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ABSTRACT: Grains are the most important food consumed globally, yet their yield can be severely impacted by
pest infestations. Addressing this issue, scientists and researchers strive to enhance the yield-to-seed ratio through
effective pest detection methods. Traditional approaches often rely on preprocessed datasets, but there is a growing
need for solutions that utilize real-time images of pests in their natural habitat. Our study introduces a novel two-
step approach to tackle this challenge. Initially, raw images with complex backgrounds are captured. In the subsequent
step, feature extraction is performed using both hand-crafted algorithms (Haralick, LBP, and Color Histogram) and
modified deep-learning architectures. We propose two models for this purpose: PestNet-EF and PestNet-LF. PestNet-
EF uses an early fusion technique to integrate handcrafted and deep learning features, followed by adaptive feature
selection methods such as CFS and Recursive Feature Elimination (RFE). PestNet-LF utilizes a late fusion technique,
incorporating three additional layers (fully connected, softmax, and classification) to enhance performance. These
models were evaluated across 15 classes of pests, including five classes each for rice, corn, and wheat. The performance
of our suggested algorithms was tested against the IP102 dataset. Simulation demonstrates that the Pestnet-EF model
achieved an accuracy of 96%, and the PestNet-LF model with majority voting achieved the highest accuracy of 94%,
while PestNet-LF with the average model attained an accuracy of 92%. Also, the proposed approach was compared
with existing methods that rely on hand-crafted and transfer learning techniques, showcasing the effectiveness of our
approach in real-time pest detection for improved agricultural yield.

KEYWORDS: Artificial neural network (ANN); support vector machine (SVM); deep neural network (DNN); transfer
learning (TL)

1 Introduction
Pest management is a critical aspect of modern agriculture, essential for safeguarding crop health

and ensuring sustainable food production. The success of pest management strategies hinges on the ability
to accurately detect pests at an early stage, preventing infestations before they cause significant damage.
Traditional pest detection methods primarily rely on manual inspection, a process that is both labor-intensive
and time-consuming. Furthermore, manual methods are prone to human error and may fail to detect pests
hidden within dense foliage or complex backgrounds. As a result, there is an increasing need for automated,
scalable, and reliable pest detection systems that can operate efficiently across diverse environments. In
recent years, image processing technology has emerged as a promising solution for automated pest detection
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and recognition. However, challenges like image quality and complex backgrounds necessitate advanced
techniques for reliable detection.

Our methodology leverages both early and late fusion techniques to enhance pest detection accuracy.
In the early fusion approach, we first preprocess the images to standardize them and then extract features
using a combination of handcrafted methods and deep learning networks. Specifically, we employ multiple
pre-trained deep networks–Inception V3, VGG-16, AlexNet, ResNet18, ResNet50, ResNet101, SqueezeNet,
GoogleNet, and YOLO V3–alongside handcrafted features to create a comprehensive feature pool. We then
apply an adaptive feature selection process, which includes CFS to rank features based on their relevance to
the target class, and RFE to iteratively remove less important features.

In the late fusion approach, we extract features from the same set of networks and handcrafted methods,
but instead of combining them early, we pass them to individual classifiers. Each classifier processes its set
of features independently, and the final class label is determined using majority voting or averaging of the
classifiers’ predictions.

Our work introduces several key contributions to the field of pest detection:

• This study combines handcrafted and deep learning features using an early fusion approach, which
integrates multiple pre-trained networks to create a rich feature pool, followed by adaptive feature
selection techniques like CFS and RFE to enhance classification performance.

• This study contributes an advanced feature selection technique by implementing a dual-layer feature
selection process that combines correlation-based ranking and recursive elimination, significantly
improving the relevance and efficiency of features used in pest classification.

• This study utilized majority voting or averaging among classifiers to get a robust late fusion strategy. We
enhance the robustness of the pest detection system, ensuring that the final classification benefits from
the collective wisdom of multiple models.

Through these contributions, our approach aims to advance pest detection technology, offering a more
accurate and practical solution for agricultural pest management.

The structure of the paper is as follows: Section 2 describes the related work, and the specifics of the
suggested methodology are contained in Section 3. Comprehensive experiments and a comparative analysis
with several state-of-the-art methods are presented in Section 4. The paper is concluded in Section 5.

2 Related Work
Early detection of pest disease is a critical element in protecting our agricultural products. A rapid

response to eliminate, contain, or slow the spread of pests can be successful if a newly arrived pest is detected
earlier. In recent years, many pest detection and recognition systems have been presented.

2.1 Hand-Crafted
Hand-crafted features such as SIFT [1] and HOG [2] have been commonly used for feature extraction.

Saliency methods have also been widely adopted in recent years and have demonstrated impressive results.
A saliency model was proposed in [3] and extended in [4] using the Markov chain algorithm for object
detection. A novel approach, DFN-PSAN, was introduced in [5,6] for plant leaf and pest detection and
classification, while a hand-crafted feature extraction technique was employed in [7] for the classification of
tea and corn pests.
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2.2 Deep Learning
With the advancement of neural networks, researchers have developed architectures that can overcome

the limitations of hand-crafted models. Deep Convolutional Neural Networks (CNNs) techniques have
shown awe-inspiring results over time, which include GoogleNet [8] and ResNet [9].

Preprocessing is necessary because specific objects need to be filtered out in order to increase the
algorithm’s efficiency. He also suggested selecting the output based on the highest probability obtained object.
If that probability is greater than the selected threshold (TH), the object should be selected, or else it should
be ignored [10,11]. Saliency methods were used by [12,13] for the feature extraction and used 1400 images
with 24 classes of pest categories from the IP102 dataset, which contains a total of 75,000 images.

Improved CNN was used to classify apple pests [14–16]. Deep learning approaches like VGG, ResNet18,
and ResNet-50 were used to detect various crops to predict the occurrence of pests [17–20]. A method for
pest localization and classification to address inefficiencies in manual counting and current CNN-based
algorithms was developed and used in various flavor YOLOv3, YOLOv5, YOLO-GBS in various studies
[21–25]. These deep neural networks are designed to identify and categorize agricultural pests from photos,
tackling concerns related to minute variations in appearance and size between pests. In order to improve
representation capacity, Ren et al. [26] created a feature reuse residual block (FR-ResNet) that combines
input residual signals tested on the IP102 dataset. In order to classify insect pests, Kasinathan et al. [27]
experimented on the Wang and Xie dataset using ANN, SVM, KNN, NB, and CNN models.

Some of the most recent work under a highly complex background is mentioned next.
Jiao et al. [28] and Nanni et al. [29] used a modified CNN with an ensemble to successfully detect pests in

complex scenes. In order to improve pest detection performance and accuracy, and minimize parameter size
by addressing scale variability and optimizing feature extraction, Efficient Scale-Aware Network (ESA-Net)
and YOLOv5 were used [30,31]. A simple MobileNet-based pest classification technique was improved by a
dual-branch feature fusion module and the ASGE attention mechanism. It improves classification accuracy
and efficiency by optimizing the model architecture and activation functions [32,33]. Table 1 shows the most
recent literature work containing strengths and weaknesses.

Table 1: Comparative analysis and limitations of existing state-of-the-art techniques

Techniques Strength Weakness Dataset Accuracy
GAN-

ResNet [10]
The GAN-MSDB-ResNet

model achieves high training
and test recognition

accuracy for pest
identification.

Relies on enhanced
datasets, which do not

represent the variability
and complexity.

Aug-Dataset 99.34%

YOLOv5 [20,26] The YOLO-GBS model
achieves a significant

performance in complex
scenes.

The research may lack
extensive real-world

validation and scalability.

Pady Pest,
IP102

79.8%

ResNet-based
model [27]

Good for aphid detection. Limited by data
dependency and

computational needs.

Agricultural
Pest

75.77%

(Continued)
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Table 1 (continued)

Techniques Strength Weakness Dataset Accuracy
R-CNN [28] Method achieves high

accuracy in a two-stage
R-CNN.

Method’s complexity and
limited applicability in

limited resources or
smaller datasets.

AgriPest21 77%

Ensemble
CNNs [29]

The ensemble of CNNs
performed well on multiple

pest datasets.

Method’s complexity and
optimization variants are

required.

IP102 99.81%

Yolo v5 [31] Improve accuracy using
PestLite model.

Limited applicability to
other agricultural

scenarios without further
adaptation.

IP102 90.7%

MobileNet-
V2 [32]

PestNet(Lightweight)
enhances classification

accuracy with lower
complexity.

Improvements like
attention mechanisms

and multi-scale fusion for
task adaptation.

IP102 87.62%

3 Proposed Methodology
This research addresses the plant pest classification problem by applying transfer learning to ten state-of-

the-art networks, utilizing two innovative methods: PestNet-EF (Early Fusion) and PestNet-LF (Late Fusion
with Averaging and Majority Voting).

3.1 PestNet-EF (Early Fusion)
In this study, we implemented an Early Fusion methodology structured into four distinct blocks to

enhance the accuracy and efficiency of pest detection. The first block, Image Acquisition and Preprocessing,
involves capturing high-quality pest images and applying various preprocessing techniques such as resizing,
normalization, and background removal to prepare the images for feature extraction. This ensures that the
images are standardized, reducing noise and variations that could negatively impact the subsequent analysis.

The second block, Feature Extraction, combines both handcrafted and deep learning features to create a
comprehensive feature pool. Handcrafted features are derived from traditional image processing techniques,
while deep features are extracted from multiple pre-trained networks, including Inception V3, VGG-16,
AlexNet, ResNet variants, SqueezeNet, GoogleNet, and YOLO V3. These features capture a wide range of
visual characteristics, from simple textures to complex patterns, ensuring a rich and diverse set of features
for classification. In the third block, Adaptive Feature Selection, a two-step process is employed: first, CFS
ranks the features based on their correlation with the target class, identifying the most relevant features.
Next, RFE systematically removes less important features, leaving only the most discriminative ones. The
reason for choosing feature selection was to enhance classification performance by identifying and retaining
the most relevant features, which improves model accuracy and reduces overfitting. Unlike dimensionality
reduction techniques, which can obscure interpretability by transforming feature spaces, our approach of
using methods like CFS and RFE directly highlights and selects the best features, preserving their original
meaning. Additionally, global pooling methods may lead to loss of critical information by averaging features,
while our method retains the most informative attributes for robust pest detection.



Comput Mater Contin. 2025;83(3) 4433

In the final block, the selected features are then concatenated, forming a final feature vector used
in the classification process as shown in Fig. 1 (Blocks 1, 2, 3, 4). We chose simple concatenation for the
Early Fusion (EF) type to prioritize interpretability, computational efficiency, and establish a clear baseline
for performance. This straightforward method allows us to effectively integrate handcrafted and deep
learning features without unnecessary complexity, ensuring clarity in demonstrating our system’s efficacy for
pest detection.

Figure 1: PestNet EF model

3.1.1 Correlation-Based Feature Selection (CFS)
In our Early Fusion methodology, we implemented CFS [34] to enhance feature relevance before fusion.

CFS evaluates the correlation between each feature and the target class, selecting features that are highly
correlated with the class but uncorrelated with each other. The selected features maximize the merit function.

Ms =
k ⋅ rc f√

k + k(k − 1) ⋅ r f f
(1)
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where k is the number of features, rcf is the average feature-class correlation, and rff is the average feature-
feature intercorrelation, as shown in Eq. (1).

3.1.2 Recursive Feature Elimination (RFE)
In our Early Fusion methodology, we applied RFE to refine feature selection [35]. RFE iteratively

removes the least important features based on their impact on the classifier’s performance. The importance
of each feature is determined by the weights wi in the linear model, and the model’s performance is evaluated
using a metric such as accuracy or F1-score. At each iteration, the features with the smallest weights are
removed, and this process continues until the optimal subset of features is identified, maximizing the
classifier’s performance using the function minimize Loss(F ∗). where F if is the feature set and F ∗ is the
selected subset of features and Loss evaluates the classifier’s performance.

3.2 PestNet-LF (Late Fusion)
In our approach, we employed a Late Fusion methodology, organized into four key blocks to optimize

the pest detection process. Image Acquisition and Preprocessing involves collecting pest images and applying
essential preprocessing steps, such as resizing, normalization, and background removal, to standardize the
images. These preprocessing techniques are crucial for minimizing noise and ensuring that the images are
in the optimal format for feature extraction, thus laying a strong foundation for the subsequent analysis.

The next section focuses on Feature Extraction, where both handcrafted and various deep-learning
features were extracted to form a comprehensive feature pool. Handcrafted features derived from traditional
image processing techniques capture specific characteristics relevant to pest identification. Simultaneously,
deep features are obtained from a variety of pre-trained networks, including Inception V3, VGG-16,
and several ResNet variants, among others. Each network contributes unique representations, capturing
different levels of abstraction and detail. These features are passed to individual classifiers, each operating
independently. The classifiers then produce their predictions based on the features they receive. Finally,
majority voting and averaging mechanisms are applied to these predictions, where the class label with the
most votes across all classifiers is selected as the final decision. This late fusion strategy ensures that the
strengths of multiple classifiers are combined, leading to a more robust and accurate classification outcome.

Fig. 2 represents the main flow diagram of PestNet-LF. This dual approach in PestNet-LF allows us to
combine the strengths of multiple network architectures and handcrafted features, resulting in a versatile
and highly accurate pest classification system.

Figure 2: PestNet LF model
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Averaging and Majority Voting Method
Averaging and majority voting techniques were employed, where the confidence scores from each

classifier were averaged and voted to determine the final class label. This approach allows for a more balanced
decision-making process, as it considers the contribution of each classifier proportionally, leading to a
smoother and potentially more accurate classification outcome.

3.3 Handcrafted Features
Haralick for texture, Hu Moments for Shape, and Color Histogram for color were used for handcrafted

feature extraction. The Haralick texture method is mainly used for image texture because of its simplicity
and intuitiveness. Haralick uses a grey-level co-occurrence matrix (GLCM) that uses neighboring pixels to
find the image information.

Hu Moments uses seven other numbers by using central moments [36]. Some moments include
translation, scale, rotation, and reflection. The reason for using Hu Moments is its property of translation
invariance. A moment is shown in Eq. (2).

M = ∑
x
∑

y
I (x , y) (2)

A central moment is shown in Eq. (4).

μi , j = ∑
x
∑

y
(x , x)i (x , x) j I(x , y) (3)

Color Histogram was used to extract the color features of images. Color histogram uses frequency
distribution to bin different colors in an image and creates separate histograms for the three other
channels, RGB.

3.4 Deep Learning Architectures
The identification and recognition of objects make extensive use of deep learning models. We have

used the following deep learning architectures in this work: Inception V3, VGG-16, AlexNet, ResNet18,
ResNet50, ResNet101, SqueezNet, GoogleNet, YOLO V3, EfficientNet, Vision, and Swin Transform model.
The characteristics of these networks are presented in Table 2.

Table 2: Deep learning and transfer learning architectures with number of parameters

DL architectures No. of parameters No. of layers Size in MB
AlexNet [10] 60 M 8 227
ResNet18 [12] 25 M 18 44
VGG-16 [18] 138 M 23 528

ResNet50 [18,27] 23 M 50 98
GoogleNet [21] 7 M 22 27

YOLO V3 [16,24,25] 62 M 106 30
Inception V3 27 M 42 93
EfficientNet 3.5 M 337 22

Vision transform 86 M 12 330
Swin transform 88 M 12 340
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An input layer, hidden layers, and an output layer make up a convolutional neural network. One or more
convolution-performing layers are included in the hidden layers of a convolutional neural network. This
usually consists of a layer that uses the layer’s input matrix to perform a dot product of the convolution kernel.

4 Experimental Results
This section presents the experimental results and evaluates the model’s performance based on the

conducted assessments. The research utilized a system with an Intel Quad-Core i7 2820QM processor
(2.30 GHz), 16 GB of RAM, an NVIDIA Quadro graphics card, a Samsung 850 Pro 256 GB SSD, and a 1 TB
hard drive. The software environment included Windows 7 Professional and Python 3.8.

4.1 IP102 Dataset
Insect pest classification is getting more important day by day. This research utilized the IP102 dataset

exclusively, leveraging its extensive collection of over 75,000 images across 102 pest classes, specifically
designed for detailed insect pest classification. We chose IP102 over datasets like AgriPest21 and AgriPest
because it serves as a recognized benchmark, facilitating direct performance comparisons with state-of-the-
art methods and offering a focused analysis within this domain. Furthermore, its fine-grained curation and
diverse range of agricultural pests allowed for targeted model development. This dataset’s depth ensured
robust training and evaluation, enhancing the model’s generalization capabilities across diverse crop types,
while also alleviating the computational demands associated with processing multiple large datasets. The
details from the dataset of the IP102 are shown in Table 3, and Fig. 3 shows the sample of images from IP102.

Table 3: IP102 dataset classes detail

Super-Class Class Train Val Test IR

FC

Rice 14 5043 843 2531 6.4
Corn 13 8404 1399 4212 27.9

Wheat 9 2048 340 1030 5.2
Beet 8 2649 441 1330 15.4

Alf alfa 13 6230 1037 3123 10.7

EC
Vitis 16 10,525 1752 5274 74.8

Citrus 19 4356 725 2192 17.6
Mango 10 5840 971 2927 61.7

IP102 FC 57 24,602 4098 12,341 39.4
EC 45 20,721 3448 10,393 80.8

IP102 102 45,095 7508 22,619 80.8
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Figure 3: Image samples from IP102

We narrowed our focus to 15 pest classes from IP102 to prioritize those most impactful to staple crops
like rice, corn, and wheat, ensuring immediate practical relevance. This subset provided a diverse visual
spectrum, challenging the model with varying shapes and appearances, while also reflecting common and
rare pest occurrences as documented in agricultural research. This approach allowed for concentrated model
optimization, maximizing its efficacy in real-world pest management scenarios. Each crop contains 500
images of rice, corn, and wheat pests respectively, whose names are rice roller, rice caterpillar, rice borer, rice
weevil, rice hopper, corn borer, corn aphids, corn worm, corn cutworm, corn yellow cutworm, wheat thrips,
wheat phloeothrips, wheat sawfly, wheat blossom midge and wheat green bug.

4.2 Data Augmentation
During training, we augmented our dataset with random translations (±10%), horizontal flips, and

scaling (0.8–1.2x) to enhance model robustness to pest position and size variations [37,38]. Crucially,
augmentation was exclusive to training; testing was performed on unaltered images to accurately evaluate
model performance on genuine data. This approach ensured the model’s effectiveness was measured against
real-world scenarios, maintaining the integrity of our evaluation. For the labeling, one of the free labeling
tools, LabelMe, was used to label images.

4.3 Performance Measure
Object-level testing was used, which involves measuring the accuracy and efficiency of objects detected

from an image.

Accurac y = TPR + TNR
TPR + TNR + FPR + FNR

(4)
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Precision (P) = TPR
TPR + FPR

(5)

Recal l (R) = TPR
TPR + FNR

(6)

F1Score (F1) = P − R
P + R

(7)

Eqs. (4)–(7) are used to determine accuracy, precision, recall, and F-score. In this case, the numbers for
true positives (TPR), true negatives (TNR), false positives (FPR), and false negatives (FNR) are represented.

4.4 Results
Results were calculated using early fusion PestNet-EF and late fusion PestNet-LF techniques and their

different variants. Each model is evaluated based on inference time, FLOPs (floating-point operations),
memory usage, and accuracy. We optimized inference times to remain under 100 ms, ensuring our models
can operate in real-time applications effectively. The FLOPs, ranging from 120 to 160 million, reflect the
computational demands typical of advanced deep learning architectures. We also maintained memory usage
between 900 to 1000 MB to accommodate the complexity of the models. The PestNet-EF model demonstrated
exceptional performance with an accuracy of 96%, highlighting its effectiveness in accurately detecting and
classifying pests as shown in Table 4.

Table 4: Accuracy of Deep Learning techniques with and without enhancement

Model variant Inference
time (ms)

FLOPs
(Millions)

Memory
usage (MB)

Accuracy
(%)

PestNet-EF (No
Augmentation)

76 160 1000 87

Baseline model 75 120 900 88
CFS Only Model 80 135 850 84
RFE Only Model 78 130 870 86

PestNet-LF (Average) 82 140 950 92
PestNet-LF (Majority) 81 145 1000 94

PestNet-EF 77 160 1000 96

The enhanced deep learning techniques were used in the PestNet-EF and PestNet-LF modules. The
training accuracy and validation accuracy of PestNet-EF for 100 epochs are shown in Figs. 4 and 5.
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Figure 4: Training accuracy and validation accuracy of
PestNet-EF

Figure 5: Training loss and validation loss of PestNet-EF

The PestNet-EF performance was evaluated using confusion matrices and their normalized counter-
parts for each of the 15 crop disease classes (five each for rice, corn, and wheat). The model achieved an
overall accuracy of 96%, demonstrating robust performance in distinguishing among the diverse set of plant
diseases. Fig. 6 shows the Confusion matrix of PestNet-EF.

Figure 6: Confusion matrix of PestNet-EF

Early Fusion (EF) performed better than Late Fusion (LF) primarily due to its ability to integrate
handcrafted and deep-learning features at an earlier stage, leading to a richer and more comprehensive
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representation of data. This integration aligns with the principles of feature-level fusion, as described in
studies on multimodal learning [39]. This integration allows the model to capitalize on the complementary
strengths of both feature types, enhancing the training process by providing a unified feature set that captures
intricate relationships essential for accurate classification. In contrast, LF processes features independently
across classifiers, which can dilute the information synergy and lead to a less effective overall model
performance. The combined strength of features in EF facilitates better decision-making, ultimately resulting
in higher accuracy.

PestNet-EF and PestNet-LF were also tested in combination with different techniques, instead of all 10
of the models going into the early fusion or late fusion. Table 5 shows that the combination of the PestNet-EF
model, GoogleNet, YOLOv3, and ResNet50 got a precision of 94%, a Recall of 95%, and an F-score of 96%.
PestNet-LF with Average got a precision of 91%, a Recall of 89% and an F-Score of 90%, and with Majority
voting got a precision of 92%, a Recall of 90% and an F-Score of 91%. Details of the rest of the combination
results are given below in Table 5.

Table 5: Results of PestNet-EF and PestNet-LF models

Combination techniques PestNet-EF model PestNet-LF model

Precision
(%)

Recall
(%)

F-1 Score
(%)

Precision
(%)

Recall
(%)

F-1 Score
(%)

Handcrafted + YOLOv3 +
ResNet50

89.00 94.70 92.23 90.00 89.00 91.00

CNN + YOLOv3 + ResNet50 92.50 95.35 94.15 92.00 90.18 90.00
InceptionV3 + YOLOv3 +

ResNet50
90.00 94.34 92.31 91.00 90.79 89.86

GoogleNet + YOLOv3 +
ResNet50

94.00 95.37 96.26 92.00 89 92.37%

Alexnet + YOLOv3 + VGG16 91.92 95.29 93.57 92.00 90.43 93.38
ResNet101 + YOLOv3 +

ResNet50
93.00 94.90 93.94 92.00 89.84 90.36

SqueezNet + YOLOv3 +
ResNet50

92.00 93.34 94.12 93.00 89.88 91.42

Average – – – 91.43 89.03 90.20%
Majority Voting – – – 92.00 90.46 91.37%

Fig. 7 shows the performance comparisons of Precision, Recall, Accuracy, and F1-Score between the
Handcrafted features extraction techniques and CNN, Inception V3, VGG-16, AlexNet, ResNet18, ResNet50,
ResNet101, SqueezNet, GoogleNet, and YOLO V3 and their combinations using PestNet-LF and PestNet-EF.

4.5 Comparison with State of the Art
Table 6 encompasses precision, recall, F1-score, and accuracy for PestNetLF (Average), PestNetLF

(Majority Voting), and PestNetEF, and different deep learning Inception V3, VGG-16, ResNet50, ResNet101,
SqueezNet, GoogleNet, and YOLO V3, and transfer learning algorithms EfficientNet, Vision Transform, and
Swin Transform models. Results indicate that PestNetLF with Majority Voting achieved an accuracy of 94%,
outperforming the average variant. Notably, PestNetEF demonstrated superior overall performance with an
accuracy of 96%, highlighting the effectiveness of the proposed enhancements.
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Figure 7: Performance comparison of precision, recall and F1-Score of early and late fusion

Table 6: Results comparisions of PestNet-EF and PestNet-LF with state of-the-art models

Type Comp.
complexity

Precision
(%)

Recall
(%)

F-1 Score
(%)

Accuracy (%)

Hancrafted Manual Low 76 79 78 75
Inception V3 Deep learning Moderate 91 91 93 89

VGG-16 Deep learning Moderate 89 92 90 86
ResNet50 Deep learning Moderate 91 90 93 88
ResNet101 Deep learning Moderate 90 89 92 89
SqueezNet Deep learning Moderate 92 92 92 87
GoogleNet Deep learning Moderate 94 91 94 91
YOLO V3 Deep learning Moderate 93 93 92 90

EfficientNet Deep learning Moderate 91 89 90 92
Vision

Transformer (ViT)
Transformer-based High 90 91 92 92

Swin Transformer Hierarchical
transformer

High 93 94 94 95

PestNet-LF
(Average)

Hybrid (Deep
learning)

Moderate 91 89 90 92

PestNet-LF
(Majority)

Hybrid (Deep
learning)

Moderate 92 90 93 94

PestNet-EF Hybrid (Deep
learning)

Moderate 94 95 96 96
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Figs. 8–11 compare the performance of our suggested method with state-of-the-art work. This illustrates
the growth of F1-Scores, Precision, Recall, and Accuracy over time.

Figure 8: Validation accuracy over epochs comparison of
IP102 dataset

Figure 9: Precision over epochs comparison of IP102
dataset

Figure 10: Recall over epochs comparison of IP102 dataset Figure 11: F1-Score over epochs comparison of IP102
dataset

Table 7 compares the proposed PestNet-EF methodology with latest work, showing a clear progression
in accuracy from traditional handcrafted features to advanced neural network techniques. This shows only
Kasinathan’s results reached 90% rest of them are 86%, 77%, and even 74% on the same dataset. The PestNet-
EF methodology represents the latest advancement, combining state-of-the-art techniques with potentially
novel contributions in model architecture, feature extraction, and training. The substantial improvement in
accuracy to 96% indicates that PestNet-EF effectively addresses the limitations of previous approaches and
leverages advanced techniques to achieve superior performance.



Comput Mater Contin. 2025;83(3) 4443

Table 7: Comparison with state of the art work

Source Approaches used Dataset Classes Accuracy (%)
Kasinathan et al. [27] CNN IP102 24 90

Nanni et al. [29] CNN IP102 10 74.11
Jiao et al. [28] Fused CNN AgriPest21 11 77

Dong et al. [31] YOLO V5 IP102 9 86
Peng et al. [32] MobileNet V2 IP102 12 86

Proposed methodology PestNet-EF IP102 15 96

5 Conclusion
This paper proposes an original, profound learning approach for pest detection in the agriculture field

by the hybridization of hand-crafted and automatically extracted features. The proposed system uses two
models, PestNet-EF and PestNet-LF, which use early and late fusion approaches to process images with
complex backgrounds to highlight pests accurately by eliminating everything in the image. In early fusion,
features extracted from handcrafted approaches (Hu moment, Haralick, and Color Histogram) are fused
with 10 deep learning architectures, and additionally, adaptive feature selection methodology using CFS and
RFE, and then features are classified using SVM. On the other hand, in the late fusion approach, handcrafted
features are combined with different combinations of modified deep learning architectures (containing three
extra layers) to extract features. The proposed fusion methodology outperforms individual hand-crafted
techniques. Given the tests of different image datasets and the datasets obtained from various greenhouses,
the PestNet-EF algorithm achieved an accuracy of 96%, and PestNet-LF achieved an accuracy of 94% using
majority voting.
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