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ABSTRACT: In the evolving landscape of secure communication, steganography has become increasingly vital to
secure the transmission of secret data through an insecure public network. Several steganographic algorithms have
been proposed using digital images with a common objective of balancing a trade-off between the payload size and the
quality of the stego image. In the existing steganographic works, a remarkable distortion of the stego image persists when
the payload size is increased, making several existing works impractical to the current world of vast data. This paper
introduces FuzzyStego, a novel approach designed to enhance the stego image’s quality by minimizing the effect of the
payload size on the stego image’s quality. In line with the limitations of traditional methods like Pixel Value Differencing
(PVD), Transform Domain Techniques, and Least Significant Bit (LSB) insertion, such as image quality degradation,
vulnerability to processing attacks, and restricted capacity, FuzzyStego utilizes fuzzy logic to categorize pixels into
intensity levels: Low (L), Medium-Low (ML), Medium (M), Medium-High (MH), and High (H). This classification
enables adaptive data embedding, minimizing detectability by adjusting the hidden bit count according to the intensity
levels. Experimental results show that FuzzyStego achieves an average Peak Signal-to-Noise Ratio (PSNR) of 58.638
decibels (dB) and a Structural Similarity Index Measure (SSIM) of almost 1.00, demonstrating its promising capability
to preserve image quality while embedding data effectively.
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1 Introduction
Authors Steganography, a data hiding technique, has recently received significant attention in securing

sensitive information by concealing information within various types of digital media, including audio [1],
video [2], and images [3]. Steganography enhances the security of sensitive information by embedding
it into seemingly innocuous content, rendering the hidden data undetectable to the casual observer [4].
In image steganography, the original image used to host the concealed data is the cover image [5]. In
contrast, the modified image containing the hidden information is called the stego image [6]. This practice
dates back centuries, with historical examples including using invisible ink or embedding messages in
poetic texts. Modern steganography, however, has evolved significantly, employing advanced algorithms and
computational techniques to embed data in digital images [7–10]. These algorithms subtly manipulate pixel
values or use complex machine learning models to ensure the hidden data is imperceptible, thus enabling
covert communication and robust data protection.
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Despite its advancements, the field of image steganography faces several challenges, primarily centred
around the balance between the quality of the stego image and its capacity to store data [11,12]. One of the
fundamental problems is that as the amount of embedded data increases, the visual quality of the stego
image tends to deteriorate, making it more susceptible to detection through visual inspection or steganalysis
attacks [13–15]. This trade-off between data embedding capacity and image quality remains a critical issue.
Additionally, current techniques often fail to perform consistently across different types of images, such as
medical or natural images, further restricting their broader applicability. Many steganographic techniques,
especially those using the Least Significant Bit (LSB) method [16,17], are susceptible to such attacks,
compromising the hidden data’s security and integrity [18]. However, significant progress has been made in
developing image steganography techniques, but several limitations persist. The lack of adaptability across
different image types to yield a high embeddable number of pixels, the challenge of maintaining high stego
image quality while embedding substantial amounts of data, and the vulnerability to steganalysis attacks are
vital areas that require further research in steganography.

To address the limitations highlighted in the state-of-the-art, this study presents a novel steganographic
method named FuzzyStego. This method utilizes fuzzy logic to adaptively arrange the pixels based on their
intensity levels with Low (L), Medium-Low (ML), Medium (M), Medium-High (MH), and High (H). The
data embedding is done based on the intensity of the pixels depending on the pixel’s classification from
the fuzzy inference system. The embedding process considers a maximum of three least significant bits
(LSB) for the most embeddable pixels and one LSB for the least embeddable pixel. The fuzzy paradigm
makes FuzzyStego a method that embeds data based on the image’s intensity’s adaptiveness. By categorizing
the pixels, FuzzyStego adapts the data embedding process according to the characteristics of each pixel,
which helps optimize the number of bits embedded in each pixel, enhancing the payload capacity and
imperceptibility, reflecting the stego image’s quality. The key contributions of the FuzzyStego include:

• Embeddable pixel arrangement based on intensity using fuzzy logic to optimally select the pixels to
host the data: Fuzzy logic is utilized to classify cover image pixels based on their intensity values. This
classification identifies pixels that are more suitable for embedding secret bits. By adaptively selecting
these embeddable pixels, the number of bits per pixel varies for enhanced security and efficiency of the
embedding process.

• By extrapolating low and medium-intensity pixels, this approach allows for the embedding of multiple
secret bits (two bits in medium-intensity pixels and three bits in low-intensity pixels) rather than the
single bit concealed by algorithms in previous studies: FuzzyStego uses adaptive logic to determine which
pixels can host three, two, or one bit. This approach increases the payload capacity without compromising
the visual quality of the stego image. Therefore, FuzzyStego contributes to achieving a balance between
high embedding capacity and image integrity.

• Introducing a cross-image type algorithm demonstrating nearly identical performance in general-
purpose and medical imaging contexts: The proposed FuzzyStego introduces a cross-image type
algorithm that performs consistently across general-purpose and medical imaging contexts. Utilizing
adaptive logic to allocate bits per pixel significantly enhances payload capacity while maintaining
image integrity.

The remaining part of this paper is divided into four sections. Section 2 examines the current advance-
ments and outlines the gaps the proposed method, FuzzyStego, aims to fill, with further details provided
in Section 3. Section 4 presents the experimental results and their interpretation, while Section 5 offers
the conclusion.
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2 Literature Review
Aligning with the general concern of steganography, which focuses on embedding hidden information

within a host medium [6], recent advancements aim to enhance security and invisibility. Numerous
techniques have been developed to improve the efficiency and imperceptibility of the concealed data [19–21].
Additionally, these methods address critical challenges related to detection and data integrity.

Siddiqui proposed a dynamic three-bit image steganography algorithm for medical and e-healthcare
systems [19]. This approach introduced a new steganography algorithm specifically for images, such as
MRI scans, which divide an image into three intensity regions, low, medium, and high, and embed data
using one to three LSBs based on the region. The main objective of their method is to ensure that the
hidden data remains undetectable using a Peak Signal Noise Ratio (PSNR), indicating visual distortion and
successful concealment of information. Despite these advancements, there are some limitations to consider.
The algorithm is designed for grayscale images, restricting its use in color image manipulation scenarios.
While LSBs effectively maintain image quality, they also introduce vulnerabilities to steganalysis attacks.
Optimizing the algorithm to use Fuzzy Logic will enhance data concealment and resistance to steganalysis.

Zaini proposed a steganographic approach that utilized the idea of difference expansion by employing
pixel block differentiation to improve the quality of stego images [20] based on the adjacent pixels differenc-
ing from [22,23]. This method organizes pixels from the image into blocks of 31 and calculates the difference
between them. The secret data is embedded if the difference between the pixels falls within a specific range
of −10 and 10. This method aims to enhance imperceptibility while accommodating amounts of data.

Additionally, it utilizes a key to keep track of data positions for extraction and image retrieval. Although
this technique shows promising outcomes, the fixed block size of 31 pixels may not be suitable for all types of
images and payload sizes, potentially restricting its use. Moreover, it lacks consideration for resilience against
steganalysis attacks. These challenges could be addressed by adopting a more adaptive scheme to distribute
the data across the image and reduce the impact on image distortion by optimizing pixel differences, like
large payloads. Ding, aiming to enhance the capacity of medical images to embed secret data, proposed
an improved reversible data hiding approach using a difference expansion algorithm [24]. The proposed
algorithm utilized the spaces between neighboring pixels by modifying their differences to embed data while
preserving the image’s appearance, referring to the previous paradigm in [25]. Despite the progress achieved
with this technique, some drawbacks need to be addressed. One major issue is balancing the concealed
image’s quality and capacity to carry information. As more data is hidden within the image, its quality
deteriorates, indicating that maintaining high image fidelity remains a concern across data loads. This can
be resolved by using an adaptive threshold in the algorithm, which changes based on local image features,
resulting in an improvement in capacity and reducing unnecessary distortions of the stego image.

Moreover, the study in [21] presents a novel technique for reversible data hiding in digital images by
dividing the image into regions of varying complexity, namely smooth and rough areas. To maximize the
data embedding capacity, the method embeds three bits per pixel in smoother regions, where redundancy
is high, and one bit per pixel in rougher areas. This approach outperforms conventional prediction error
expansion-based techniques by leveraging greater redundancy in smoother regions. A key innovation in this
scheme is the pixel selection mechanism, which reduces the number of pixels that need to be shifted, thus
preserving the visual quality of the stego image and reducing distortions. Experimental evaluations show
that this method surpasses many existing techniques regarding rate-distortion performance, achieving better
trade-offs between payload capacity and image quality.

However, while the technique shows significant promise, further improvements are needed to optimize
its performance, particularly when handling larger datasets. As data volume increases, maintaining a balance
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between high embedding capacity and the preservation of image quality becomes more challenging [26,27].
The method’s capacity to handle substantial amounts of data without degrading the stego image’s visual
integrity remains a critical area for refinement. Recent advances in steganography have tackled these
challenges by optimizing the balance between data embedding capacity and image quality [8,10]. However,
achieving this balance in high payload scenarios, where more data is embedded, remains a persistent issue.
Developing more refined algorithms that adapt to varying image characteristics is crucial while ensuring
that the stego image’s quality is not compromised. In this context, the current study introduces an advanced
steganographic algorithm based on fuzzy logic for pixel intensity classification to refine the embedding
process and maintain image quality, even with larger data payloads.

3 Proposed Method: FuzzyStego Approach
This article presents a steganographic method that involves an adaptive approach to select the embed-

dable cover image pixels with a fuzzy logic-based paradigm. The embedding process, whose portrait is given
in Fig. 1, starts by loading the cover image and the secret data in binary format. Next, the pixels in the cover
image are classified into five intensity levels using predefined thresholds categorized as Low (≤50), Medium
Low (51–100), Medium (101–150), Medium High (151–200), and High (201–255). The number of secret bits
varies depending on the intensity level of each pixel in the image.

Figure 1: A general flowchart for the proposed FuzzyStego
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The proposed FuzzyStego is mathematically expressed as C = 3Nl ow + 2Nmed−l ow + 1Nmed +
1Nmed−hi gh , for the embedding process with Nl ow , Nmed−l ow , Nmed , Nmed−hi gh the pixel counts for the
corresponding ranges, consider p(i , j) as a pixel intensity at position (i , j) in the cover image. It is important
to note that p (i , j) ∈ [0, 255]. S also represents the secret data in binary form, and LSBk(p(i , j)) represents
the k − th least significant bit of the pixel p(i , j). For the pixels satisfying the condition in Eq. (1), with the
EmbedLSBs function is got by Eq. (2) taking p′(i , j) as the pixel of the stego image, the embedding process
follows the formula in Eq. (3). For the pixels satisfying the condition in Eq. (4), the embedding process
follows Eq. (5), for the pixels under the condition in Eq. (6), the embedding process follows Eq. (7), for the
pixels under the condition in Eq. (8), the embedding process follows Eq. (9), and for the pixels under the
condition in Eq. (10), the stego pixels and the cover pixels are kept unaltered as of Eq. (11). The extraction
process that considers b as 1, is expressed in Eq. (12) for the secret data and as Eq. (13) for the image pixels.

p(i , j) ≤ 50 (1)

EmbedLSBs (P (i , j) , S , k) = ⌊ p(i , j)
2k ⌋ .2k + Bits(S , k) (2)

p′ (i , j) = EmbedLSBs(p (i , j) , S , k; k = 3) (3)
51 ≤ p(i , j) ≤ 100 (4)
p′ (i , j) = EmbedLSBs(p (i , j) , S , k; k = 2) (5)
101 ≤ p(i , j) ≤ 150 (6)
p′ (i , j) = EmbedLSBs(p (i , j) , S , k; k = 1) (7)
151 ≤ p(i , j) ≤ 200 (8)

p′ (i , j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p (i , j) + 1 i f s ≠ LSB1 (p (i , j)) and p(i , j) < 255,
p (i , j) − 1 i f s ≠ LSB1 (p (i , j)) and p (i , j) = 255,
p (i , j) otherwise .

(9)

201 ≤ p(i , j) ≤ 255 (10)
p′ (i , j) = p(i , j) (11)

S =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{LSB1 , LSB2, LSB3} (p′(i , j)) f or p′(i , j) ≤ 50 + b
{LSB1 , LSB2} (p′(i , j)) f or 50 + b ≤ p′(i , j) ≤ 100 + b
p′ (i , j)mod 2 f or p′ (i , j) > 150 + b

(12)

p (i , j) =
⎧⎪⎪⎨⎪⎪⎩

⌊ p′(i , j)
2k ⌋ .2k f or k = 3, 2, 1(based on the pixel value)

p′ (i , j) − S f or p′ (i , j) > 150 + b
(13)

The proposed FuzzyStego employs a Mamdani Fuzzy Inference System (FIS) as the core mechanism
for pixel classification, ensuring an adaptive and practical approach to embedding data within a cover
image. Mamdani FIS, known for its intuitive rule-based framework, is particularly suited for handling
the uncertainty and variability inherent in pixel intensity values. Below, we detail the components of the
FuzzyStego Mamdani FIS: Input Fuzzification, Fuzzy Rule Base, Fuzzy Inference, and Defuzzification.

Input Fuzzification: The grayscale intensity of each pixel p(i , j) where p (i , j) ∈ [0, 255] is transformed
into fuzzy linguistic terms based on predefined membership functions. These terms correspond to five
intensity levels: Low (≤50), Medium Low (51–100), Medium (101–150), Medium High (151–200), and High
(201–255). These membership functions, typically triangular, define the degree to which a pixel belongs to
each intensity level.
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Fuzzy Rule Base: The rule base is composed of intuitive if-then rules that facilitate the classification of
pixel intensities into predefined categories. Each rule maps a specific intensity range of the pixel p(i , j) to
a corresponding category, ensuring systematic and adaptive classification. The following rules are followed
to organize the pixels based on their intensities. If the intensity p(i , j) falls within the Low range (0–50), it
is classified into the Low category, allowing for higher data embedding due to the low perceptual sensitivity
in this range. If the intensity p(i , j) lies within the Medium Low range (51–100), it is categorized as Medium
Low, permitting moderate embedding. For intensities in the Medium range (101–150), the pixel is assigned to
the Medium category, balancing embedding capacity and visual quality. Pixels with intensities in the Medium
High range (151–200) are classified as Medium High, where embedding is more restricted to minimize visual
distortion. Finally, if the intensity p(i , j) falls within the High range (201–255), it is assigned to the High
category, ensuring no significant alterations are made to these visually sensitive pixels.

Fuzzy Inference: The Mamdani FIS uses a max-min inference approach, evaluating the rules based on
the membership values of the input and determining the degree of truth for each rule. This step results in a
fuzzy output set for each pixel.

Defuzzification: The output fuzzy set is converted into a crisp value using the centroid method,
determining the most representative intensity level. This output guides the embedding process, defining how
many bits can be embedded in each pixel.

The use of fuzzy logic in FuzzyStego is essential for optimizing the balance between embedding capacity
and image quality through an adaptive pixel classification approach. Pixels are categorized into five intensity
levels, each tailored to the sensitivity of the human visual system and the capacity for imperceptible data
embedding. Dark pixels (Low intensity, ≤50) can tolerate significant alterations without visible artifacts,
allowing up to 3LSBs to be modified, maximizing embedding capacity. In the Medium Low range
(51–100), moderate distortion is acceptable, permitting the replacement of two LSBs while maintaining visual
quality. Midtone regions (Medium intensity, 101–150), which are more sensitive to changes, allow only one
LSB modification to minimize visible artifacts. Bright areas (Medium High intensity, 151–200) have limited
tolerance for distortion, requiring conditional embedding strategies like incrementing or decrementing pixel
values to ensure imperceptibility. High-intensity pixels (201–255) are left unaltered to preserve the integrity
of visually critical regions. The Mamdani fuzzy inference system (FIS) is pivotal in enabling this adaptive
adjustment of embedding strategies based on pixel intensity. The system achieves high imperceptibility by
leveraging fuzzy rules and predefined thresholds, balancing data security with visual fidelity.

3.1 Data Embedding
The FuzzyStego method for embedding secret data consists of three stages: cover image classification,

secret data embedding, and post-embedding conversion. These steps that follow the pseudocodes in
Algorithm 1 ensure efficiency in embedding the secret data while preserving the visual integrity of the stego
image. It adjusts its embedding capacity according to the intensity region to maintain image fidelity.
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Algorithm 1: Embedding process
Input: Cover Image, Secret data
Load the Cover Image and Secret Data
Convert Secret Data into binary format
For each pixel in the Cover Image:

Get the pixel intensity
Repeat

If the pixel intensity is less than or equal to the low threshold then
Embed 3 bits into the 3 least significant bits of the pixel
Update the pixel value with the embedded bits
Increment the index for secret data bits by 3

Else if the pixel intensity is greater than the low threshold and less than or equal to the medium-low
threshold then

Embed 2 bits into the 2 least significant bits of the pixel
Update the pixel value with the embedded bits
Increment the index for secret data bits by 2

Else if the pixel intensity is greater than the medium-low threshold and less than or equal to the medium
threshold then

Embed 1 bit into the least significant bit of the pixel
Update the pixel value with the embedded bit
Increment the index for secret data bits by 1

Else if the pixel intensity is greater than the medium threshold and less than or equal to the medium-high
threshold

then
Add 1 bit to the pixel value
Update the pixel value by adding the bit
Increment the index for secret data bits by 1

Else if the pixel intensity is greater than the medium-high threshold then
Do not embed any bits. Leave the pixel value unaltered

Until all secret data bits are embedded
Output: Stego Image

Step (1) Fuzzy-Based Cover Pixels Classification
In the first step, the cover image undergoes classification of its pixels according to their intensity levels.

This plays a role in determining the capacity for embedding data without affecting image quality. The pixel
intensity levels are divided into five levels: L, ML, M, MH, and H. The classification of pixels enables adaptive
data embedding by allowing more secret bits to be hidden in pixels with intensity levels while making
minimal adjustments to pixels with higher intensity to prevent noticeable deterioration in visual quality.

Step (2) Secret Data Embedding
After the pixels are categorized and labeled accordingly, the secret data are embedded into the cover

image in the following process:

• L: For pixels with intensity Ip <= tL, 3LSBs are replaced to embed secret data, allowing for higher capacity
without causing noticeable distortion to the human eye.
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• ML: For pixels with intensity tL < Ip <= tML, 2LSBs are replaced to embed secret data, slightly decreasing
the hiding capacity to uphold the visual quality of the stego image.

• M: Pixels with intensity tML < Ip <= tM, 1LSB replaced to embed secret data, making them more resilient
to distortion and requiring fewer embedded bits.

• MH For pixels with intensity tM < Ip <= tMH, the binary value of the secret bit is added to the pixel
value. This adjustment ensures minimal visual impact due to their sensitivity to changes.

• H: Pixels with intensity Ip > tMH, the binary value of the secret bit is added to the pixel value. The same
applies to medium-high intensity; these pixels are sensitive to visuals, so fewer modifications are allowed.

3.2 Data and Cover Extraction
Like the embedding process, the extraction process is organized in a couple of steps. As given in the

pseudocodes from Algorithm 2, the steps include stego preprocessing and extraction.

Algorithm 2: Extraction process
Input: Stego Image
Load the Stego Image
For each pixel in the Cover Image:

Get the pixel intensity
Repeat

If the pixel intensity is less than or equal to the low threshold then
Extract 3 bits from the 3 least significant bits of the pixel
Append the extracted bits to the list of secret bits
Update the Cover Image by resetting the least significant bits of the pixel

Else if the pixel intensity is greater than the low threshold and less than or equal to the medium-low
threshold then

Extract 2 bits from the 2 least significant bits of the pixel
Append the extracted bits to the list of secret bits
Update the Cover Image by resetting the least significant bits of the pixel

Else if the pixel intensity is greater than the medium-low threshold and less than or equal to the medium
threshold then

Extract 1 bit from the least significant bit of the pixel
Append the extracted bit to the list of secret bits
Update the Cover Image by resetting the least significant bit of the pixel

Else if the pixel intensity is greater than the medium threshold and less than or equal to the medium-high
threshold

then
Extract 1 bit using the modulo operation
Update the pixel value by adding the bit
Increment the index for secret data bits by 1

Else if the pixel intensity is greater than the medium-high threshold then
Do not extract any bits. Leave the pixel value unaltered

Until all secret data bits are extracted
Output: Cover Image, Secret Data
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Step (1) Preprocessing the Stego Image
Each pixel of the stego image is processed to identify any changes made by the embedded secret data.

The intensity levels of the pixel values are classified as in the embedding process. This step is crucial as it helps
determine how many secret bits were hidden in each pixel and how to restore the cover image. The stego
image keeps its original dimensions through this process to preserve the integrity of the pixel structure.

Stage (2) Extracting the Data and the Cover Image
The extraction of the secret data and cover image starts by classifying each pixel based on intensity levels

(L, ML, M, MH, and H) following the set of thresholds from the data embedding method:

• L: Extract 3LSBs from the pixel and treat them as secret bits, while the rest of the bits are used to
reconstruct the cover image by resetting those 3LSBs to zero.

• ML: Extract 2LSBs, and the cover image is restored by setting this LSB to zero.
• M: Extract 1LSB and restore the cover image by setting this LSB to zero.
• MH: Extract the secret data using the modulo operation while restoring the cover image by subtracting

the embedded secret bit value from the pixel value.
• H: No secret data is extracted, and the pixel value remains unaltered for the original cover image.

3.3 Dataset and Evaluation Metrics
The proposed FuzzyStego method was tested using images from the SIPI database [28]. A collection

of experimental images often used in steganography research. These images are grayscales with a size of
512 × 512 pixels. To assess the method’s effectiveness, random secret bits are generated using the Lorem
Ipsum [29] and stored in a base-5 format with file sizes varying from 1 kb to 100 kb. Using test images sourced
from the SIPI database and randomly generated secret data bits forms a strong foundation for testing the
efficiency of the suggested steganographic method, evaluating its performance, and enabling comparisons
with established procedures for a detailed analysis of the effectiveness and potential enhancements to
by FuzzStego.

To evaluate the quality of images effectively after embedding secret data in them with the FuzzyStego
method, we use PSNR and SSIM. In addition, we compute the embedding capacity to identify the embed-
dability of each image with FuzzyStego. The PSNR is calculated using Eq. (14), and the SSIM using Eq. (15). In
these computations, the C(i , j) stands for the cover image, while S(i , j) refers to the stego image that contains
the embedded data. The SSIM calculation also incorporates the parameters δi and δ j, representative of
average pixel intensities, and αi and α j indicative of intensity variations in horizontal and vertical directions.
Moreover, αi , j considers the covariance between these intensity variations, enabling SSIM to provide a
comprehensive evaluation of the similarity in structure between the images.

PSNR = 10 × log10
2552

1
a × b ∑

a
i=1∑b

j=1(C (i , j) − S(i , j))2
(14)

SSIM =
(2δi δ j + Ci)(2αi , j + Si)

(δi
2 + δ j

2 + Ci)(αi 2 + α j 2 + Si)
(15)

4 Results and Discussions

4.1 Experimental Results
The data presented in Table 1 offers a detailed analysis of image quality metrics, specifically PSNR and

SSIM, across different cover images and payload sizes (ranging from 1 to 100 kilobits (kb)). The data reveals
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that aerial and fishing boats exhibit high PSNR values at 1 kb, indicating excellent quality even in smaller file
sizes. However, as the payload size increases, PSNR values decline for all images, signaling quality loss due
to the higher payload. Conversely, images like Airplane maintain more stable PSNR values at larger file sizes,
suggesting they are more resistant to the quality degradation caused by the steganographic payload.

Table 1: Obtained PSNR and SSIM results

Images 20 kb 40 kb 60 kb 80 kb 100 kb

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Aerial 59.615 0.999 55.866 0.999 53.564 0.999 51.682 0.999 51.840 0.999

Airplane 55.252 0.999 58.212 0.999 58.212 0.999 58.212 0.999 58.212 0.999
Car and APCs 51.193 0.997 48.144 0.995 46.697 0.993 45.831 0.990 45.268 0.988
Fishing Boat 57.458 0.999 52.216 0.999 48.005 0.996 45.304 0.991 44.424 0.992
Pixel ruler 58.274 1.000 55.849 1.000 53.915 1.000 52.425 1.000 53.557 1.000

Stream and bridge 56.385 0.999 53.095 0.999 49.408 0.997 47.898 0.997 46.733 0.997
Tank 56.191 0.999 52.273 0.999 49.727 0.998 48.133 0.997 47.773 0.997
Truck 52.017 0.999 49.168 0.998 47.453 0.997 46.107 0.995 45.517 0.995

Peppers 52.561 0.998 49.202 0.996 47.195 0.995 45.714 0.993 44.418 0.990
Barbara 55.702 0.999 52.134 0.997 50.759 0.997 49.402 0.995 48.188 0.994
Zelda 54.094 0.997 51.055 0.995 49.253 0.993 48.276 0.992 47.672 0.991

Baboon 51.428 0.99 49.224 0.999 47.740 0.999 46.726 0.998 46.164 0.998

Regarding structural quality, the SSIM values in Table 1 show that most images retain their structural
integrity even with high payload steganography, as SSIM scores remain close to 1.0. This indicates that the
proposed FuzzyStego method preserves vital structural elements such as edges and textures despite pixel-
level degradation from the embedded data. Images like Aerial and Pixel ruler maintain nearly perfect SSIM
values across all payload sizes, while images like Car, APCs, and Peppers show slight reductions in SSIM.
However, these values still suggest minimal perceptual quality loss. The strength of the FuzzyStego method
lies in its ability to effectively balance both PSNR and SSIM, preserving high visual and structural quality
while embedding hidden data. It minimizes the adverse effects of data embedding, ensuring the hidden
information remains secure without significantly degrading the overall image quality.

Fig. 2 presents a scatter plot to illustrate the relationship between the SSIM and the Embedding Capacity
(EC) for the test images under the FuzzyStego, highlighting the efficiency of the proposed method. Most
images exhibit SSIM values close to 1, indicating excellent structural preservation, with minimal perceptual
differences between the original and stego images. This implies that even with embedded data, the visual
integrity of the images remains almost intact. Images like Aerial and Pixel ruler demonstrate higher EC
values (around 0.7), meaning they can embed substantial data while retaining near-perfect visual quality. In
contrast, images such as Baboon and Zelda show lower EC values (around 0.2–0.4), suggesting they have a
more limited capacity for data embedding without experiencing slight structural degradation, as reflected in
their slightly lower SSIM values (though still above 0.994). This indicates that FuzzyStego effectively balances
embedding capacity and visual quality across different images.
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Figure 2: Illustration of the relationship between the SSIM and the EC

The scatter illustration in Fig. 3 presents the relationship between the PSNR and the EC, highlighting the
performance of the proposed FuzzyStego technique. The PSNR, which reflects the quality of an image after
steganographic embedding, remains consistently high across various images, with values ranging from 50 dB
to 59 dB. This demonstrates FuzzyStego’s ability to preserve image quality. Additionally, the EC varies from
0.1 to 0.8, indicating that FuzzyStego efficiently utilizes the image’s capacity for data hiding while maintaining
low distortion. Images such as Airplane cars and APCs achieve a remarkable balance, displaying high EC
and PSNR values, which underscores the method’s adaptability and efficiency.

Figure 3: Illustration of the relationship between the PSNR and the EC
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To demonstrate the cross-dataset performance of the proposed FuzzyStego method, Table 2 compares
its PSNR and SSIM across medical images from [30,31] and general-purpose images from [32] datasets. The
results confirm FuzzyStego’s adaptability and efficiency in embedding data into various cover images while
maintaining high image quality and structural integrity. FuzzyStego achieves promising PSNR and SSIM
values for medical images, even for larger payloads. For instance, in the Brain image, the PSNR decreases
from 65.482 dB (1 kb) to 47.887 dB (100 kb) while maintaining an SSIM above 0.97, reflecting excellent
perceptual quality. Similar trends are observed for other medical images, such as Hand, Leg, and Head, with
SSIM values consistently exceeding 0.95 across all payload sizes. This demonstrates FuzzyStego’s ability to
embed large amounts of data in medical images without significantly degrading visual quality or structural
similarity. For general-purpose images, FuzzyStego also delivers robust performance. The Fountain image,
for example, maintains a PSNR of 63.040 dB for 1 kb and 40.127 dB for 100 kb, with an SSIM consistently
above 0.98. Similar performance is noted for images such as Car, Bridge, and Cars, where the SSIM values
remain near 1.0 for smaller payloads and above 0.97 for larger ones. This indicates that FuzzyStego preserves
general-purpose images’ visual and structural quality across varying payload sizes.

Table 2: Results of the FuzzyStego under a cross-dataset experiment

Image type Cover image 1 kb 20 kb 40 kb 80 kb 100 kb

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Medical Images
from [30,31]

Brain 65.482 0.999 52.921 0.985 49.765 0.969 48.907 0.980 47.887 0.979
Hand 65.184 1.000 49.051 0.995 44.837 0.991 41.393 0.983 40.426 0.980
Leg 61.315 1.000 46.882 0.992 44.109 0.983 41.643 0.966 40.852 0.957

Head 66.025 1.000 52.073 0.988 49.761 0.978 46.680 0.960 45.541 0.947

General Purpose
Images from [32]

Fountain 63.040 1.000 44.019 0.997 40.686 0.990 40.128 0.988 40.127 0.987
Car 60.809 1.000 44.420 0.991 41.223 0.983 40.989 0.986 40.988 0.985

Bridge 69.706 1.000 44.612 0.992 42.203 0.988 42.033 0.988 42.033 0.988
Cars 56.322 0.999 41.688 0.983 39.956 0.975 39.611 0.977 39.610 0.977

To further evaluate the proposed FuzzyStego method’s practicality, we examine the embedding and
extraction times, providing context with the computational environment used: an Intel

R©
Core™ i7-1165G7

processor (2.80 GHz) and 16 GB RAM. The results in Table 3 show that embedding times increase with
payload size while extraction times remain stable across different payloads and cover images. Smaller payload
sizes, such as 1 kb, embedding times are minimal, ranging from 0.004 s for the “Airplane” and “Truck” images
to 0.167. As payload sizes increase to 100 kb, embedding times naturally rise due to the increased data being
processed. For instance, the embedding time for the “Aerial” image grows from 0.019 s at 1 kb to 1.0879 s at
100 kb, while the “Barbara” image increases from 0.155 s to 0.8785 s over the same range. It is also important
to note that the extraction times remain consistent across all payload sizes, indicating the scalability and
efficiency of the FuzzyStego algorithm for data retrieval. For example, the “Aerial” image shows only a
slight variation in extraction time, from 0.390 s to 0.3909 s, regardless of the payload size. Similarly, images
like “Truck” and “Airplane” maintain extraction times below 0.5 s, underscoring the algorithm’s reliability.
Specific images, such as “Airplane” and “Truck,” exhibit consistently faster embedding and extraction times,
particularly at smaller payloads. For instance, the “Truck” image requires only 0.004 s for embedding and
0.453 s for extraction at 1 kb.
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The scalability and real-world applicability of FuzzyStego are demonstrated by the high similarity
observed between the cover and stego images across all tested payload sizes. This is further supported by the
close resemblance of their histograms, even at larger payload capacities, underscoring FuzzyStego’s suitability
for modern, interconnected systems. Fig. 4 displays the histograms for two sample test images (one being a
general purpose image, another being a medical image) of both cover and stego images generated using the
FuzzyStego method. A detailed comparison of these histograms reveals a high degree of similarity between
the cover and stego images, underscoring FuzzyStego’s ability to embed data effectively while maintaining
the visual integrity of the original image. The minimal differences in the histogram distributions between the
cover and stego images highlight the method’s efficiency in concealing the embedded information, making
the stego images virtually indistinguishable from their cover counterparts. This characteristic confirms the
robustness of FuzzyStego and emphasizes its suitability for real-world applications.

Image

Cover Stego Cover Stego

Histogram

Figure 4: Histograms for cover and stego images using FuzzyStego

4.2 FuzzyStego Security Analysis
To assess the robustness of FuzzyStego against steganalysis and its resilience to compression

attacks, Table 4 presents the detection accuracy of stego images generated using FuzzyStego, tested against
the steganalysis algorithms in [15,33]. Stego images are created using the FuzzyStego algorithm, with payload
sizes of 60, 80, and 100 kb. The results in Table 1 indicate the algorithm’s robustness, with detection accuracy
consistently remaining below 30% across all test scenarios. The highest detection accuracy, recorded with
preprocessed images subjected to a strong steganalysis attack, is just 29.33%, highlighting the effectiveness
of FuzzyStego in resisting steganalysis.

Table 4: Detection accuracy in percentage (%) of the proposed method by steganalysis attacks

Staganalysis algorithm Payload capacity

60 kb 80 kb 100 kb
Algorithm in [15] 17.991 20.490 26.048
Algorithm in [33] 17.818 22.999 29.337
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Additionally, Table 5 includes the average PSNR and SSIM values for the FuzzyStego applied to both
compressed cover and stego images to evaluate the resilience of FuzzyStego against compression attacks.
The compression technique used is Huffman Coding, a commonly applied compression algorithm known
for its relatively high distortion. The PSNR values of the compressed stego images range from 33.736 (for
the “Stream and Bridge” image) to 41.143 (for the “Pixel Ruler” image). These values indicate that the stego
images retain good quality even after compression. Higher PSNR values, such as the 41.143 achieved for the
“Pixel Ruler” image, suggest minimal distortion, whereas lower values, like 33.736 for “Stream and Bridge,”
imply slightly more distortion. However, these values are still within an acceptable range for most practical
applications. Similarly, the SSIM values, which measure the structural similarity between the original and
compressed images, remain consistently high across all test images. SSIM values range from 0.878 (for the
“Tank” image) to 0.993 (for the “Pixel Ruler” image), with most values exceeding 0.9. An SSIM above 0.9
typically signifies that the compressed image preserves its structural features quite well, further supporting
the robustness of FuzzyStego in maintaining the integrity of stego images after compression.

Table 5: Average PSNR and SSIM of the FuzzyStego under huffman compression

Cover image PSNR in dB SSIM
Aerial 34.530 0.943

Airplane 38.993 0.940
Car and APCs 35.109 0.895
Fishing Boat 35.121 0.912
Pixel ruler 41.143 0.993

Stream and bridge 33.736 0.945
Tank 34.409 0.878
Truck 34.961 0.901

4.3 Comparative Analysis of FuzzyStego and Existing Methods
4.3.1 Rationale and Scientific Basis of the Selection of the Comparison Methods

The selection of comparison methods for the FuzzyStego approach is guided by the need to evaluate
its performance against diverse techniques that exhibit unique strengths in data embedding, extraction,
and steganographic robustness. Each comparison method emphasizes attributes like embedding capacity,
imperceptibility, computational efficiency, and security, aligning with the core objectives of FuzzyStego. The
methods proposed [7,8,34–36] are selected due to their ability to utilize pixel value differences for adaptive
data embedding. These methods embed secret bits by analyzing consecutive pixel pairs and their differences,
ensuring high capacity in smooth areas and minimal distortion in edge regions. By comparing with the
method in [10], the adaptability of FuzzyStego in varying intensity regions can be effectively assessed, as
both approaches prioritize adaptive embedding. However, FuzzyStego’s fuzzy-based classification introduces
finer-grained embedding control to enhance the stego image’s visual quality.

Moreover, the Genetic Algorithm-Enhanced Pixel Value Differencing (GA-IPVD) technique proposed
in [26] is selected as a robust benchmark because it uses genetic algorithms to optimize pixel selection for
data embedding. FuzzyStego’s fuzzy logic-based classification provides an alternative to GA’s optimization
by focusing on pixel intensity levels. Comparing these methods highlights FuzzyStego’s capacity to balance
imperceptibility and simplicity without requiring iterative optimization. Therefore, the selected methods
for comparison reflect a broad spectrum of strategies in steganography, from pixel-based adaptations to
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complexity-driven and optimization-enhanced techniques. By comparing FuzzyStego against these diverse
methodologies, its scientific contributions, including intensity-sensitive embedding and fuzzy-based classi-
fication, validated in capacity and imperceptibility enhancements and computational efficiency evidenced
by the obtained experimental results.

4.3.2 Evaluating the Trade-off between Payload Capacity and Image Quality
Fig. 5 compares the proposed FuzzyStego method with the existing methods, showing the PSNR values

achieved for the Boat and Baboon, the commonly used cover images for all the techniques involved in
the comparison. Based on the figure data, the proposed FuzzyStego demonstrates strong performance,
achieving PSNR values of 52.43 dB for the Boat image and 50.72 dB for the Baboon image. These values are
significantly higher than those obtained in the state-of-the-art methods, such as those from [7,26], which
fall below 42 dB for both images. This highlights FuzzyStego’s superior ability to preserve image quality
after embedding. When compared with methods from [8,10,27], FuzzyStego remains competitive. For the
Boat image, FuzzyStego’s PSNR (52.43 dB) outperforms that of [8] (46.30 dB), demonstrating its ability
to embed data with less visual distortion. While the methods from [10,27] achieve higher PSNR values
(58.70 dB and 59.11 dB, respectively), FuzzyStego still strikes a commendable balance between image quality
and embedding efficiency. FuzzyStego outperforms the methods from [7,8,26] for the Baboon image, all
showing PSNR values below 48 dB, indicating more noticeable image degradation. In contrast, FuzzyStego
maintains a PSNR of 50.72 dB, preserving better visual quality. While the methods [10,27] achieve slightly
higher PSNR values (54.27 and 55.45 dB, respectively), FuzzyStego’s results outperform.

Figure 5: PSNR Comparison between the FuzzyStego and the existing algorithms [7,8,10,26,27]

4.3.3 Evaluating the Maximum Payload Capacity
Fig. 6 highlights the significant advantages of the proposed FuzzyStego method over state-of-the-art

algorithms by showcasing the maximum embedding capacities achieved for the Boat and Baboon cover
images. FuzzyStego consistently demonstrates superior performance, achieving the highest embedding
capacity in all cases. This efficiency supports FuzzyStego’s suitability for applications requiring high-
capacity steganography.
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FuzzyStego achieves an embedding capacity of 1,079,052 bits for the Boat cover image, far exceeding
the capacities of other methods. The method in [7], while ranking second with 824,789 bits, still falls short
by approximately 23.6%. The methods in [10,26] exhibit significantly lower capacities of 34,059 bytes and
499,992 bytes, representing reductions of over 96.8% and 53.7%, respectively, compared to FuzzyStego.
These results emphasize the substantial performance gap between FuzzyStego and the alternatives. Similarly,
FuzzyStego achieves the highest embedding capacity for the Baboon cover image, reaching 1,078,190 bytes.
The method in [7] follows with 793,183 bits, approximately 26.5% lower. The methods in [10,26] perform
poorly, with capacities of 17,582 and 499,995 bits, reflecting reductions of 98.4% and 53.7%, respectively.

Figure 6: Embedding capacity comparison between the FuzzyStego and the existing methods [7,10,26]

4.3.4 Quantitative Evidence Highlighting the Superiority of FuzzyStegoover Existing Techniques
Fig. 7 provides a comparative analysis highlighting the quantitative superiority of FuzzyStego over

existing steganographic techniques, namely the PVD-based method in [34], the LSB-based method in [35],
and the Discrete Cosine Transform (DCT)-based method in [36]. This evaluation uses PSNR as the
metric, with higher PSNR values indicating better imperceptibility and image quality after embedding.
For the Peppers image, FuzzyStego demonstrates a PSNR of 50.07 dB, surpassing the PVD-based method
in [34] (41.55 dB) and the LSB-based method in [35] (34.24 dB). Although the DCT-based method in [36]
reports a slightly higher PSNR of 45.09 dB, FuzzyStego effectively balances imperceptibility and embedding
robustness, offering a practical and adaptable steganographic solution.

These results illustrate FuzzyStego’s robust performance across different images and steganographic
paradigms. By integrating a fuzzy logic-based adaptive approach, FuzzyStego surpasses the PVD and LSB
techniques and provides comparable results to the DCT-based method, emphasizing its versatility and
effectiveness in secure data embedding.
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Figure 7: Quantitative comparisons of the FuzzyStego and the existing methods under a same cover image,
Peppers [35–37]

4.4 Ablation Study for a Comparative Analysis of FuzzyStego and the NoFuzzy Methods
This study’s ablation experiments compare the proposed FuzzyStego with the LSB method without fuzzy

logic. Fig. 8 illustrates the comparative performance of the fully proposed FuzzyStego against its version
without fuzzy logic to adaptively select the embeddable pixels (labeled as “NoFuzzy”). Fig. 8a presents the
PSNR results as a function of the payload size in kb, and Fig. 8b includes the SSIM as a function of payload
size under two general purposes and medical images. These metrics, critical for evaluating the quality and
integrity of stego images, highlight the FuzzyStego method’s superiority over the NoFuzzy in preserving
image quality and structure.

Fig. 8a identifies that the PSNR results show the consistent advantage of FuzzyStego over the LSB
method. At low payload sizes (≤20 kb), FuzzyStego maintains high PSNR values, exceeding 65 dB for all
test images. For example, the “Aerial” and “Airplane” images achieve PSNR values of around 70 dB, whereas
the LSB method drops below 60 dB, indicating noticeable degradation. As the payload increases to medium
levels (20–60 kb), FuzzyStego gradually reduces PSNR but remains above 50 dB, highlighting its scalability.
On the other hand, the NoFuzzy method presents a steeper drop, with PSNR values often falling below 40 dB
for images like “Brain” and “Hand.” At higher payload sizes (≥80 kb), FuzzyStego continues to demonstrate
robust performance, sustaining PSNR values above 40 dB, while the NoFuzzy approach shows low quality
stego images, with PSNR values dropping below 30 dB. This resilience demonstrates FuzzyStego’s ability to
handle large data payloads while preserving image quality, a critical requirement for real-world applications.
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Figure 8: Ablation experiments results. (a) PSNR results; (b) SSIM results
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Moreover, Fig. 8b illustrates that the SSIM results further validate FuzzyStego’s superior performance in
maintaining the structural similarity between the cover and stego images. FuzzyStego achieves SSIM values
consistently above 0.98, reflecting its strong structural fidelity compared to the NoFuzzy. While the SSIM
values for FuzzyStego show a minor decrease with increasing payload, they remain within acceptable limits
for practical use. In contrast, the NoFuzzy approach suffers a significant reduction in SSIM, especially at
larger payloads. Considering the specific images, it is noticed that the “Brain” image’s SSIM drops below 0.97
at payloads of 50 kb and beyond, indicating a marked loss in structural integrity. FuzzyStego demonstrates
remarkable consistency, with images like “Aerial” and “Airplane” showing near-flat SSIM curves, even at large
payload sizes.

On the other hand, the NoFuzzy method’s SSIM curves exhibit steep downward trends, further under-
scoring its limitations in preserving image structure. The NoFuzzy method’s simplistic embedding strategy
results in significant quality degradation and structural distortion as payload sizes increase. FuzzyStego’s
intelligent embedding mechanism ensures robust scalability, maintaining high image quality and structural
integrity levels, even at large payloads.

4.5 Discussions
The findings of this study highlight the innovative and robust capabilities of the FuzzyStego method,

particularly in balancing image quality and embedding efficiency across diverse scenarios. The evaluation of
image quality metrics such as PSNR and SSIM in Table 1 reveals significant insights. Images like Aerial and
Fishing Boat for smaller payloads demonstrate excellent PSNR values, indicating superior quality preserva-
tion. Images like Airplane exhibit remarkable resilience to quality degradation at larger payloads, suggesting
an inherent adaptability in their texture profiles for data embedding. The structural integrity analysis using
SSIM demonstrates FuzzyStego’s strength in preserving essential image features even at high payload capac-
ities. Images like Aerial and Pixel Ruler maintain near-perfect SSIM values, signifying minimal perceptual
quality loss. Although images such as Car and APCs exhibit slightly reduced SSIM values, the decrease is
negligible, confirming FuzzyStego’s capability to embed data securely while retaining structural integrity.
This robust preservation of structural features ensures that the stego images are nearly indistinguishable from
their original counterparts, reinforcing the method’s suitability for high-quality applications.

The cross-dataset analysis reaffirms FuzzyStego’s versatility in handling medical and general-purpose
images. In medical applications, where maintaining structural integrity is paramount, FuzzyStego achieves
exceptional PSNR and SSIM values, even for larger payloads. General-purpose images like Fountain
also exhibit robust performance, maintaining SSIM values consistently above 0.97 across payload sizes,
demonstrating FuzzyStego’s ability to deliver superior quality across diverse use cases. Furthermore,
the computational efficiency of FuzzyStego, evaluated through embedding and extraction time, further
highlights its practicality. Embedding times increase predictably with payload size, yet extraction times
remain stable, showcasing the method’s scalability and reliability to highlight FuzzyStego’s efficiency in
real-time applications.

Moreover, based on the current performance of FuzzyStego in spatial images, it can be effectively
extended to audio and video steganography by adapting its principles to the unique characteristics of these
media types. For audio steganography, the method may use the amplitude values of audio signals, classifying
them into intensity levels like pixel intensities in images. Audio signals, represented as normalized waveforms
(e.g., [−1, 1]) or digital formats (e.g., [0,255]), benefiting the features of fuzzy logic, can be categorized into L,
ML, M, MH, and H amplitude levels. The fuzzy rules can guide the embedding process by determining the
number of bits to embed based on the amplitude level. Silent or quiet portions can tolerate higher embedding,
while louder or peak amplitude sections, more perceptually sensitive, allow for minimal embedding [37].
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This adaptive embedding strategy may be a promising solution to be worked on in future works in audio
steganography to maximize the data-hiding capacity, making it suitable for applications such as secure
communication in voice recordings and music tracks.

Furthermore, the FuzzyStego approach, which integrates spatial and temporal adaptations to optimize
data embedding, can also be recommended for video steganography. Utilizing the fuzzy logic paradigm
proposed in FuzzyStego, a video frame can be treated as an image, with pixels classified into intensity levels
using the Mamdani FIS and predefined thresholds. The temporal redundancy between consecutive frames
may be analyzed to introduce motion-based fuzzy rules. Low-motion regions, such as static backgrounds, can
accommodate higher embedding capacity by modifying multiple least significant bits, whereas high-motion
areas, involving moving objects or rapid transitions, are modified minimally to preserve visual fidelity. By
combining spatial and temporal fuzzy logic adaptations, the FuzzyStego method can achieve promising
relatively high embedding capacity and imperceptibility in video files, making it a robust solution for secure
video communication.

Conclusively, this article demonstrates the effectiveness of FuzzyStego as a superior steganographic
method compared to existing approaches. FuzzyStego achieves an optimal balance between embedding
capacity, imperceptibility, and computational efficiency using fuzzy logic for detailed pixel classification.
Its ability to maintain high visual quality in stego images while securely embedding data highlights its
reliability and adaptability. This approach establishes FuzzyStego as a robust and versatile solution for modern
steganographic applications, meeting the growing need for secure and efficient data-hiding techniques.

5 Conclusion
This article introduces FuzzyStego, a new technique developed to enhance stego image quality by

reducing the impact of payload size. Traditional methods, such as PVD, Transform Domain Techniques, and
LSB insertion, often encounter limitations like image degradation, susceptibility to processing attacks, and
constrained embedding capacity. The proposed method addresses these challenges by applying fuzzy logic
to categorize pixels into five intensity levels: L, ML, M, MH, and H. This pixel classification enables adaptive
data embedding, with the number of hidden bits adjusted based on intensity levels to minimize detectability.
The results demonstrate that the proposed FuzzyStego achieves a promising PSNR and SSIM, which reaches
a maximum of 1, showing its effectiveness in maintaining high image quality while embedding data.

To expand the applicability of the proposed FuzzyStego method, currently focused on image steganog-
raphy, future research could investigate its performance in other domains, such as audio and video
steganography. While this study primarily targets image-based applications, adapting the method to these
multimedia formats could reveal its broader versatility and effectiveness. Audio and video files present
unique challenges, such as larger sizes and more intricate structures, but FuzzyStego’s adaptability suggests it
can maintain high levels of security and efficiency across these domains. Given its demonstrated scalability
and robustness, FuzzyStego has the potential to advance the field of steganography, contributing to real-world
applications like secure communication and digital content protection.
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Glossary
APCs Armored Personel Carriers
C Mathematical Expression of FuzzyStego
C(i , j) Cover Image
dB Decibel
DCT Discrete Cosine Transform
EC Embedding Capacity
Eq. Equation
FIS Fuzzy Inference System
GA Genetic Algorithm
GA-IPVD Genetic Algorithm-Enhanced Pixel Value Differencing
H High Intensity
Ip Image Pixel
kb Kilobit
L Low Intensity
LSB Least Significant Bit
LSBk(p(i , j)) Kth LSB of the pixel at p(i , j)
M Medium Intensity
MH Medium High Intensity
ML Medium Low Intensity
PSNR Peak Signal-to-Noise Ratio
PVD Pixel Value Differencing
p(i , j) Pixel at position (i,j) in the cover image
p′(i , j) Pixel at position (i,j) in the stego image
S Secret data
SIPI Signal and Image Processing Institute
SSIM Structural Similarity Index Measure
S(i , j) Stego Image
tL Low Threshold
tM Medium Threshold
tH High Threshold
1Nmed One pixel count for the M range
1Nmed−Hi gh One pixel count for the MH range
2Nmed−Low Two pixel counts for the ML range
3NLow Three pixel counts for the L range
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