87E + 04 0.256321 54.05255 0.9996 0.9999

Huffman XOR

40%

1.11E + 05 0.435018 51.75336 0.9993 0.9998
Huffman AES 4.45E + 04 0.49438 51.20017 0.9992 0.9998

LZW XOR 4.19E + 04 0.273707 53.76674 0.9995 0.9999
LZW AES 4.91E + 04 0.309438 53.23499 0.9995 0.9999

Finally, we examine the effect of different edge detection methods on the performance of our data-
hiding procedure. Since edge regions in photographs are more resistant to perceptual distortion, these regions
are optimal for concealing information. To explore the most promising methodology for achieving this
goal, we compared three well-known edge detection techniques: Canny, Sobel, and Prewitt. We aimed to
evaluate the impact of each method on key performance characteristics: embedding capacity, image quality,
robustness to steganalysis, and computational efficiency, thereby providing an informed choice of the best
alternative depending on specific application needs. Table 12 summarizes these results and the trade-offs
associated with each technique. The Canny edge detection method offers a respectable balance, achieving an
embedding capacity of 25,000 bytes and maintaining high image quality with a PSNR of 62.1 dB and an SSIM
of 0.9996. Canny also demonstrated excellent resistance against steganalysis attacks, with a resilience score
0.95. However, Canny’s peak computational time of 120 MS is a significant limitation, which may restrict its
usability in real-time applications. In contrast, the Sobel edge detection method achieved a higher embedding
capacity of 27,000 bytes, making it ideal for scenarios requiring substantial data concealment. This benefit,
however, comes at the cost of reduced image quality, reflected by a PSNR of 58.5 dB and an SSIM of 0.9985.
Sobel exhibited moderate robustness to steganalysis, scoring 0.85 in resilience. With a computational time
of 90 MS, Sobel strikes a fair balance between performance and efficiency.
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Table 12: Comparison of edge detection methods

Edge
detection
method

Embedding
capacity
(Bytes)

PSNR (dB) SSIM Resilience
to

steganalysis
(Score)

Computational
time (MS)

Canny 25,000 62.1 0.9996 0.95 120
Sobel 27,000 58.5 0.9985 0.85 90

Prewitt 22,000 57.2 0.9978 0.80 70

On the other hand, the Prewitt method was the most efficient, with a computational time of only 70 MS.
However, this speed is offset by a lower embedding capacity of 22,000 bytes and further declines in image
quality, indicated by a PSNR of 57.2 dB and an SSIM of 0.9978. Prewitt also had the lowest resilience score of
0.80, making it the least secure option.

To conclude, as illustrated in Table 12, an edge detection method should align with the application’s
specific needs. When prioritizing high image quality and strong security, Canny stands out as the best choice
despite its computational demands. Sobel provides a more favorable balance for applications that require
embedding large data. Conversely, Prewitt is suitable when maximizing processing speed.

Furthermore, the study was extended by comparing the outcomes of image processing using different
combinations of compression and encryption techniques (Huffman, LZW, XOR, and AES) on three images:
“Gold Hill,” “Malamute,” and “Baboon.” These techniques were applied with payload capacities of 10%, 30%,
and 40%, as detailed in Table 11. Various metrics, such as processing time, PSNR, MSE, NCC, and SSIM,
were used to evaluate the results, as shown in Table 11. For example, as the payload on “Baboon” increases
from 10% to 40%, the PSNR decreases from 57.787 at 10% payload to 51.753 at 40% payload when using the
Huffman-XOR combination. Figs. 14 and 15 will further clarify the impact of the payload on image quality
by illustrating how different payload capacities affect PSNR and SSIM when applying various compression
and encryption methods in the proposed method. Overall, LZW compression and XOR encryption offer
a solid balance between maintaining image quality and processing time. Although increasing the payload
capacity reduces image quality, the techniques still preserve high fidelity across the tested metrics. As shown
in Figs. 14 and 15.

Figure 14: PSNR testing of Gold Hill image (720 × 576) using various combinations of compression and encryption
methods (Huffman, LZW, XOR, and AES) with different payload capacities
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Figure 15: SSIM testing of Gold Hill image (720 × 576) using various combinations of compression and encryption
methods (Huffman, LZW, XOR, and AES) with different payload capacity

4.8.4 Computational Complexity of EBDHEA
The EBDHEA’s computational complexity mainly stems from its edge-based embedding, encryption,

and compression methods. A key component of EBDHEA is the Canny edge detection algorithm, which
operates with a complexity of O(N), where N represents the total number of pixels in the image. This step
is crucial as it ensures that embedding occurs in less visually noticeable areas, thereby enhancing security
and imperceptibility.

After edge detection, the dilation process used to identify adjacent edge pixels adds only a minimal
overhead, keeping the overall pixel classification complexity linear. The XOR-based encryption applied to
the secret message is a lightweight computational step with a complexity of O(M), where M is the size
of the secret message. Additionally, using Huffman coding for compression results in a complexity of
O(M log M), effectively reducing the message size and increasing embedding capacity while still being
computationally efficient. Compared to more straightforward methods like Modified Least Significant Bit
(MLSB), EBDHEA is more computationally demanding due to its advanced preprocessing steps. Yet, it is less
intensive than hybrid techniques that involve frequency-domain transformations such as Discrete Cosine
Transform (DCT). This balance between complexity and performance makes EBDHEA a suitable choice for
applications that require high security, improved embedding capacity, and strong resistance to steganalysis.

4.8.5 Challenges and Limitations
The algorithm designed to improve the payload capacity in LSB image steganography through dilated

hybrid edge detection may encounter certain challenges when applied to images with diverse characteristics,
such as low-contrast or edge-poor images. Key limitations include:

• Edge area detection challenges: In low-contrast images, the edge detection process using the Canny
detector might struggle to identify significant edge areas, resulting in fewer regions suitable for
embedding data, ultimately reducing the payload capacity.

• Edge-poor image sensitivity: Images with fewer noticeable edges inherently limit the areas where pixel
value changes can occur without compromising the image’s visual quality. This makes embedding
messages more difficult while maintaining imperceptibility.

• Noise amplification: In low-contrast images, even small changes in pixel values can become more
noticeable, introducing unwanted noise and compromising the imperceptibility of the stego-image.
These limitations highlight the challenges of applying the proposed method across a wide range of image
types and underscore the need for further refinement to improve its robustness and versatility.
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5 Conclusion
The Edge-Based Data Hiding and Extraction Algorithm (EBDHEA) discussed in this paper presents an

advanced solution to hide data within images securely. It combines techniques such as the least significant
bit method and Canny edge detection. This allows the algorithm to adjust the number of hidden bits in
each pixel depending on how close it is to the edge areas in the original image. The goal here is to make the
concealed data less noticeable in the resulting stego-image, taking advantage of the fact that changes in edge
regions are harder to detect compared to smoother areas.

Furthermore, by incorporating XOR encryption keys, the algorithm enhances the security of the
hidden data, providing an additional layer of defense against unauthorized access. Additionally, the lossless
compression using the Huffman coding algorithm increases the capacity for embedding data within the
image. The performance of the EBDHEA algorithm is meticulously assessed using established metrics
like Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), and Structural Similarity Index
(SSIM) and compared to other existing methods. The evaluation results underscore the proposed approach’s
superior embedding performance. Furthermore, the algorithm ensures no visible difference between the
original cover image and the stego-image, preserving the image’s quality. Moreover, the EBDHEA algorithm
guarantees the complete recovery of concealed data. However, the proposed work is limited to dealing
with dependency on edge regions; since the method embeds messages in the edge regions of images, its
effectiveness is highly dependent on the quality and characteristics of these edges. Images with fewer or less
distinct edges might achieve a different level of performance in terms of embedding capacity and robustness.
More hybrid steganography techniques that integrate edge-based embedding with alternative approaches,
such as texture-based and frequency domain techniques, will be used for future work. This combination aims
to enhance various image types’ robustness and embedding capacity.
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