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ABSTRACT: The era of big data brings new challenges for information network systems (INS), simultaneously offering
unprecedented opportunities for advancing intelligent intrusion detection systems. In this work, we propose a data-
driven intrusion detection system for Distributed Denial of Service (DDoS) attack detection. The system focuses on
intrusion detection from a big data perceptive. As intelligent information processing methods, big data and artificial
intelligence have been widely used in information systems. The INS system is an important information system in
cyberspace. In advanced INS systems, the network architectures have become more complex. And the smart devices in
INS systems collect a large scale of network data. How to improve the performance of a complex intrusion detection
system with big data and artificial intelligence is a big challenge. To address the problem, we design a novel intrusion
detection system (IDS) from a big data perspective. The IDS system uses tensors to represent large-scale and complex
multi-source network data in a unified tensor. Then, a novel tensor decomposition (TD) method is developed to
complete big data mining. The TD method seamlessly collaborates with the XGBoost (eXtreme Gradient Boosting)
method to complete the intrusion detection. To verify the proposed IDS system, a series of experiments is conducted
on two real network datasets. The results revealed that the proposed IDS system attained an impressive accuracy rate
over 98%. Additionally, by altering the scale of the datasets, the proposed IDS system still maintains excellent detection
performance, which demonstrates the proposed IDS system’s robustness.
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1 Introduction
The rapid expansion of network infrastructure, coupled with the increasing complexity of network

structures, has posed significant challenges in intrusion detection systems. On one hand, smart devices in
intrusion detection systems (IDS) collect a large scale of data, the data have complex structures and are
from diverse sources, which exhibit the characteristics of big data. On the other hand, the intrusion attack’s
technologies are becoming increasingly advanced, and the attack’s methods are becoming more covert [1].
These attacks exploit network vulnerabilities to overwhelm systems, leading to congestion, paralysis, and
potentially severe information leakage [2]. Therefore, it is urgent to design effective intrusion detection
systems (IDS) to detect abnormal attacks in large-scale complex networks using big data and artificial
intelligence technologies.
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Traditional intrusion detection systems mainly rely on matrix-based techniques such as Principal
Component Analysis (PCA) and Singular Value Decomposition (SVD), and traditional intrusion detection
methods have shown effectiveness in simple contexts [3]. However, traditional intrusion detection methods
are difficult to cope with the large-scale and multi-modal network data. Consequently, traditional intrusion
detection systems often fall short of accurately identifying attacks in real-world big data scenarios. There are
heterogeneous and huge volume data streams in real-world big data scenarios. This inadequacy underscores
the pressing need for advanced intrusion detection systems that can not only enhance detection accuracy
but also improve data quality through effective denoising techniques.

To address these challenges, this paper proposes a novel tensor-based intrusion detection system (IDS)
with big data. By integrating state-of-the-art tensor decomposition techniques with advanced machine
learning algorithms, the intrusion detection system aims to provide a more accurate and scalable solution
for identifying Distributed Denial of Service (DDoS) attacks with big data. Tensor decomposition allows for
keeping multidimensional relationships inherent in network data, facilitating a more nuanced understanding
of traffic patterns [4]. This method enables the detection system to better distinguish between normal and
malicious traffic, thereby enhancing the robustness and efficiency of DDoS attack detection systems. Through
this approach, we seek to improve detection rates and contribute to resilient network security measures in
an increasingly interconnected digital landscape. The proposed system brings several contributions to the
area of network intrusion detection, including the ability to:

• Proposing to use tensors to model large-scale heterogeneous network big data in intrusion detection
systems. The method integrates features from different modalities in a unified format to obtain a more
comprehensive representation.

• Developing Tucker-2 Decomposition to propose HOBISVD method by employing Minimum Descrip-
tion Length Principle (MDLP) for feature extraction. We fuse two modalitie’s features through tensor
computation to obtain eigentensors. The eigentensors (factor matrices) from the tensor decomposition
reveal significant interactions and anomalies within multi-modal network big data.

• Proposing a novel intrusion detection system from a perspective of big data, which utilizes tensor algebra
to model and analyze the multi-model network data for capturing intricate dependencies and patterns.
The system represents large-scale network data in a unified tensor and then combines the HOBISVD
and XGBoost classification to effectively detect intrusion.

The organization of the remaining parts of the paper is as follows. Section 2 introduces the related
work of IDS detection. Preliminary is introduced in Section 3. In Section 4, a big data-driven INS system
is proposed for DDoS detection. And we illustrate a case study to verify the proposed system in Section 5.
In Section 6, we summarize the paper.

2 Related Work
We analyze the existing body of work related to IDS systems, providing a comprehensive review of the

current state of research in the field, including big data-driven methods and tensor decomposition methods.

2.1 Big Data Driven Method
Big data technology extracts knowledge and values from data by statistical analysis. Big data has three

features: 1) objectivity, 2) accuracy, and 3) testability. Big data-based methods have become an important
approach to network security. Statistical algorithms are typical big data-driven methods. The methods
represent a well-established approach to anomaly detection. This type of anomaly detection identifies
DDoS attacks by calculating thresholds to flag unusual behaviors. Analyzing daily traffic distributions can
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pinpoint activities that significantly deviate from the norm as potential anomalies. Hamdi and Boudriga [5]
introduced a novel method for the statistical analysis of DDoS attacks utilizing wavelet analysis techniques.
By transforming traffic data into the frequency domain through wavelet transformation, they were able to
identify specific patterns and features associated with DDoS attacks. This method effectively detects and
characterizes these malicious activities by extracting frequency-domain features and incorporating statistical
analysis. Tao and Yu [6] proposed a DDoS attack detection method based on information entropy within
local area network environments. Under typical conditions, the IP entropy tends to be relatively high.
However, during a DDoS attack, the volume of packets directed at the target IP increases significantly,
leading to a decrease in IP entropy. This reduction serves as an early warning sign of potential DDoS
activity. Fortunati et al. [7] proposed an enhanced anomaly detection method based on covariance analysis.
This approach involves constructing a covariance matrix from network traffic data to establish a normal
distribution profile. By analyzing this covariance matrix, the method can identify deviations from the
expected traffic patterns. Abnormal traffic is detected by setting specific thresholds, allowing for the effective
identification of anomalies indicative of potential DDoS attacks or other malicious activities.

2.2 Tensor Decomposition and Intrusion Detection System
Tensors are multidimensional arrays. Tensor models with strong expressive ability can mine abundant

intrinsic information contained in massive data, and it is a promising method to solve security problems
in a big data environment. In terms of the multimodal data problem in large-scale networks, researchers
have presented a considerable amount of work based on tensor models for anomaly detection. In [8], a
novel approach is proposed for efficient tracking of intrusion in the normal subspace arising from the
decomposition of the Parallel Factor Analysis tensor. The method is based on the extraction of a normal
subspace obtained by the tensor decomposition technique, considering the correlation between different
metrics. Aiming to address dynamic detection issues, some researchers have proposed a series of online
detection methods. In [9], the network data is first represented as a unified tensor. Then, an incremental
tensor decomposition is proposed for tensor data dimensionality reduction and denoising. In the end, by
combining machine learning algorithms, intrusion detection is completed. The work [10] presents an online
anomaly detection system capable of handling operational network traffic of large networks.

3 Preliminary
In this section, some preliminaries will be described. The preliminary mainly includes the mathematical

theories and operations used in this paper. Tensors are an important tool used in the proposed intrusion
detection system, and we will focus on discussing the theory and operations related to tensors.

Define1: Eigentensor The eigentensor is the extension of the eigenvector, which is defined as
follows. Given a tensor A ∈ RI1×I2× ⋅ ⋅ ⋅ IM×I1×I2× ⋅ ⋅ ⋅ IN , X = [x11 ⋅ ⋅ ⋅ 1 , x11 ⋅ ⋅ ⋅ 2, ⋅ ⋅ ⋅ xI1 I2 ⋅ ⋅ ⋅ IN ] ∈ RI1×I2× ⋅ ⋅ ⋅ IN , if a
pair (λ-X) satisfies A∗N X = λ∗N X, we call λ an eigenvalue and X an eigentensor related to λ. Here∗N denotes
the multimodal product.

Define2: Matricization Matrixization involves unfolding the tensor X ∈ RI1×I2× ⋅ ⋅ ⋅ ×IN along
the n −mode and representing it as a matrix. Specially, the mapping transforms tensor elements
(i1 , i2 , . . . , iN) into matrix elements (in, j) as Eq. (1):

j = 1 +
N
∑
k−1

k≠n

(ik − 1) Jk with Jk =
k−1
∏
m−1

m≠n

Im. (1)
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Define3: Singular Value Decomposition SVD is very significant in our study. Based on
the literature, the SVD formula for matrix A is given as Eq. (2):

A = UΣVT =
r
∑
k=1

σkukvT
k =

r
∑
k=1

σkuk ⊗ vk . (2)

⊗ represents the tensor product, which is defined as x ⊗ y Δ= x yT . The rank of A, denoted as
r ≤min(m, n), corresponds to the dimension of space spanned by the columns or rows of A. Σ is a diagonal
(r × r)matrix that includes the nonzero singular values of A. The singular values are real, non-negative, and
follow the convention where σ1 > ⋅ ⋅ ⋅ > σr > 0 = σr+1 = ⋅ ⋅ ⋅ = σn . The vectors uk and vk are the orthonormal
columns of matrices U(m × r) and V(n × r). Specially, vk are the eigenvectors of AT A and uk =Avk/σk . Both
U and V could be expanded with additional columns to form square and orthogonal matrices of dimensions
(m ×m) and (n × n)matrices.

Define4: Tensor NormThe norm of the tensor X ∈ RI1×I2× ⋅ ⋅ ⋅ ×IN is defined as the square root of
the sum of the squares of all its elements. Mathematically, this can be expressed as:

∥X ∥ =
�
��


I1

∑
i1=1

I2

∑
i2=1
⋅ ⋅ ⋅

IN

∑
iN=1

x2
i1 i2 ⋅ ⋅ ⋅ iN

. (3)

Define5: Tensor Multiplication The n-mode product of the tensor X ∈ RI1×I2× ⋅ ⋅ ⋅ ×IN and
the matrix U ∈ RJ×In can be donated as X ×n U, whose size is I1 × ⋅ ⋅ ⋅ × In−1 × J × In+1 × ⋅ ⋅ ⋅ × IN. Therefore,
we can obtain the calculating formula:

(X ×n U)i1 ⋅ ⋅ ⋅ in−1 jin+1 ⋅ ⋅ ⋅ iN =
In

∑
in=1

xi1 i2 ⋅ ⋅ ⋅ iN ujin . (4)

In addition, the formula can also transform matrices and tensors:

Y = X ×n U ⇔ Y(n) = UX(n) (5)

4 The Big Data-Driven Intrusion Detection System
The era of big data brings new challenges for network security, while also providing rich resources for

IDS innovation. In this work, we propose a data-driven intrusion detection system for DDoS detection. The
system specializes in big data-driven intrusion detection methodologies. Fig. 1 shows the big data-driven
intrusion detection system, which consists of four layers, namely i) the data layer, ii) the big data processing
layer, iii) the big data rule layer, and iv) the big data application layer. Below, we will describe each layer’s
function, respectively.
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Figure 1: The proposed big data-driven Intrusion detection system. This big data-based intrusion detection system
adopts a data-centric security paradigm, specifically designed for large-scale network threat analytics. The Intrusion
Detection System consists of four layers, namely i) the data layer, ii) the big data processing layer, iii) the rule layer, and
iv) the big data application layer

4.1 Big Data Sensing Layer
In the real world, there is a huge amount of multi-source and heterogeneous data in cyberspace,

including network traffic data, network topological structure data, time-related information, and so on [11].
This is the basics of designing a big data-driven intrusion detection system. The data sensing plane is the
collecting plane of the intrusion detection system. Some data stream collection tools (Sniffer, NetFlow, probe,
and Flow tools) are embedded in the switches, which are a set of distributed monitors. The monitors capture
the network data day and night. These data are source IP, port, destination IP, protocol type, data packet
length, the number of bytes of traffic between two hosts in a fixed time, the number of data streams, flow
entropy, etc. These data have various sources and formats, and the network traffic flow is related to multiple
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factors. For example, it is influenced by the time. From 9:00 PM to 11:00 PM, the network traffic volume
exceeds typical baseline levels, but at 2:00 AM, it is low. Also, the network traffic is influenced by weather.
Hence, a holistic integration of these multi-source datasets is essential for robust network security analysis.
How to fuse these data and the relationships between them is a huge challenge [12]. To cope with the
problem, we use the network unified tensor (NUT) to fuse the multi-source and heterogeneous data as Fig. 2.
Firstly, these data are represented as local tensors in the data collection layer. With the transmission plane,
distributed local tensors are propagated to the big data processing plane, where they undergo tensor fusion
operations to form a unified global tensor representation.

Figure 2: Initially, the raw data is transformed into distributed tensor representations within the big data infrastructure
layer. Subsequently, these localized tensors are propagated to the big data processing plane through the dedicated
transmission plane, where they will be fused as a global large tensor

4.2 The Proposed Method
From the viewpoint of big data, how to model these multi-source heterogeneous data is a big chal-

lenge [13]. The data models are always complex and need powerful computing methods [9]. Considering
the tensor’s multi-model features, in this work, we use the tensor to fuse the data in Section 4.2. Aiming at
the data model, a novel tensor decomposition method is proposed. Specifically, the tensor decomposition
method effectively reduces noise in network data and performs feature cutting on each mode through
the Minimum Description Length Principle (MDLP) rule. Different from previous tensor decomposition
algorithms such as HOSVD(Higher-Order Singular Value Decomposition), this algorithm further integrates
features at the feature level through tensor mode multiplication, seamlessly achieving feature dimension
reduction and denoising.

1) Definition: Inspired by the insights from [14], we developed a multi-modal feature extraction method
(HOBISVD) shown in Fig. 3. HOBISVD is a variation of the Tucker-2 decomposition. It decomposes a
tensor into a core tensor multiplied (or transformed) by a matrix along each mode except the first mode.
The HOBISVD of a third-order tensor sets the first-factor matrices as the identity matrix. For instance, a
HOBISVD can be described as Eq. (6):

X = G×2B×3C = [[G ∶ I, B, C]] , (6)

whereG ∈ RI×Q×R with R=K and C = I, the K × K identity matrix. These concepts extend easily to the N-way
case, we can set any subset of the factor matrices to the identity matrix.
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Feature truncation is a method to optimize the obtained decomposition, thus obtaining the high-value
principal components of each modality, and the result of the truncated decomposition is the approximate
solution. In the work, the feature cutting on each mode is based on Minimum Description Length Principle
(MDLP) rule. The truncated HOBISVD decomposition is a form of high-order PCA. Thus, in the three-way
case where X ∈ RI×J×K , the Eq. (7) is got,

X ≈ G×2B×3C =
Q
∑
q=1

R
∑
r=1

g∶,qr ○ bq ○ cr , (7)

here B ∈ RJ×Q , and C ∈ RK×R are truncated factor matrices in each mode, and their column vectors are
orthogonal, which are the principal components (PC) related various mode. The tensor G ∈ RI×Q×R is the
core tensor.

Figure 3: The HOBISVD of 3th-order tensor X . The tensor X is decomposed into a core tensor S and U and V, which
represent the features on the two modalities, respectively. The matrices of U and V are orthogonal, and their column
vectors are the orthogonal basis of the space corresponding to each modality

Assuming that X ∈ RI×J×K , the tensor decomposition can be formulated as an optimization problem
as Eq. (8):

min�
G ,B ,C

∥X − [[G; B, C]]∥2
F , (8)

subject to

G ∈ RI×J×K ,
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and B ∈ RJ×J , C ∈ RK×K are columnwise orthogonal.
Next, HOBISVD is described in detail. HOBISVD involves three key stages, i) the tensor is unfolded in

two modes I2 and I3; ii) perform orthogonality-constrained matrix factorization on the unfolded matrix to
obtain the eigenvector for each independent modality; iii) by using tensor N-model multiplication, feature-
level fusion and dimensionality reduction are performed on two modes to obtain a serious of feature tensors.

2) Unfolding of Tensor X : Unfolding a tensor X ∈ RI×J×K in two modes J and K. Thus, two unfolded
matrix X2, X3 can be got as follows:

X2 ∈ RJ×(K⋅I), (9)

X3 ∈ RK×(I⋅J). (10)

Fig. 4 illustrates the matrixization process of a 3th-order tensor X ∈ Rn1×n2×n3 in two modes, in which
A(1) ∈ Rn1×(n2×n3), X(2) ∈ Rn2×(n3×n1) are the matrices of the two modes.

Figure 4: The unfolded processing of the tensor X in two modes

3) Applying Orthogonality-Constrained Matrix Factorization on the Unfolded Matrix A2 and A3: To
achieve the optimization target illustrated in the Eq. (11) and ensure the resulting space remains orthogonal,

min�
G ,B ,C

∥X − [[G; B, C]]∥2
F , (11)

various methods have been devised by researchers. This article employs the singular value decomposition
approach for this purpose. The singular value decomposition enables to calculation of the eigenvalues
associated with each mode, which in turn allows for the determination of the optimal truncation strategy
for each mode based on these eigenvalues, which will be described in the following. We apply orthogonality-
constrained matrix factorization on the two unfolded tensors A2. Three new matrix U2, Σ2, V2 are got
as Eq. (12):

X2 = U2 × Σ2 × V2

=
J
∑

j
σ j ○ u2 j ○ v2 j



Comput Mater Contin. 2025;84(1) 1667

=
r2

∑
j

σ j ○ u2 j ○ v2 j+
J
∑
r2+1

σj ○ u2 j ○ v2 j . (12)

Similarly, the same method is applied to matrix A3, resulting in three matrices U3, Σ3, V3 as Eq. (13):

X3 = U3 × Σ3 × V3 (13)

=
K
∑

k
σk ○ u3k ○ v3k

=
r3

∑
k

σk ○ u3k ○ v3k+
J
∑
r2+1

σk ○ u3k ○ v3k .

Fig. 5 presents an example of orthogonal matrix decomposition applied to an unfolded matrix derived
from a 3rd-order tensor. In the context of tensor dimensionality reduction, several parameters need to
be specified. Among these, r2 and r3 are particularly important. These parameters represent the number
of leading singular vectors that are retained in the tensor bases U2 and U3. The values of r2 and r3
directly influence the final dimensionality of the eigentensor S, which is a crucial component in the tensor
decomposition process. The selection of the eigenvector parameters r2 and r3 is based on retaining a specified
portion of the original data from tensors X2 and X3. In the following, the Minimum Description Length
Principle (MDLP) based truncated method will be described [15].

Figure 5: The process of ALS-based matrix decomposition for the unfolded matrix

4) MDLP Based Truncated Method: Enhancing data quality without significantly compromising its
inherent characteristics is essential for effective noise reduction. We opt for the Minimum Description
Length Principle (MDLP) as our model order selection (MOS) strategy, which aids in ascertaining the
necessary rank for Singular Value Decomposition (SVD) based noise elimination. The MDLP is encapsulated
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by the following principle:

MDL(k) = −log
⎛
⎝
∏p

i=k+1 σ 1/(p−k)
i

1
p−k ∑

p
i=k+1 σi

⎞
⎠

(p−k)N

(14)

+ 1
2

k(2p − k)logN ,

here σi are eigenvalues which are from SVD and i ∈ {1, 2, ⋅ ⋅ ⋅ , p}. The eigenvalues are convergent and sorted
in descending order, namely σ1 > σ2 > ⋅ ⋅ ⋅ > σp. p denotes the number of eigenvalues, and N denotes the
sample’s number in the dataset. When MDL(k) gets the minimum value as Eq. (14), the best rank of the
matrix A can be ascertained by Eq. (15):

rank(A) = argmin(MDL(k)) + 1, (15)

where k ∈ {0, 1, ⋅ ⋅ ⋅ , p − 1}. Indeed, as the variable k commences at 0, the aforementioned equation must
incorporate an additional 1. Subsequently, only the initial rank(A) eigenvalue is preserved, while all
remaining eigenvalues are assigned a value of 0, denoted as σ1 > σ2 > ⋅ ⋅ ⋅ > σrank(A) and σrank(A)+1 = ⋅ ⋅ ⋅ =
σp = 0.

We construct a canonical sinusoidal signal y = sin(x) as a baseline waveform and superimpose zero-
mean Gaussian white noise onto the pristine signal. We then apply singular value decomposition (SVD) for
noise reduction. Fig. 6 illustrates the progression of singular values as a rank function. Numerical analysis
demonstrates that when the matrix rank satisfies rank ≥ 2, the singular values are diminutive when rank ≥ 2.
The data encompassed within the eigenvectors associated with these singular values is noise-related. Hence,
we maintain the initial three singular values.

Figure 6: The progression of singular values as a function of rank

5) Tensor Multiplication Based Feature-Level Fusion and Dimensionality Reduction: According to
the above step, we have obtained the two reduced U2, and U3 in I2 mode and I3 mode, which are directly
isolated from each other. How to integrate the information of the two modalities is a big challenge. To address
this issue, the tensor N-mode multiplication between tensors and matrices is proposed to solve the problem,
as shown in Eq. (16). First, the characteristic information on modality 2 is integrated, and then the feature
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information on the integrated modality is fused. Since a principal component truncation operation is used,
dimensionality reduction and denoising are also achieved in the process.

S = X×2(U r2
2 )

T×3(U r3
3 )

T , (16)

where X is the initial tensor, (U r2
2 )

T is the transpose of the r2-dimensionally reduced U2 tensor, (U r3
3 )

T is
the transpose of the r3-dimensionally reduced U3 tensor. The Algorithm 1 shows the process of HOBISVD.
In nature, HOBISVD is a mathematical method used for tensor decomposition in high-order dimensions.
It can decompose a high-dimensional data tensor into the product of multiple low-rank matrices, thereby
extracting important features from the data. Essentially, the method can also be applied to deep learning
to reduce dimensionality and extract useful information from input data. By performing HOBISVD
decomposition on input features, we can obtain feature subspaces at different levels and directions, each
containing strongly correlated features to some extent in the original data.

Algorithm 1: The Proposed HOBISVD Based Dimensionality Reduction and Denoising Algorithm
Require: Tensor X ∈ RI1× ⋅ ⋅ ⋅ ×IN and feature dimension M.
Ensure: Feature matrix Si ∈ RM×M .

1: for i = 1 to i = N do
2: Unfolding tensor A in model Ii;
3: Getting Xi .
4: end for
5: for i = 1 to i = N do
6: If i = 1,
7: U1 = E;
8: Else
9: Computing: Xi ≈ U ri

i × Σri
i × V ri

i ;
10: Estimating rank(Xi) through MDLP based on Eq. (14);
11: Getting the truncated U ri

i through rank(Ai).
12: end for
13: Obtain all U ri

i , where i ∈ {2, ⋅ ⋅ ⋅ , N}.
14: for i = 2 to i = N do
15: Computing: Si = X ×2 U ri

i
T ;

16: end for
17: Obtain S ∈ RI1×I2

r2×I3
r3× ⋅ ⋅ ⋅ ×IN

rn .
18: Slicing S along the first mode I1 and getting a series of features tensor S[1,∶,∶ ⋅ ⋅ ⋅ ,∶], ⋅ ⋅ ⋅ , S[I1 ,∶,∶ ⋅ ⋅ ⋅ ,∶].
19: return Feature tensors Si.

6) XGBoost Classification Method: Aiming to deal with large-scale data, XGBoost (eXtreme Gradient
Boosting) was proposed to improve the stability and accuracy of the large-scale model. It is an ensemble
learning algorithm based on gradient-boosted trees (GBT). The key to XGBoost’s success lies in its adapt-
ability across diverse scenarios. XGBoost is a powerful and versatile machine-learning system known for
its tree-boosting capabilities. Its influence has been acknowledged in various machine learning and data
mining competitions. With tensor mode multiplication, feature-level fusion and dimensionality reduction
are performed on two modes to obtain a series of feature tensors. In nature, it is a large-scale feature dataset.
Aiming at the feature dataset. Aiming at the series of feature tensors, the XGBoost method is used for DDoS



1670 Comput Mater Contin. 2025;84(1)

detection through classification. The input is the serious of feature tensors [S(1, , ), S(2, , ), ⋅ ⋅ ⋅ , S(I, , )], the
output is Eq. (17):

Ŷi =
K
∑
k=1

fk (S(i , , )), fk ∈ F . (17)

The object is Eq. (18):

Ob j =
I
∑
i=1

l (Ŷi , Yi) +
K
∑
k=1

Ω ( fk). (18)

The primary objective of XGBoost is to push the boundaries of machine learning limitations to offer
scalable, portable, and precise solutions. When dealing with huge network data, the distributed version of
XGBoost demonstrates exceptional portability, effectively addressing the challenges associated with large-
scale datasets [16].

5 The Case Study
As depicted in Fig. 7, a case study is conducted to validate the proposed system. In our experiment,

we used an SDN environment to simulate the experimental setup, where the OpenFlow switch collected
data, which was then sent to the SDN(Software Defined Network) controller, and fused into a unified tensor
model. Through HOBISVD decomposition, multimodal features were extracted, clustering was completed
using XGBoost, and DDoS attack detection was achieved through clustering.

This section is structured into three distinct subsections. Section 5.1 provides an overview of the exper-
imental dataset used. Section 5.2 focuses on detailing the pertinent evaluation metrics. Finally, Section 5.3
presents the results of the comparative experiment.

5.1 Experimental Dataset
Dataset CICDDOS 2019, curated by the Canadian Institute for Cyber Security (CIC), includes a vast

array of network data with 87 features and millions of traffic instances, encompassing various types of DDoS
attacks [17]. In our experimental setup, we constructed a representative subset by randomly sampling 40,000
data points from the original dataset, with a stratified distribution of 32,000 normal traffic instances and
8000 malicious attack samples, as specified in Table 1. Additionally, we eliminated several features that were
deemed insignificant for the classification process from the initial set of 87. Consequently, we narrowed it
down to 64 key features, as outlined in Table 2. The approximate distribution of the used data is shown
in Fig. 8.
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Figure 7: The case study. Firstly, the intrusion detection system collects data from the flow tables and constructs a
unified tensor. Through big data processing, the tensor rule is mined and then provides intrusion detection services
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Table 1: CICDDoS2019 subset construction

Order Traffic type Total Order Traffic type Total
(1) DNS 800 (7) NTP 800
(2) LDAP 800 (8) SSDP 800
(3) NETBIOS 800 (9) UDP-Lag 800
(4) SNMP 800 (10) SYN 800
(5) UDP 800 (11) BENIGN 32,000
(6) MSSQL 800

Table 2: CICDDoS2019 network data set features used

Order Feature Order Feature
(1) Source-Port (33) Packet-Length-Min
(2) Destination-Port (34) Packet-Length-Max
(3) Flow-Duration (35) Packet-Length-Avg
(4) Total-Fwd-Packet (36) Packet-Length-Std-

Dev
(5) Total-Bwd-Packet (37) Packet-Length-Var
(6) Total-Length-Fwd-

Packet
(38) FIN-Flag-Count

(7) Total-Length-Bwd-
Packet

(39) SYN-Flag-Count

(8) Fwd-Packet-Length-
Max

(40) RST-Flag-Count

(9) Fwd-Packet-Length-
Min

(41) PUSH-Flag-Count

(10) Fwd-Packet-Length-
Avg

(42) ACK-Flag-Count

(11) Fwd-Packet-Length-
Std-Dev

(43) URG-Flag-Count

(12) Bwd-Packet-Length-
Max

(44) CWE-Flag-Count

(13) Bwd-Packet-Length-
Min

(45) ECE-Flag-Count

(14) Bwd-Packet-Length-
Avg

(46) Download/Upload-
Ratio

(15) Bwd-Packet-Length-
Std-Dev

(47) Avg-Packet-Size

(16) Flow-Bytes/s (48) Avg-Fwd-Segment-Size
(17) Flow-Packets/s (49) Avg-Bwd-Segment-

Size
(18) Flow-IAT-Avg (50) Subflow-Fwd-Packets
(19) Flow-IAT-Max (51) Subflow-Fwd-Bytes

(Continued)
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Table 2 (continued)

Order Feature Order Feature
(20) Flow-IAT-Min (52) Subflow-Bwd-Packets
(21) Fwd-IAT-Total (53) Subflow-Bwd-Bytes
(22) Fwd-IAT-Avg (54) Fwd-Win-Bytes
(23) Fwd-IAT-Max (55) Bwd-Win-Bytes
(24) Fwd-IAT-Min (56) Fwd-Active-Data-

Packet
(25) Bwd-IAT-Total (57) Fwd-Min-Segment-

Size
(26) Bwd-IAT-Avg (58) Avg-Time-Active-Flow
(27) Bwd-IAT-Max (59) Std-Dev-Time-Active-

Flow
(28) Bwd-IAT-Min (60) Max-Time-Active-Flow
(29) Fwd-Header-Length (61) Min-Time-Active-Flow
(30) Bwd-Header-Length (62) Avg-Time-Idle-Flow
(31) Fwd-Packet/s (63) Std-Dev-Time-Idle-

Flow
(32) Bwd-Packet/s (64) Min-Time-Idle-Flow

Figure 8: Data distribution of CIC-DDoS2019

5.2 Evaluation Metrics
According to the confusion matrix, we use TP, FP, TN, and FN to represent True Positive, False Positive,

True Negative, and False Negative.
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5.2.1 Accuracy (Acc)
Accuracy is a metric that quantifies the classifier’s ability to correctly predict the entire sample, indicating

the degree to which the true values align with the predicted values. A higher Accuracy value signifies better
classification performance, as it suggests that a larger proportion of the predictions are accurate. Accuracy is
defined in Eq. (19):

Accurac y = TP + TN
TP + FP + TN + FN

. (19)

5.2.2 Precision (Pre)
Precision is a metric that assesses the classifier’s ability to correctly predict the accuracy of positive

samples. It measures the proportion of positive predictions that are positive, indicating how many of
the predicted positive samples are true positives. A higher Precision value indicates better classification
performance in terms of identifying positive instances correctly. It is defined in Eq. (20):

Precision = TP
TP + FP

. (20)

5.2.3 Recall (Rec)
Recall can measure the proportion of actual positive samples that are correctly identified by the classifier.

A higher Recall value indicates better classification performance in terms of capturing positive instances
within the dataset, and is is defined in Eq. (21):

Recal l = TP
TP + FN

. (21)

5.2.4 F1-Score
The F1-score is a pivotal metric that encapsulates the performance of a model by harmonizing the

critical aspects of Recall and Precision. It is particularly adept at providing a balanced evaluation, especially
in scenarios where the dataset may be unevenly distributed. The F1-score is calculated using a formula that
employs the harmonic mean, which effectively weighs both Precision and Recall, ensuring that neither metric
can overshadow the other without affecting the overall score. Fi-Score is defined in Eq. (22):

F1 - Score = 2 ⋅ Precision ⋅ Recal l
Precision + Recal l

. (22)

5.3 Contrast Experiments
In this subsection, a series of comparative experiments will be carried out. Focusing on the CICD-

DoS2019 dataset detailed in Table 1, which comprises 64 features, the data matrix is denoted as X ∈ RM×N ,
where M represents the total number of data points and N = 64 signifies the number of features. Within the
context of the HOBISVD-based denoising algorithm, the matrix X is transformed into a three-way tensor
X ∈ RM×N1×N2 , with N1 = N2 = 8 and N = N1 × N2.

5.3.1 Different Denoising Algorithm
In Table 2, various datasets of different sizes are randomly chosen to assess the impact of various

denoising techniques on the classification capabilities of XGBoost. The results of these experiments are
depicted in Fig. 9 and Table 3. The findings indicate that denoising enhances detection accuracy compared
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to RAW (nondenoised) data, and SVD, HOSVD, and HOOI (Higher Order Orthogonal Iteration of Tensors)
denoising algorithms yield lower classification efficiency and performance than HOBISVD.

Figure 9: The effect of different denoising algorithms is compared under the truncated size 2 ∗ 2

Table 3: Comparison of different denoising algorithms with the truncation sizes 2 ∗ 2

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
HOBISVD (Proposed detection system) 98.18 96.65 96.85 97.10

RAW 89.30 85.33 86.81 88.37
SVD [18] 96.16 94.26 94.55 95.82

HOSVD [19] 97.17 95.92 96.21 96.57
HOOI [19] 96.62 95.01 95.87 96.19

Furthermore, to validate the efficacy of HOBISVD, experiments are carried out with truncation sizes
ranging from 2 ∗ 2 to 3 ∗ 3. Results in Fig. 10 and Table 4 show that the truncation sizes 3 ∗ 3 are worse than
the truncation sizes 2 ∗ 2 in both the performance of numerical results and the algorithm’s stability. This
is because, after high-order decomposition and reconstruction, the truncation sizes 2 ∗ 2 condense nearly
all the required properties, which makes it an optimal choice without any redundancy. This also proves the
correctness of the selection of rank = 2 in Fig. 6.
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Figure 10: The effect of different denoising algorithms is compared under the truncated size 3 ∗ 3

Table 4: Comparison of different denoising algorithms with the truncation sizes 3 ∗ 3

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
HOBISVD (Proposed detection system) 95.52 94.38 94.15 93.96

RAW 85.66 88.89 80.12 83.33
SVD [18] 91.34 90.26 91.25 91.24

HOSVD [20] 93.78 94.38 93.27 93.82
HOOI [20] 93.81 93.33 94.15 93.72

5.3.2 Different Classification Algorithm
A classification algorithm is another important part of the intrusion detection system. Therefore, we set

the fixed denoising algorithm as the proposed HOBISVD, and evaluate the performance of different classifi-
cation algorithms by varying the size of the datasets. The compared algorithms include Linear Discriminant
Analysis (LDA), Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM), and
XGBoost. The results of these comparisons are illustrated in Fig. 11, leading to the following conclusions:
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• As the size of the data set increases, the classification gets better because more and more features are
available for classification;

• The application of HOBISVD for denoising datasets leads to superior detection outcomes across various
classification algorithms;

• XGBoost demonstrates both rapid processing speed and effective detection capabilities across datasets
of varying sizes;

• The proposed intrusion detection system exhibits significant robustness across datasets of different sizes,
consistently delivering high classification performance.

Figure 11: Classification performance of different classification algorithms

6 Summary
The exponential growth of internet users and the proliferation of smart devices have led to an

exponential increase in the volume of data, forming massive data collections. The sources and formats
of network data are complex and varied. This poses significant challenges in data modeling and analysis
for cyber attack detection. To address the problem, this article uses a unified tensor to construct a DDoS
attack detection model. Aiming at the model, a novel data analysis method is proposed for reducing the
dimensionality and denoising multi-modal data through tensor decomposition. Then we seamlessly integrate
the XGBoost classification algorithm to solve the DDoS attack detection problem.

Future research will focus on advancing tensor decomposition techniques, such as tensor train decom-
position, to better capture the intricate relationships within network big data. Integrating tensors with
advanced machine learning algorithms such as deep learning or ensemble methods could lead to more robust
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and accurate network attack detection systems. Real-time tensor processing algorithms are also crucial; the
co-development of (1) real-time tensor processing frameworks, (2) parallel-optimized tensor operators, and
(3) streaming-enabled tensor architectures emerges as a critical triad in modern intrusion detection systems.

Acknowledgement: The authors acknowledge Jing Xu and Sizhang Li for the helpful discussions for this paper.

Funding Statement: This work was supported in part by the National Nature Science Foundation of China under
Project 62166047; in part by the Yunnan International Joint Laboratory of Natural Rubber Intelligent Monitor and
Digital Applications under Grant 202403AP140001; in part by the Xingdian Talent Support Program under Grant
YNWR-QNBJ-2019-270.

Author Contributions: The authors confirm contribution to the paper as follows: Study conception and design:
Hanqing Sun, Xue Li, Puming Wang; Data collection: Hanqing Sun, Xue Li, Qiyuan Fan; Analysis and interpretation
of results: Hanqing Sun, Xue Li; Draft manuscript preparation: Hanqing Sun, Xue Li. All authors reviewed the results
and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Srivastava A, Sinha D. FP-growth-based signature extraction and unknown variants of DoS/DDoS attack detection

on real-time data stream. J Inf Secur Appl. 2025;89:103996. doi:10.1016/j.jisa.2025.103996.
2. Habib AA, Imtiaz A, Tripura D, Faruk MO, Hossain MA, Ara I, et al. Distributed denial-of-service attack detection

short review: issues, challenges, and recommendations. Bulletin Electr Eng Inform. 2025;14(1):438–46. doi:10.11591/
eei.v14i1.8377.

3. Li X, Cheng J, Zhang B, Tang X, Sun M. An adaptive DDoS detection and classification method in blockchain using
an integrated multi-models. Comput Mater Contin. 2023;77(3):3265–88. doi:10.32604/cmc.2023.045588.

4. Alabdulatif A, Thilakarathne NN, Aashiq M. Machine learning enabled novel real-time iot targeted DoS/DDoS
cyber attack detection system. Comput Mater Contin. 2024;80(3):3655–83. doi:10.32604/cmc.2024.054610.

5. Hamdi M, Boudriga N. Detecting Denial-of-Service attacks using the wavelet transform. Comput Commun.
2007;30(16):3203–13. doi:10.1016/j.comcom.2007.05.061.

6. Tao Y, Yu S. DDoS attack detection at local area networks using information theoretical metrics. In: 12th IEEE
International Conference on Trust, Security and Privacy in Computing and Communications; 2013; Melbourne,
Australia. p. 233–40.

7. Fortunati S, Gini F, Greco MS, Farina A, Graziano A, Giompapa S. An improvement of the state-of-
the-art covariance-based methods for statistical anomaly detection algorithms. Signal Image Video Process.
2016;10:687–94. doi:10.1007/s11760-015-0796-y.

8. Streit A, Santos GH, Leão RM, e Silva EdS, Menasché D, Towsley D. Network anomaly detection based on tensor
decomposition. Comput Netw. 2021;200:108503. doi:10.1016/j.comnet.2021.108503.

9. Fan Q, Li X, Wang P, Jin X, Yao S, Miao S, et al. IDAD: an improved tensor train based distributed DDoS attack
detection framework and its application in complex networks. Future Gener Comput Syst. 2025;162:107471. doi:10.
1016/j.future.2024.07.049.

10. Shajari M, Geng H, Hu K, Leon-Garcia A. Tensor-based online network anomaly detection and diagnosis. IEEE
Access. 2022;10:85792–817. doi:10.1109/access.2022.3197651.

11. Ye Z, Luo J, Zhou W, Wang M, He Q. An ensemble framework with improved hybrid breeding optimization-based
feature selection for intrusion detection. Future Gener Comput Syst. 2024;151:124–36. doi:10.1016/j.future.2023.09.
035.

https://doi.org/10.1016/j.jisa.2025.103996
https://doi.org/10.11591/eei.v14i1.8377
https://doi.org/10.11591/eei.v14i1.8377
https://doi.org/10.32604/cmc.2023.045588
https://doi.org/10.32604/cmc.2024.054610
https://doi.org/10.1016/j.comcom.2007.05.061
https://doi.org/10.1007/s11760-015-0796-y
https://doi.org/10.1016/j.comnet.2021.108503
https://doi.org/10.1016/j.future.2024.07.049
https://doi.org/10.1016/j.future.2024.07.049
https://doi.org/10.1109/access.2022.3197651
https://doi.org/10.1016/j.future.2023.09.035
https://doi.org/10.1016/j.future.2023.09.035


Comput Mater Contin. 2025;84(1) 1679

12. Hu X, Gao W, Cheng G, Li R, Zhou Y, Wu H. Toward early and accurate network intrusion detection using graph
embedding. IEEE Trans Inform Forensics Secur. 2023;18:5817–31. doi:10.1109/tifs.2023.3318960.

13. Kumar GA, Katiyar A, Srinivasan K. Elevating IDS capabilities: the convergence of SVM, Deep learning, and
RFECV in network security. In: 2024 Second International Conference on Emerging Trends in Information
Technology and Engineering (ICETITE). Vellore, India: IEEE; 2024. p. 1–16.

14. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Review. 2009;51(3):455–500. doi:10.1137/
07070111x.

15. Fan Q, Li X, Wang P, Jin X, Yao S, Miao S, et al. BDIP: an efficient big data-driven information processing framework
and its application in DDoS attack detection. IEEE Trans Netw Serv Manag. 2025;22(1):284–98. doi:10.1109/tnsm.
2024.3464729.

16. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining; 2016; San Francisco, CA, USA. p. 785–94.

17. Subrmanian M, Shanmugavadivel K, Nandhini P, Sowmya R. Evaluating the performance of LSTM and GRU in
detection of distributed denial of service attacks using CICDDoS2019 dataset. In: Proceedings of 7th International
Conference on Harmony Search, Soft Computing and Applications: ICHSA 2022. Seoul, Republic of Korea:
Springer; 2022. p. 395–406.

18. Maranhão JPA, da Costa JPC, Javidi E, de Andrade CAB, de Sousa Jr RT. Tensor based framework for distributed
denial of Service attack detection. J Netw Comput Appl. 2021;174:102894. doi:10.1016/j.jnca.2020.102894.

19. Xu J, Li X, Wang P, Jin X, Yao S. Multi-modal noise-robust DDoS attack detection architecture in large-scale
networks based on tensor SVD. IEEE Trans Netw Sci Eng. 2022;10(1):152–65. doi:10.1109/tnse.2022.3205708.

20. Li S, Xu J, Liu P, Li X, Wang P, Jin X, et al. Truncated lanczos-TSVD: an effective dimensionality reduction algorithm
for detecting DDoS attacks in large-scale networks. IEEE Trans Netw Sci Eng. 2024;11(5):4689–703. doi:10.1109/
tnse.2024.3368048.

https://doi.org/10.1109/tifs.2023.3318960
https://doi.org/10.1137/07070111x
https://doi.org/10.1137/07070111x
https://doi.org/10.1109/tnsm.2024.3464729
https://doi.org/10.1109/tnsm.2024.3464729
https://doi.org/10.1016/j.jnca.2020.102894
https://doi.org/10.1109/tnse.2022.3205708
https://doi.org/10.1109/tnse.2024.3368048
https://doi.org/10.1109/tnse.2024.3368048

	TIDS: Tensor Based Intrusion Detection System IDS and Its Application in
obreakspace Large Scale DDoS Attack Detection
	1 Introduction
	2 Related Work
	3 Preliminary
	4 The Big Data-Driven Intrusion Detection System
	5 The Case Study
	6 Summary
	References


