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ABSTRACT: As Internet of Things (IoT) technologies continue to evolve at an unprecedented pace, intelligent big data
control and information systems have become critical enablers for organizational digital transformation, facilitating
data-driven decision making, fostering innovation ecosystems, and maintaining operational stability. In this study,
we propose an advanced deployment algorithm for Service Function Chaining (SFC) that leverages an enhanced
Practical Byzantine Fault Tolerance (PBFT) mechanism. The main goal is to tackle the issues of security and resource
efficiency in SFC implementation across diverse network settings. By integrating blockchain technology and Deep
Reinforcement Learning (DRL), our algorithm not only optimizes resource utilization and quality of service but also
ensures robust security during SFC deployment. Specifically, the enhanced PBFT consensus mechanism (VRPBFT)
significantly reduces consensus latency and improves Byzantine node detection through the introduction of a Verifiable
Random Function (VRF) and a node reputation grading model. Experimental results demonstrate that compared to
traditional PBFT, the proposed VRPBFT algorithm reduces consensus latency by approximately 30% and decreases the
proportion of Byzantine nodes by 40% after 100 rounds of consensus. Furthermore, the DRL-based SFC deployment
algorithm (SDRL) exhibits rapid convergence during training, with improvements in long-term average revenue,
request acceptance rate, and revenue/cost ratio of 17%, 14.49%, and 20.35%, respectively, over existing algorithms.
Additionally, the CPU resource utilization of the SDRL algorithm reaches up to 42%, which is 27.96% higher than other
algorithms. These findings indicate that the proposed algorithm substantially enhances resource utilization efficiency,
service quality, and security in SFC deployment.
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1 Introduction
With the swift evolution of Internet of Things (IoT) technology, device interconnectivity within hetero-

geneous network environments has markedly expanded. This expansion has facilitated diverse application
scenarios such as intelligent homes and autonomous driving systems. Nevertheless, this highly intercon-
nected environment also presents numerous security challenges [1], including breaches in data privacy,
issues related to delegated trust, and risks during the deployment of Service Function Chaining (SFC) [2].
SFC is a technique that combines multiple network functions [3] in a specific sequence to cater to the
unique requirements of various users. It offers tailored network services like traffic monitoring [4], firewall
protection, and intrusion detection by organizing a series of virtual network functions (VNFs) [5] in a defined
order. In 5G and IoT settings, SFCs allow for flexible configuration of network functions, enhancing efficient
data processing and transmission [6]. However, dynamic challenges such as node failures, link congestion,
and network attacks threaten the reliability of SFCs. Node failures can disrupt SFC operations, while
malicious actors may tamper with requests, simulate nodes, or initiate denial-of-service (DoS) attacks [7],
thereby jeopardizing network security, communication quality, and user experience.

Choosing optimal paths and nodes for deploying SFCs in intricate network topologies to meet quality of
service (QoS) criteria, such as minimal latency, substantial bandwidth [8], and high reliability [9], constitutes
a complex optimization challenge.

In response to these challenges, the present study introduces a trusted deployment algorithm for
service function chaining based on an enhanced PBFT mechanism (VRPBFT) [10], aiming to optimize
the traditional PBFT consensus mechanism by combining verifiable random function (VRF) and node
reputation rating model. VRF is a cryptographic function that allows a node to generate a random number
and verify it through its public key [11]. In VRPBFT, VRF is used for random number generation and
verification. The algorithm integrates blockchain and deep reinforcement learning to construct a trust-
worthy SFC orchestration system. First, VRPBFT is designed, incorporating VRF and a node reputation
model to reduce consensus latency and improve Byzantine node detection [12]. Second, a DRL-based SFC
deployment algorithm (SDRL) optimizes deployment by dynamically adjusting node trustworthiness. The
improved PBFT ensures consensus despite node failures or malicious behavior, enhancing system reliability.
Experimental results show significant improvements in resource utilization, service quality, and security,
outperforming existing algorithms in long-term revenue, request acceptance rate, revenue/cost ratio, and
CPU utilization, offering an efficient and secure SFC deployment solution for heterogeneous networks [13].

2 System Model
This paper establishes a trusted network system centered on users, featuring heterogeneous physical

nodes, blockchain, and deep reinforcement learning (DRL). DRL is a robust machine learning methodology
that acquires decision-making capabilities through interaction with its environment, rendering it particularly
suitable for dynamic and uncertain security contexts. DRL can enhance the performance of intrusion
detection systems by facilitating adaptive learning, enabling dynamic decision-making, and minimizing
false positives and false negatives. Blockchain and DRL form the system’s core, with blockchain managing
resource and transaction registration and updates during deployment [14]. The trusted network system is
shown in Fig. 1.

Before service provisioning, information about all physical nodes is registered on the blockchain [15],
ensuring secure VNF node deployment through secure data storage.

During SFC deployment, the blockchain module authenticates users and checks permissions while
monitoring the resource and location data of physical nodes [16]. This information is passed to the DRL
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optimization module to determine the best SFC deployment strategy [17]. The optimization steps are shown
in Fig. 2.

Figure 1: Trusted network system

Figure 2: Working principle of trusted network layer
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2.1 Network Model
The physical network model of the heterogeneous network is depicted as a weighted undirected graph

GS = {N S , LS , CPU(N S
i ), Eng(N S

i ), SL(N S
i ), BW(LS

i )}. Here, CPU(N S
i ) represents the CPU resources

available at physical node nS
i , Eng(N S

i ) denotes the energy capacity of nS
i , and SL(N S

i ) indicates the security
level of N S

i . Additionally, BW(LS
i ) specifies the bandwidth resources associated with physical link LS

i .
The operational probability P of physical nodes and links adheres to a uniform distribution within the

interval [e−0.005(q−1), e−0.005q].

2.2 Constraints
Service function chain deployment needs to follow certain constraints, including resource constraints

for nodes and links and security level constraints. The specific constraint formulas are as follows:

sl V
Ni
< Trus

Nm

where sl V
Ni

denotes the security level requirement of virtual node Ni
V and Trus

Nm
denotes the trustworthiness

of physical node Nm
s .

2.3 Algorithm Evaluation Metrics
The evaluation metrics comprise consensus delay, long-term average revenue, long-term average

revenue-to-cost ratio, service function chain (SFC) request acceptance rate, and CPU resource utiliza-
tion [18]. The consensus delay is calculated by the formula:

Evaluation metrics encompass consensus delay, long-term average revenue, long-term average revenue-
to-cost ratio, SFC request acceptance rate, and CPU resource utilization [18]. Consensus delay is computed
using the following formula:

Δt = tconfirm − tgenerate

Benefits and costs are calculated as follows:
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The long-term average benefit-cost ratio is calculated by the formula:

Rc(V NRq ,t ,te) =
∑T−1

t=0 RevV N Rq ,t ,te

∑T−1
t=0 CostV N Rq ,t ,te

3 Service Function Chain Trusted Deployment Algorithm
In order to optimize the security of heterogeneous networks, this paper introduces the Byzantine

consensus mechanism (PBFT) of blockchain, and combines the verifiable random function (VRF) and
the reputation hierarchy model with PBFT to design a more efficient and reliable consensus mechanism,
VRPBFT. By integrating the reputation values of the nodes, the dynamic trustworthiness of the nodes is
taken into account in extracting the attributes of the physical network.
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3.1 Definition of Node Trustworthiness
The reputation of a node, denoted as Trus

Ni
, serves as a comprehensive metric to evaluate the reputation

value of node i during the Tth consensus round. This metric ranges within the interval [0, 1]. The symbols
and their corresponding definitions employed in the node reputation calculation are presented in Table 1,
with the associated formulas provided below:

Trus
Ni
= α0 ⋅ INi + α1 ⋅ SUCi + α2 ⋅HRi + α3 ⋅HBi

where INi denotes the input cost rate of the node, SUCi denotes the communication success rate of the
node, HRi denotes the honesty rate of the node, and HBi denotes the historical credibility. The parameter α
represents the weights corresponding to each credibility assessment metric and the sum of all values is 1. The
introduction of αi balances the contribution of each indicator in node creditworthiness calculation, allowing
flexible adjustment of their relative importance based on different application scenarios and demands,
ensuring accurate assessment of node credit status.

Table 1: Symbols and their meanings used in node reputation calculation

Notation Meaning
di Deposit invested by node i
D Total deposit

INi Input cost ratio
Ni Number of times node i successfully completed communications
N Total number of times node i requested communication

SUCi Communication success rate
hi Number of times a node i honest behavior
H Total participation count of node a in consensus processes

HRi Honesty rate
HBi Historical reputation value
CRT

i Reputation score of node i during the Tth consensus round

A node’s credibility is a comprehensive evaluation of its state, performance, and dynamic behavior, deter-
mining its reliability and aiding network cooperation and decision-making. Nodes with high investment
costs and communication success rates are highly credible, while those with low input costs or honesty rates
are less credible. The node credibility evaluation algorithm is detailed in Algorithm 1.

Algorithm 1: Node reputation evaluation algorithm
Input: Let N represent the cardinality of the node set, and ON denote the historical
node reputation registry.
Output: The new node reputation value record table is recorded as NN
1: Randomly initialize the policy network parameters;
2: Initialize the node reputation list;
3: while i < Ndo do
4: nodeData=GetData(ON,i); //read data related to node i;

(Continued)
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Algorithm 1 (continued)
5:

INi =
di

D
∈ [0, 1]; //input cost rate; (3)

6:

SUCi =
ni

N
∈ [0, 1]; //communication success rate; (4)

7:

HRi =
hi

H
∈ [0, 1]; //honesty rate; (5)

8:

Tru(N S
i ) = α0 ⋅ INi + α1 ⋅ SUCi + α2 ⋅HRi + α3 ⋅HBi ; //node reputation; (6)

9: end while
10: Update(ON); //Update the node reputation value record table;
11: NN=ON;
12: return NN;

3.2 Node Hierarchy and Transfer
The nodes are categorized into A, B, C and D by the node partitioning mechanism as shown in Fig. 3.

Level A nodes, with the highest reputation value (β, 1.0], can become master nodes, participate in consensus,
and verify random numbers, such as rigorously vetted banking servers in financial networks. Level B nodes,
with a high reputation value (0.5, β), assist in consensus but lack full validation authority, representing
partially vetted institutions. Level C nodes, with a medium reputation value (γ, 0.5], participate with limited
authority, such as submitting but not validating transactions, often representing newly joined institutions
requiring validation from Level A or B nodes. Level D nodes, with the lowest reputation value (0, γ),
are excluded from consensus and require rigorous validation, typically representing unvetted entities. This
hierarchy ensures network security and efficiency, incentivizing nodes to maintain good behavior. The β
threshold separates high-reputation nodes from medium-reputation nodes, while γ separates medium-
reputation nodes from low-reputation nodes, ensuring only reliable nodes participate in critical operations.

The classification of each node changes dynamically. Both class A and B nodes are eligible to serve as
master nodes, whereas class C nodes can only participate in the consensus process. Class D nodes cannot
participate in the consensus due to their low reputation value. This dynamically changing hierarchy helps to
ensure secure, stable and efficient operation of the network. The consensus node set consists of three types of
nodes, A, B, and C. The master node set, i.e., the honest node group. The master node set, i.e., the honest node
group, contains two types of nodes, A and B. The authority of nodes of different classes is shown in Table 2.
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Figure 3: Schematic diagram of node classification

Table 2: Symbols and meanings used in node reputation calculation

Reputation level Reputation value range Priority master node Master node Consensus node
A (β, 1.0) ✓ ✓ ✓

B (0.5, β] × ✓ ✓

C (γ, 0.5] × × ✓

D (0, γ) × × ×

3.3 Master Node Selection
The nodes in class A and B are entitled to participate in the selection of master nodes to form an honest

node cluster. The master node selection process comprises the following steps:

• Generation of VRF key pairs: each honest node generates a pair of VRF keys.
• Public Key Distribution: Nodes share their VRF public key for random number verification, keeping the

private key secure.
• Random Number Generation: Nodes generate a random number using the VRF private key and

current timestamp.
• Random Number Broadcast: Nodes broadcast the random number, VRF public key, and timestamp to

the network.
• Random Number Verification: Other nodes validate the random number using the broadcasted VRF

public key and timestamp.
• Random Number Sorting: The network collects and sorts all random numbers by size.
• Master Node Selection: The node with the smallest random number is designated as the master node.

In case of a tie, the node with the highest reputation value is chosen.

3.4 SDRL Algorithm Design
The training procedure for the VRPBFT-based SFC deployment algorithm (SDRL) proposed in this

paper is as shown in Algorithm 2.
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Algorithm 2: VRPBFT-based SFC deployment algorithm
Require: physical network is recorded as GS , virtual network is recorded as GV , epoch = 200, /alpha = 0.005,
batch size =100;
Ensure: Probability that a node is embedded;
1: Randomly initialize the policy network parameters;
2: Initialize node reputation list;
3: while counter < epoch do
4: index = 0;
5: for SFCR ∈ trainingSet do
6: M = extractFeatureMatrix(ni); //extracting the feature matrix;
7: p = getOutput(M); //Obtaining Deployment Probabilities;
8: orOutput = V RF(ni); //Generate pseudo-random values using VRF;
9: f i l teredNodes = f i l terNodes(reputationList, orOutput, threshold); //Filter trusted nodes

with reputation;
10: host = sel ect( f i l teredNodes, p); //Generate VNF embedding scheme in trusted nodes based

on probability;
11: loss = criterion(outputs, al); //Calculate loss;
12: getGradient(host); //Calculate gradient;
13: if isMapped(∀V NFi ∈ SFC) then;
14: Links embedding; //Link embedding;
15: end if
16: if isMapped(∀V NFi ∈ GV ,∀lv ∈ GV ) then
17: Calculate reward and gradients; //Calculate reward and gradient;
18: Backpropagation gradient;
19: Updating agent parameters; //Update intelligent body parameters;
20: UpdateReputation(reputationList, host, reward); //Adjust node reputation based on reward

values;
21: else
22: Clear gradients; //Gradient clearing ;
23: end if
24: end for
25: Counter += 1;
26: end while

3.5 Link Deployment
In this study, the learning agent is responsible for determining the deployment strategy for each virtual

network function (VNF). After completing the deployment of all VNFs, link deployment is realized through
the shortest path algorithm [19]. This algorithm increases the redundancy and fault tolerance of the system
and improves the stability of the virtual network by mining multiple shortest paths from the underlying
physical network to meet the link connectivity requirements. The available resources in the underlying
physical network are updated after the links are successfully deployed [20]. Algorithm 3 describes the specific
steps of link deployment in detail.
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Algorithm 3: Service function chain deployment algorithm
Require: SFC request GV , physical network GS , VNF scheme;
Ensure: SFC deployment scheme;
1: for LV

i ∈ LV do
2: E = topK(LV

i , k = 5); //Derive the set of top k shortest paths;
3: Remove(E); //Remove paths that do not meet the constraints;
4: if E ≠ ∅ then
5: return true;
6: else
7: return false;
8: end if
9: end for

4 Experiments and Analysis of Results
The proposed algorithm’s effectiveness is demonstrated through comprehensive simulation analysis.

Experimental findings reveal that the enhanced PBFT consensus mechanism achieves notable improvements
in both consensus delay and security, effectively addressing Byzantine nodes and reducing the proportion
of faulty nodes within the network. Moreover, the SDRL algorithm [21] outperforms baseline methods,
with enhancements in long-term average revenue, request acceptance rate, revenue-to-cost ratio, and CPU
resource utilization by 17%, 14.49%, 13.8%, and 27.96%, respectively. These results confirm that the proposed
algorithm not only strengthens security but also optimizes network resource utilization efficiency, ensuring
reliable and efficient SFC deployment under dynamic load conditions.

4.1 Experimental Environment Setup
A heterogeneous network topology comprising 100 physical nodes and 530 physical links was generated

using the NetworkX tool [22] to simulate medium-sized ISP resources. Physical nodes are classified into X,
Y, and Z categories, differing in CPU resources, memory resources, energy resources, bandwidth resources,
and security levels. Concurrently, 2000 service function chain requests were generated, with 1000 allocated
for training and 1000 for testing. The blockchain network was implemented via Hyperledger Fabric. Specific
settings are outlined in Table 3.

Table 3: Parameter name and value range

Parameter name Value range
Number of physical nodes X nodes: 10

Y nodes: 25
Z nodes: 65

Physical Links 530
CPU resources of physical nodes Node X: U [10, 30] cores

Y nodes: U [20, 50] cores
Z nodes: U [50, 100] cores

Security level of the physical node U [A, B, C, D]

(Continued)
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Table 3 (continued)

Parameter name Value range
Bandwidth resources of physical links X link: U [10, 30] Mbps

Y-link: U [30, 50] Mbps
Z link: U [50, 100] Mbps

Inter-domain link: U [30, 60] Mbps

Additionally, two sets of 1000 Service Function Chain Requests (SFCRs) were generated using the same
setup and utilized as training and test datasets. The number of nodes per SFCR is uniformly distributed
between 2 and 10, and the probability of each node being directly connected to another node is 0.4. The
arrival time of SFCRs follows a Poisson distribution, with an average of 4 SFCRs arriving every 100 time units.
The demand for CPU resources in VNFs is uniformly distributed between 3 and 50 cores, and the demand
for security level is distributed across [A, B, C, D]. Security level requirements are distributed between
[A, B, C] and [D]. Attribute settings for service function chain requests are presented in Table 4.

Table 4: Parameter name and value range

Parameter name Value range
Number of VNFs U [2,10]

CPU Resource Requirement for VNF U [3, 50] cores
Bandwidth Resource Requirement of SFC U [3, 50] Mbps

Security attribute requirement for VNF U [A, B, C, D]

4.2 Experimental Results
The VRPBFT algorithm exhibits reduced consensus latency when the number of consensus nodes

remains constant, with this benefit becoming more significant as the number of nodes grows. Moreover,
the algorithm excels in identifying and eliminating Byzantine nodes. After approximately 100 rounds of
consensus, the proportion of faulty nodes within the network is substantially diminished, thereby enhancing
the system’s security.

As shown in Fig. 4, the VRPBFT algorithm exhibits lower consensus latency than traditional methods,
with its efficiency advantage growing as the number of consensus nodes increases. This improvement stems
from VRPBFT reducing the nodes involved in consensus, thereby decreasing overall delay. Additionally,
VRPBFT significantly reduces Byzantine nodes after about 100 consensus rounds, outperforming PBFT in
node selection and fault detection. By integrating VRF and node classification, VRPBFT enhances Byzantine
node detection, isolation, and overall system security.

Similar to long-term average gains, the SDRL algorithm [21] achieves optimal performance in request
acceptance rate, as shown in Figs. 4 and 5, outperforming other algorithms by up to 14.49%. However,
physical network resources limit the number of service function chain requests that can be supported.
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Figure 4: Consensus latency

Figure 5: Comparison of Byzantine node counts

During training, the policy network’s parameters undergo optimization starting from random initial-
ization, as depicted in Fig. 6. This figure tracks four critical metrics for the SDRL algorithm: long-term
average gain, gain-to-cost ratio, request acceptance rate, and CPU resource utilization [23]. These metrics
increase over training iterations before eventually stabilizing [24]. In the early stages of training, agent
performance is generally suboptimal due to the randomness of initial parameters [25]. However, perfor-
mance improves progressively as training advances, reflecting enhanced algorithm effectiveness. Despite this,
inherent limitations exist in performance improvement due to the algorithm’s design. The SDRL algorithm
demonstrates rapid convergence, improving the quality of SFC deployment [26]. To further validate the
algorithm’s efficacy, this chapter introduces the RL algorithm from [27] and the SA-RL algorithm from [28]
as comparison benchmarks. The RL algorithm provides a decision-making framework, particularly suited
for resource allocation and network optimization challenges. The SA-RL algorithm addresses both resource
optimization and network security, aligning closely with the objectives of the SDRL algorithm proposed in
this paper. Fluctuations in performance metrics during the training process of Deep Reinforcement Learning
(DRL) are common. Firstly, the instability observed may stem from the algorithm’s sensitivity to initial
parameters, leading to an imbalance between exploration and exploitation. Secondly, insufficient training
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iterations can prevent the algorithm from converging. Additionally, suboptimal hyperparameter selection
can cause fluctuations in training. Dynamic changes in the environment necessitate continuous adaptation by
the algorithm, which may also contribute to performance metric variability. Lastly, an inadequately designed
reward function can result in unstable rewards in certain states, thereby affecting the learning process.

Figure 6: Changes of the four metrics throughout the training process of the SDRL algorithm

To address these challenges, we propose increasing the number of training iterations to ensure sufficient
convergence. Hyperparameters will be optimized using methods such as grid search or random search
to identify more suitable combinations. Algorithmic stability will be enhanced by employing more robust
variants or incorporating regularization terms to mitigate overfitting. As can be seen in Fig. 7, the SDRL
algorithm obtains the highest long-term average returns, followed by SA-RL. Compared to the other
algorithms, The SDRL algorithm surpasses other algorithms by 17% and 19.86% in terms of long-term
average returns.



Comput Mater Contin. 2025;83(3) 4405

Figure 7: Performance evolution of distinct algorithms regarding sustained yield metrics

Therefore, both the long-term average gain and the service function chain request acceptance rate decay
over time and eventually stabilize, as shown in Fig. 8.

Figure 8: Comparative analysis of petition approval rates across computational methods

As illustrated in Fig. 9, the long-term average benefit-to-cost ratio follows a stable trend, reflecting the
profitability of the algorithm. This metric depends on the deployment scheme’s efficiency in using fewer
physical links, independent of factors like network resources, security, and latency. The SDRL algorithm
selects cost-effective deployment schemes, improving the benefit/cost ratio by 13.8% and 20.35% over the
other algorithms.

In Fig. 10, the CPU resource utilization of SDRL ends up above 42%. The RL algorithm, based on
reinforcement learning, neglects security constraints, while SA-RL considers node security but ignores
dynamic trustworthiness changes, leading to resource wastage. These algorithms underperform due to
insufficient consideration of constraints and dynamic changes. SDRL, by extracting dynamic trustworthiness
and learning network attribute relationships, achieves more efficient deployment and higher resource
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utilization. In summary, the algorithm proposed in this paper demonstrates greater stability. Compared to
other algorithms, it achieves up to a 27.96% improvement in CPU resource utilization.

Figure 9: Comparison of changes in long-term average revenue/cost ratios for different algorithms

Figure 10: Comparison of changes in CPU resource utilization for different algorithms

Service function chain deployment scheme performance: The SDRL algorithm performs effectively
across several metrics, including long-term average gain, request acceptance rate, benefit-to-cost ratio, and
CPU resource utilization. Relative to comparison algorithms, it leads by 17%–19.86% in long-term average
revenue, increases the request acceptance rate by up to 14.49%, enhances the benefit-to-cost ratio by 13.8%–
20.35%, and achieves a final CPU resource utilization rate exceeding 42%, with an improvement of up to
27.96%.

5 Conclusions
This paper introduces VRPBFT, an enhanced PBFT consensus mechanism that integrates Verifiable

Random Function (VRF) and a node reputation level model. This mechanism effectively reduces consensus
delay and improves the efficiency of Byzantine node detection, decreasing the proportion of faulty nodes
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by 40% after 100 rounds of consensus and reducing consensus delay by approximately 30% compared to
traditional PBFT. Additionally, SDRL, a dynamic SFC deployment algorithm based on deep reinforcement
learning, is designed to optimize resource allocation and enhance service quality through dynamic adjust-
ments of node trust. It significantly outperforms existing algorithms in terms of long-term average revenue
and other key performance indicators, such as a 17%–19.86% increase in long-term average revenue and a
14.49% improvement in request acceptance rate. The algorithm combines the reliability of blockchain with
the trust of Byzantine nodes. The algorithm combines blockchain reliability and DRL intelligent decision-
making capability, and excels in security, resource utilization and service quality, and can efficiently and
reliably deploy SFCs under dynamic load, providing an effective solution for SFC deployment in heteroge-
neous networks. The algorithm has great advantages in enhancing security, optimizing resources, improving
service quality and strong adaptability. Future work will focus on further optimizing the performance of the
algorithm, expanding application scenarios, and enhancing security to cope with new security threats.
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