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ABSTRACT: In the era of Industry 4.0, condition monitoring has emerged as an effective solution for process industries
to optimize their operational efficiency. Condition monitoring helps minimize unplanned downtime, extending
equipment lifespan, reducing maintenance costs, and improving production quality and safety. This research focuses
on utilizing Bayesian search-based machine learning and deep learning approaches for the condition monitoring
of industrial equipment. The study aims to enhance predictive maintenance for industrial equipment by forecast-
ing vibration values based on domain-specific feature engineering. Early prediction of vibration enables proactive
interventions to minimize downtime and extend the lifespan of critical assets. A data set of load information and
vibration values from a heavy-duty industrial slip ring induction motor (4600 kW) and gearbox equipped with
vibration sensors is used as a case study. The study implements and compares six machine learning models with the
proposed Bayesian-optimized stacked Long Short-Term Memory (LSTM) model. The hyperparameters used in the
implementation of models are selected based on the Bayesian optimization technique. Comparative analysis reveals
that the proposed Bayesian optimized stacked LSTM outperforms other models, showcasing its capability to learn
temporal features as well as long-term dependencies in time series information. The implemented machine learning
models: Linear Regression (LR), Random Forest (RF), Gradient Boosting Regressor (GBR), Extreme Gradient Boosting
(XGBoost), Light Gradient Boosting Machine (LightGBM), and Support Vector Regressor (SVR) displayed a mean
squared error of 0.9515, 0.4654, 0.1849, 0.0295, 0.2127 and 0.0273, respectively. The proposed model predicts the future
vibration characteristics with a mean squared error of 0.0019 on the dataset containing motor load information and
vibration characteristics. The results demonstrate that the proposed model outperforms other models in terms of
other evaluation metrics with a mean absolute error of 0.0263 and 0.882 as a coefficient of determination. Current
research not only contributes to the comparative performance of machine learning models in condition monitoring
but also showcases the practical implications of employing these techniques. By transitioning from reactive to proactive
maintenance strategies, industries can minimize downtime, reduce costs, and prolong the lifespan of crucial assets. This
study demonstrates the practical advantages of transitioning from reactive to proactive maintenance strategies using
ML-based condition monitoring.

KEYWORDS: Machine learning; deep learning; predictive maintenance; condition monitoring; Industry 4.0; domain-
specific features

1 Introduction
We are currently in the era of Industry 4.0 where data is a useful asset for improving efficiency and

performance rather than being a historical byproduct. Industry 4.0 includes the automation of industrial
equipment by integrating it with digital equipment. In this industrial revolution, machines, sensors, devices,
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and workers are interconnected with each other through the Internet of Things (IoT) [1]. These sensors and
smart devices, integrated with digital equipment, enable the recording of large volumes of historical data
which can be helpful in many ways [2]. These machines and devices are also connected through the cloud
for remote monitoring and control. Digitization of industrial operations has led to real-time monitoring
and data-driven decision-making for maintaining equipment health and preventing unexpected failures.
As industries generate vast amounts of operational data, advanced analytics, and intelligent maintenance
strategies are required to extract meaningful insights and enhance asset reliability. Condition Monitoring
(CM) has emerged as one of the effective solutions to this challenge with promising results. CM is a type of
predictive maintenance that uses sensors and gauge data (such as vibration, temperature, and pressure) to
analyze the condition of machines over time. Process industries, utilizing heavy machinery and continuous
operations, need to keep a balance between maximum production, apparatus reliability, and minimizing
downtime. It is not only cost-effective but also provides a proactive approach to maintenance rather than
traditional reactive approaches.

Traditional maintenance strategies usually rely on fixed schedules or basic rule-based systems which can
lead to ineffective resource utilization and unnecessary downtime. In contrast, CM is a proactive approach
that uses sensor data to forecast potential failures or unexpected events before they occur. It primarily relies
on advanced technologies like Machine Learning (ML) and time series analysis. ML algorithms identify
hidden patterns and anomalies from historical data to anticipate potential issues [3]. These forecasts enable
organizations to schedule maintenance activities only when needed. This proactive maintenance results in
reduced downtime and maintenance costs while increasing the life span and reliability of critical parts of
machinery [4].

The current study contributes to implementing and evaluating ML techniques capable of forecasting
vibration values for a heavy-duty slip ring induction motor and gearbox. The current study intends to
enhance the use of ML techniques for CM systems by addressing the need for forecasting vibration values
based on historical data. The forecasted vibration values can be used to reduce downtime and avoid
unplanned maintenance by proactively studying the cause of abnormal vibration. The predicted vibration
values can help in the early detection of fault scenarios like bearing wear, imbalance of equipment, etc. Future
vibration predictions can help maintenance personnel to plan the maintenance schedules accordingly. It also
facilitates timely intervention to reduce downtime, improve safety, reduce maintenance costs, and prolong
the equipment’s lifetime.

This paper explores CM in process industries, primarily focusing on a specific case study involving
a heavy-duty industrial slip ring induction motor with multiple vibration sensors. Current research is
focused on the implementation of an intelligent CM system by utilizing ML and time series analysis. Data
collected includes motor load information and vibration sensor data, later used to train models capable of
predicting future values of sensors at different points. The presented work aims to contribute to the practical
implementation of state-of-the-art ML techniques in process industries. Current research encourages the
adoption of these smart technologies by local as well as international industries by demonstrating the benefits
of CM in enhancing operational efficiency and reducing costs.

This study implements six ML models including LR, RF GBR, XGBoost, LightGBM, and SVR. Bayesian
Optimization algorithm is used to select the optimal hyperparameters for the training purpose. Finally,
a Bayesian-optimized stacked LSTM (BOS-LSTM) is proposed which outperforms other conventional
models. The BOS-LSTM architecture and its hyperparameters, including the number of layers and units,
are optimized using the Bayesian algorithm. For performance evaluation of predicted values, Mean Squared
Error (MSE) as well as other evaluation metrics Mean Absolute Error (MAE) and coefficient of determination
(R2) Score are used for regression problems. MSE measures the average squared difference between actual
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and predicted values. MAE calculates the average absolute difference between actual and predicted values. R2

measures how well a model explains the variance in data by dividing the sum of variance in predicted values
by the sum of variance in actual values. A lower MSE and MAE indicate better predictive performance while a
R2 value closer to 1 shows better performance. The mathematical formulas of MSE, MAE, and R2 are provided
in Eqs. (1)–(3). The present work implements seven different algorithms with their details mentioned in the
material and methods sections.

MSE = 1
n

N
∑
i=1
(vi − vi)

2 (1)

MAE = 1
n

N
∑
i=1
∥vi − vi∥ (2)

R2 = 1 − ∑(vi − vi)
2

∑(vi − vav g)
2 (3)

where n is the total number of samples in the test set, vi is the actual value, vi is the predicted value and vav g
is the average of actual values.

The related work section shows that in the field of CM, there is a need for large-scale industrial datasets
for regression problems as well as hyperparameter optimization. This paper provides a framework for
searching the domain-specific deep learning (DL) model’s architecture. The primary objective is to develop
an efficient predictive model that can accurately estimate vibration patterns and vibration characteristics
in industrial motors. The current study aims to contribute to applying regression algorithms for predicting
future vibration values for industrial environments. A dataset comprised of approximately 1.5 years of load
and vibrational data from a large-sized industrial motor is collected in the current study. This contribution
will help industries utilize the historical data even if the fault logs (labels) are not maintained along with the
sensor data. Predicting the vibration values will allow process industries to take proactive actions before the
occurrence of faults.

A graphical abstract to show the overall flow and major steps of the current study is provided in Fig. 1. As
shown in Fig. 1, the first step of the current study involves a collection of vibration and load valus dataset from
an industrial sector. The dataset is collected from pre-installed sensors used in the CM of the industrial setup.
The data collected is then preprocessed and further used for training seven different models on the dataset.
Preprocessing of the dataset includes merging the dataset from different sheets into 1, datatypes conversion
of a few columns, removing dead signals or missing values, etc. The next step of the current study is to design
the ML and DL model architectures using a Bayesian optimization algorithm. Bayesian-optimized models
are further used for training on the dataset in the next step. The last step of the current study is to evaluate
models on the validation dataset using different performance metrics.
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Figure 1: Flow chart of proposed modeling and evaluation framework

The remaining paper is organized as follows: The related work section provides a detailed view of the
evolution of CM application in diverse industrial operations. The related work is followed by a materials
and methods section explaining the data collection process, preprocessing techniques, and the details of
the proposed methodology. The results section discusses the performance of the implemented model in
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terms of different performance evaluation metrics to observe the effectiveness of the proposed model. The
paper concludes by discussing our findings as well as highlighting the significance of proactive maintenance
strategies in industrial operations and lastly providing future research directions in the conclusion and future
work section.

2 Related Work
The integration of industrial equipment with digital devices in Industry 4.0, enables the collection of

large volumes of data from different units and sectors of industry [5] along with the faster exchange of data
and other benefits. The collected data contains information on the whole production unit including sensor
data, load conditions, events, and fault scenarios along with the alarms and warnings generated. This data
can yield valuable insights after thorough processing and analysis. Analysis and interpretation of the data
can help in numerous ways like planned maintenance resulting in a reduction of maintenance costs. It can
also help in increasing production hours by predicting and avoiding faults, improving safety for the industry
workers, increasing the critical part’s life duration, and many more [6,7].

Above mentioned advantages of CM have encouraged researchers to work in this direction to avoid
unexpected shutdowns and better equipment maintenance. Schneider et al. [8] used an automatic system
for feature extraction, selection, and classification of time-series data. This study implements various
feature extraction algorithms followed by feature selection techniques. A mixed classification algorithm is
applied to the extracted features from the previous step for the sake of classification of different situations
in the system. A fuzzy alarm system was proposed by Vafaei et al. in 2018 for the early prediction
of failures in the car production industry by analyzing the degradation of equipment [9]. Data set is
collected from a car manufacturing industry and four attributes are used as input variables to estimate the
equipment degradation.

Dong et al. proposed a method to predict the Time-To-Failure (TTF) of industrial manufacturing
systems by updating the TTF calculated from the historical data provided by the original equipment
manufacturer and real-time CM of the system [10]. In this study, 200 sets of signals are collected to represent
the degradation of each of the six machines used in experimentation. Out of these 200 sets, 100 are considered
historical data, and the remaining 100 are utilized as real-time data for condition and TTF estimation. A
condition-based monitoring technique for appropriate decision-making including no action required or type
of correction measure required was proposed by Wei et al. in 2019 [11]. This research also examines the effects
of external shocks on the deterioration of systems thus affecting the health condition of the systems.

A prescriptive maintenance model named PriMa was proposed by Ansari et al. [12] based on a
knowledge-based maintenance system for production systems. The proposed model consists of operation
data collection for process, machine, and product from the production line. This collected data is stored
in a data warehouse and further processed by a predictive and analytical toolbox to extract error-based,
similarity-based, information-based, and probability-based features. These extracted features are integrated
with semantic-based features extracted by textual analysis (from the text passages documented for the
failures) to provide a comprehensive recommender and decision support system.

Abbate et al. proposed a statistical distribution-based approach to investigate future values along with
alarming situations based on current values. The approach involves a collection of data from an industrial
sector electric motor. Historical sensor data of the motor is being used to estimate the statistical distribution
of the signals. Estimated distribution of data as well as actual data are further used to simulate the vibration
trends which eventually help in the detection of any signals in the future trends that may lead to equipment
failures. This twin approach also helps in the estimation of the maintenance schedule before the occurrence
of any failure based on future values [13].
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Strakosch et al. focused on designing a CM system for gearbox applications operating on heavy loads.
The study is primarily focused on investigating the performance of different sensors in different conditions,
especially for rolling bearings. Along with the sensor’s performance evaluation, the authors proposed to
use Fourier transforms (FT), wavelet Analysis and Envelope Curve Analysis (ECA), and targeted vibration
analysis specific to the application in the industry. The authors described the usage of FT for the detection
and cancellation of noise and other equipment frequencies, and ECA for pulse and error frequencies [14].

Ansari et al. proposed a special type of Bayesian Network (BN) called Dynamics Bayesian Network
(DBN) for the early prediction of failures and calculated the effect of predictions on the production and
planning system. The proposed framework of the Bayesian network consists of three basic components: (1).
Nodes: each node represents a single feature. (2). Edges: Each edge is a directed connection between two
nodes and (3). Conditional probabilities: A table containing the conditional probability of each node related
to other nodes. This proposed DBN aids in the prediction of failures but also helps in understanding the
cause-and-effect relationships and better maintenance strategies [15].

An ensemble technique for the prediction of the remaining life of the woodworking industry machines
is proposed by the authors. The authors proposed that adequate results can be achieved by using a built-in
log file system of the events occurring in machines for a cost-effective solution rather than the installation of
new sensors and CM systems. The models used in the research are Random Forest, Gradient Boosting, and
Extreme Gradient Boosting which are known as tree-based classification models. Experiments show that the
gradient-boosting model outperformed the other two models by providing 98.9% accuracy [16].

A review paper [17] presented by Schwendemann and co-authors summarized the work done by
researchers on bearing fault classification, fault location estimation, e.g., inner or outer side of the ring, and
the intensity of fault condition. This review paper also provides an overview of the past works done for the
calculation of the remaining lifetime of the bearing based on different input datasets. Literature surveys show
that different ML techniques, e.g., Auto-encoder techniques [18], genetic and ML algorithms [19], and DL
techniques [20–22] have been used for either classification of bearing faults or prediction of the remaining
useful lifetime of the bearings.

A CM system based on potential failure curves and similarity checks using clustering algorithms is
used by authors for the early prediction of failures of high-value assets of an industry. After determining
the high-value assets of the industry, the system checks sensor values and applies FMECA (Failure Mode,
Effects & Criticality Analysis) to determine the criticality level of the equipment failure. If the criticality level
is medium or high, then some default actions, e.g., failure finding, and redesigning are implemented along
with proactive actions which are decided by the clustering framework. Authors proposed to use three or
four-stage group division to cluster equipment in one of the categories, e.g., Healthy, Good with no action
required, Good with close monitoring, and Failure soon categories [23].

A dataset of vibration, sound, temperature, and motor current of the bearing as well as vibration
is examined with two labels Healthy-bearing and damaged-bearing. The data collected is modeled for
classification with popular ML algorithms such as support vector machine (SVM), linear discrimination
analysis (LDA), random forest (RF), decision tree (DT), and k-nearest neighbor (kNN). The models are
evaluated with accuracy, precision, F1 score, and a few other metrics. During the evaluation of all models, it
was observed that with the increase in the number of features in the data set, the accuracy metrics improved.
Authors claim that the SVM gave the best accuracy while DT is the best among others for giving adequate
results with less computational complexity [24].

Recent work in the field of times series data, in general, and particularly in CM demonstrates the use of
Autoregressive integrated moving average (ARIMA) [25–27], Recurrent Neural Network (RNN) [28], Long
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Short-Term Memory (LSTM) or combination of these models with other models [29–31]. A combination of
LSTM-Autoencoders with Transformer encoders is proposed by the authors [32] on multivariate time-series
data to model how various parameters evolve and influence each other over time. The proposed model is
evaluated using a dataset from the metal processing industry for estimating the remaining useful life (RUL)
of production equipment. There are three labels in the dataset as follows: 3–4 days RUL, 2–3 days RUL, and
1-day RUL. Multiple experiments are conducted and a maximum of 87% overall accuracy is achieved.

The authors proposed and compared several variants of Support Vector Regressor (SVR) for the
prediction of vibrational velocity values of mine blasting [33]. Moustafa et al. [34] presented a comparative
study of various ML models for the prediction of ground vibration values. It was observed through
experimentation that the Decision Tree (DT) outperformed other algorithms in terms of lower Root mean
Squared error (RMSE) and other evaluation metrics. In 2022, Siłka et al. [35] proposed to use RNN-LSTM
for the prediction of vibration values from high-speed train time series data. Recent studies show the uses
of XGBoost [36] and Multiple Linear Regression (MLR) [37] models for the prediction of vibration values
of mill and tunnel boring machines, respectively. Yang et al. used CNN, Deep RNN, LSTM, and informer
methods for the prediction of vibration values of a motor and achieved a low MSE of 0.0039 for the informer
method on bearing-related dataset (IMS) [38].

Bayesian hyperparameter optimization is a powerful technique for enhancing CM in various industrial
applications [39]. Ortiz et al. [40] developed a framework for bearing fault simulation by using Bayesian
optimization for hyperparameters tunning. The authors showed the efficiency of Bayesian optimization
over traditional techniques in predictive maintenance, achieving an accuracy of more than 0.97 in fault
classification. Zhang et al. [41] explored the use of Bayesian optimization for selecting optimal acoustic
features in machine fault diagnosis. The authors demonstrated that this method effectively enhances the
performance of ML models by identifying the important features for specific tasks. Recent studies [42,43]
proposed to use of Bayesian optimization with one-dimensional convolutional models and autoencoders
for monitoring industrial equipment health. The findings of these studies indicate that this approach
significantly improved both accuracy and training time compared to conventional methods. Table 1 provides
a comprehensive summary of recent studies in vibration prediction and fault classification. Table 1 presents
key details, including the domain, best-performing models, optimization techniques, and evaluation results
used in the recent studies on CM.

Table 1: Comparative analysis of the recent studies

Recent studies Domain Best model Optimization Results
Yang et al. [33] Vibration prediction Firefly-SVR Particle swarm 0.128 (RMSE)

Moustafa et al. [34] Vibration prediction DT Grid search 0.066 (RMSE)
Siłka et al. [35] Vibrations prediction RNN-LSTM N/A 99.12% accuracy
Lu et al. [36] Vibrations prediction XGBoost N/A 0.0269 (RMSE)

Yang et al. [37] Vibrations prediction MLR N/A 0.12 (MRE)
Yang et al. [38] Vibrations prediction Informer Random search 0.0039 (MSE)

Arifeen et al. [39] Fault classification Autoencoder Bayesian 0.998 accuracy
Ortiz et al. [40] Fault classification LightGBM Bayesian 0.97 accuracy

Despite rapid advancements in CM techniques, the field remains open for further research due
to the lack of generalized high-performance solutions for complex industrial environments. Predictive
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maintenance solutions are still underexplored in the context of challenges of complex industrial environ-
ments including large industrial datasets [44]. Literature work shows that the contribution of data-driven
techniques in classification tasks is more than the regression tasks as well as the need for large size industrial
related datasets [45]. There is a need to explore the hyperparameter search space suitable for CM problems
in regression problems.

3 Materials and Methods
This section describes the data collection process, preprocessing steps, and implementation details of

the study. CM-related vibration characteristics data is collected from a heavy-duty industrial motor and
processed as per the requirements of the models. During the training phase, Bayesian hyperparameter
optimization search-based hyperparameters and architectures are considered to get the optimum perfor-
mance from each model. After achieving optimal performance, the models are saved for testing on unseen
datasets. Six state-of-the-art regression models are being evaluated on the dataset collected. The proposed
BOS-LSTM model is trained on the same dataset and evaluated with the same evaluation strategy for the
sake of comparison. The current study presents a robust framework for vibration prediction in industrial
motors using ML and DL. The proposed methodology follows a structured approach comprising data
collection, preprocessing, hyperparameter optimization, model training, and evaluation. These steps are
explained below.

3.1 Dataset Collection
The dataset used in the study is collected from one of the biggest cement manufacturing industries

in Asia. The slip-ring induction motor with an operating power of 4600 kW is used to drive a conveyor
belt through a gearbox in the industry. The details of the motor, gearbox, and vibration sensor installed in
the industry are mentioned in Table 2. The dataset includes motor load values and vibration readings from
ten sensor points on the motor and gearbox of a cement industry’s raw material supply system. As shown
in Table 2, there are ten (10) data collection points, and each collection point yields five (05) different vibration
features resulting in a dataset of fifty (50) vibration features overall.

Table 2: Motor, gearbox, and vibration sensor details

Component Specification Value

Motor

Model DSRAN 9034-6WF
Rated power 4600 kW
Rated speed 995 RPM

Type Slip-ring induction motor

Gearbox

Mode MAAG WPU-274/G
Power 4600 kW

Input speed 995 RPM
Output speed 23.30 RPM

Sensors category 1 Model AC104-1A
Type Accelerometer

Sensors category 2 Model RH102
Type Accelerometer
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Vibration amplitude is the degree of movement or displacement of a machinery part from its central
position usually represented in millimeters (mm). Vibration frequency is the number of cycles per time
interval (minutes or seconds) measured in Hertz (Hz). Fig. 2 shows the vibration amplitude as well as
frequency for a spring moving back and forth from its central position. Fig. 2 also shows the cycles of
vibration signal numbered from 1–5 along with an indication of the start and end of each cycle. Vibration
frequency represents the source of the vibration while amplitude shows the severity of the vibration.

Figure 2: Sample of vibration amplitude and frequency

In the real environment, vibration values are a combination of different low and high frequency signals
as shown in Fig. 3. Raw vibration values are sometimes not enough to identify the source of vibrations. In
industrial CM, vibration characteristics are calculated to differentiate the signals and estimate the source or
cause of vibrations. Vibration characteristics can be measured as velocity, acceleration as well as bandpass
filtering on velocity and acceleration. Vibration velocity refers to the rate of change in displacement for
time and acceleration is the rate of change in velocity for time. Calculation of velocity is simply taking
the derivative of displacement and acceleration is the derivative of velocity denoted as a function of time.
Vibration values are usually measured in mm (millimeter), velocity in mm/s (millimeter per second), and
acceleration in mm/s2 (millimeter per second square) or g unit.

Velocity is used to observe lower frequency signals concerning machine speed, usually caused by
mechanical looseness, imbalance, and misalignment. While the acceleration is used to higher frequency
signals compared to natural frequency usually representing bearing and gear faults. Vibration characteristics
used in the current study along with mathematical formulas and descriptions are provided in Table 3.

Vibration characteristics are measured using accelerometers and then processed to calculate more
characteristics. Acceleration values are directly provided by the sensors, and only bandpass filtering is applied
to get specific frequency components as shown in Table 3. Velocity values are calculated by integrating the
acceleration values and the mathematical formula is provided in Table 3. The calculated velocity values are
processed through bandpass filtering to get different spectrums.

To understand the data collection points, it is necessary to consider the vibration measurement plane
and a few data collection points given in Fig. 4. The vibration values can be collected in three different
directions, horizontal, vertical, and axial as shown in Fig. 4a.
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Figure 3: Combined vibration signal

Table 3: Description of vibration characteristics

Vibration
characteristic

Unit Mathematical formula Description

2K acceleration g N/A Acceleration is often calculated directly by the
accelerometer vibration sensors. For 2K acceleration, a
bandpass filter is applied to extract components within

0–2 kHz. Captures higher-frequency components
caused by impacts, bearing defects, or misalignments.

(Continued)
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Table 3 (continued)

Vibration
characteristic

Unit Mathematical formula Description

8K acceleration g N/A For 8K acceleration, a bandpass filter is applied to
extract components within 0–8 kHz. Captures

medium-to-high frequency components related to
misalignment, unbalance, or looseness. It is useful for
detecting high-frequency vibrations caused by bearing

damage or cavitation.
2K velocity mm/s v (t) = ∫ a (t)dt where,

a(t) is the acceleration
Velocity can be calculated from the derivation of
acceleration. For 2K velocity, a bandpass filter is
applied to extract components within 0–2 kHz.

800 line velocity mm/s

∇ f = fmax − fmax

N
where f

is the frequency spectrum
and N is the frequency bin

(i.e., N = [800, 1600])

It represents velocity in the frequency spectrum
divided into 800 discrete lines (frequency bins).

Provides granular information about vibrations across
different frequencies.

1600 line velocity mm/s It is similar to 800 line velocity but offers higher
resolution using 1600 frequency bins. Provides a finer

resolution for more precise fault diagnostics.

Figure 4: Measurement plane for vibrations and bevel pinion

The data collected in the conducted study contains the vibration values of all three directions. Secondly,
the tooth-shaped rotating parts of the machines that are used to shift the direction of mechanical energy
are called bevel pinions which are shown in Fig. 4b. The collected dataset contains vibration values of the
bevel pinion part from both the motor side and gear side as well as the motor drive and non-drive end in
horizontal, vertical, and axial directions. An internal view of the gearbox along with the data collection points
located on the gearbox side are shown in Fig. 5.

Installed sensor point names along with different measurements taken from each sensor point are given
below in Table 4. Every data collection point written in Table 4 is assigned a number and the location of
those collection points is shown with the help of those numbers in Figs. 4a and 5. For example, Fig. 5 shows
a data collection point numbered as “85.1” which is labeled as “bevel pinion motor side” in Table 4. For each
specific data collection point, 2K Acceleration, 8K acceleration, 2K velocity, 800-line velocity, and 1600-line
velocity vibration characteristics are recorded as shown in Table 4.

All acceleration-related vibration characteristics are recorded in g and all the velocity-related vibra-
tion characteristics are recorded in mm/s units. The data collection points, and vibration characteristics
mentioned, are already in the practice of the industry. These sensors are installed by international CM
organizations and are used by industry control unit teams to monitor the condition of the system. The
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vibration values are processed by the already installed software by extracting the features related to velocity
and acceleration most suitable for the CM of the system. The extraction of these features by the software also
includes a few advantages like noise exclusion, root mean square values, etc. According to the industry, the
historical vibration data includes values for normal operations as well as faulty conditions but maintaining
a fault log was not in practice.

Figure 5: Sensor positions in the internal view of the gearbox. Note: The internal view of the gearbox is sourced from
the industry documentation and later sensor points are nominated on it

Table 4: Installed sensors and sensing unit information

Data collection points Sensing units
Bevel pinion motor side 85.1

All the values are Root
Mean Square (RMS)

values:
2K acceleration—g
2K velocity—mm/s
8K acceleration—g

800 line velocity—mm/s
1600 line velocity—mm/s

Bevel pinion gear side axial 85.2
Bevel pinion gear side radial 85.3
Bevel wheel lower bearing 85.4
Bevel wheel upper bearing 85.5

Ring gear 85.6
Ring gear 85.7

Main motor drive end axial 86.1
Main motor drive end vertical 86.1

Main motor non-drive end horizontal 86.2

3.2 Data Processing
Data preprocessing includes converting the timestamp column into hourly timestamps as well as

removing the dead signals. The data collected in the current study comprises vibration signals recording
starting from 10 September 2020 at 11:00:00 p.m. and the latest record recorded on 10 February 2022 at 5:00:00
p.m. The data collection unit recorded values for the timestamps in which the motor as well as sensors were
operational. The collected dataset was comprised of multiple data sheets for different months. These sheets
were merged and then preprocessed using Python language and libraries. Dead signals are removed using
the “pandas” library to first see the count of records having null values in each column and then drop the
records containing null values. The dataset originally contained 12,428 rows which were reduced to 11,083
by removing the dead signals. These remaining 11,083 rows are further used for train and test split. The pre-
processed sample dataset of sensing units of the bevel pinion gear side collection point is shown in Table 5.
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As shown in Table 2, there are a total of fifty (50) columns for the vibration features but only 3 of the columns
related to the bevel pinion gear side are shown in Table 5 for keeping the table clarity intact.

Table 5: Dataset sample after preprocessing

Daq time Overall value
(RMS, mm/s)

BPGearSide1600LineVel

Overall value
(RMS, g)

BPGearSide2KAcc

Overall value
(RMS, mm/s)

BPGearSide2KVel
10/09/2020 23:00:00 2.770440 0.424294 2.744576
11/09/2020 0:00:00 2.706807 0.407324 2.660164
11/09/2020 1:00:00 2.848460 0.431343 2.773109
11/09/2020 2:00:00 2.856414 0.433332 2.815460
11/09/2020 3:00:00 2.870022 0.426820 2.791429
11/09/2020 4:00:00 2.767560 0.440208 2.848815
11/09/2020 5:00:00 2.826307 0.432188 2.771783
11/09/2020 6:00:00 2.873176 0.445484 2.845395
11/09/2020 7:00:00 2.873418 0.439075 2.824439

Each row of the collected dataset contains the timestamp, and vibration features at that specific
timestamp. Cross-validation is a common practice to assess the generalization capability of a model as it
randomly splits the dataset into train-test sets. However, in the time-series data, records are sequentially
dependent and cross-validation can disrupt the temporal structure of the dataset. As the data collected in the
current study is time-series in nature, cross-validation cannot be applied in model evaluation. The 80%–20%
split of data is a common practice in the implementation of ML algorithms as it usually gives enough data
for training and provides unseen samples for model testing. The preprocessed data is split into an 80%–20%
ratio for training and testing. The 80% training data is further divided into 80%–20% subsets of training and
validation used for the model training phase. The remaining 20% was reserved to test the model on unseen
data to check the model’s robustness and generalization instead of overfitting. The details of the train, test,
and validation split along with the number of samples for each subset are shown in Table 6.

Table 6: Train-test-validation split information

Split Number of samples Subsets Number of samples

Train (80%) 8866 Training (80%) 7093
Validation (20%) 1773

Test (20%) 2217
Total 11,083

3.3 Hyperparameter Search Strategy
Hyperparameter tuning is the process of selecting the most suitable set of hyperparameters for an

ML [46] or DL [47] model. Hyperparameter tuning helps achieve better performance of the model by
aligning the model with the data distribution. It also helps in avoiding underfitting and overfitting of the
model as well as optimizes the resource utilization by reducing the computations due to the unnecessary
complexity of the model. It helps models converge faster, saving time and computational resources by
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selecting the optimal hyperparameters along with the best possible performance of the model [48]. Generally,
hyperparameter tunning strategies can be categorized into the following three categories:

• Grid Search: It is a systematic strategy that tests the model performance on all predefined combinations
of hyperparameters. It is computationally very expensive, especially for large-sized search space.

• Random Search: Hyperparameters are selected randomly from a predefined range. It is computationally
efficient compared to grid search but the selection of optimal hyperparameters is not guaranteed.

• Optimization-based Search: These strategies use mathematical optimization techniques by defining an
objective function and finding the optimal hyperparameters set. Optimization-based search strategies
include gradient-based, evolutionary, and Bayesian optimization.

The proposed methodology involves the implementation of the Bayesian optimization technique which
iteratively uses a probabilistic model to assess the performance of hyperparameters and refine it. It provides a
balance between trying new combinations and optimal solutions thus reducing the number of computations
compared to grid and random search. The hyperparameter optimization can be represented mathematically
as shown in Eq. (4).

x∗ = arg min
x εX

f (x) (4)

where f (x) is the objective function, which is usually the error rate, X is the search space of hyperparameters,
x is the set of hyperparameter values taken from search space, x∗ is the set of hyperparameters which gives
the lowest values of the objective function. This strategy models the objective function f (x) as a probabilistic
surrogate function P (score∣Hyper parameters). It uses past evaluations to predict the performance of
new hyperparameter configurations [49,50]. The graphical representation of the Bayesian hyperparameter
optimization technique is provided in Fig. 6. As shown in Fig. 6, the first step of Bayesian hyperparameter
optimization is to build a surrogate probability function which is the conditional probability of score given
a specific set of hyperparameters from the given search space. In the second step, the algorithm searches for
the hyperparameters which provide the best probability of better scores. These selected hyperparameters are
used in step 3 to evaluate the model on validation data. The algorithm performs these steps recursively till
the convergence or maximum number of iterations. The hyperparameters set that yielded the best results on
the validation set is provided as the output of the algorithm.

Figure 6: Bayesian hyperparameter optimization steps

The Bayesian optimization algorithm, implemented using the Optuna library in Python, automatically
finds the best hyperparameters. It tests different settings, evaluates model performance, and selects the
combination that minimizes MSE. Table 7 provides details of the hyperparameters, searched space, and
selected parameters for the ML models. Table 7 shows that the hyperparameter tuned for LR is regularization,
which helps prevent overfitting by penalizing large coefficients. The optimized RF model hyperparameters
include the number of trees, the maximum depth of the tree, and the number of samples for each split. Table 7
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also represents the hyperparameters including the learning rate, number of estimators, and max depth of
each tree optimized for GBR and XGBoost. The radial basis function (RBF) is selected along with other
hyperparameters for SVR as shown in Table 7.

Table 7: Searched space and selected parameters of ML models

Algorithm Search parameters Search space Selected
Linear regression Regularization [0, 1] 0.001

Random forest regressor
Number of trees [50, 500] 119

Max depth [5, 50] 23
Min samples split [2, 10] 2

Gradient boostinG
Regressor

Learning rate [0.001, 0.3] 0.1
Number of estimators [50, 500] 96

Max depth [3, 10] 5

XGBoost regressor
Learning rate [0.001, 0.3] 0.01

Number of estimators [50, 500] 145
Max depth [3, 10] 6

LightGBM regressor
Learning rate [0.001, 0.3] 0.01

Number of leaves [20, 150] 51
Max depth [3, 10] 6

SVR

kernel ‘linear’, ‘rbf ’, ‘poly’ ‘rbf ’
C [0.1, 100] 76

Epsilon [0.001, 1] 0.1
Gamma [‘auto’, ‘scale’] Auto

While utilizing DL, model architecture selection becomes more complex and challenging. The Bayesian
optimization algorithm is implemented to use architectural parameters like the number of LSTM layers,
number of units per LSTM layer, etc. as input along with other hyperparameters. Bayesian optimization
is provided with architectural parameters as input including the number of LSTM layers, the number
of units for each LSTM layer, the number of Dense layers, number of units in each dense layer. Other
hyperparameters related to the proposed model provided as input to the optimization algorithm are dropout
value in between the layers, learning rate, batch size, and activation function. Optimization stopping criteria
were set to a maximum of 50 trials along with early stopping in case of convergence. The optimization
stopping criterion was set to a maximum of 50 trials, as the optimization algorithm consistently converged
between 39 and 45 trials during experimentation. This threshold was chosen to ensure sufficient exploration
of the hyperparameter space while maintaining computational efficiency.

Details of Searched parameters, search spaced, and optimal parameters regarding LSTM are provided
in Table 8. The BOS-LSTM model consists of two LSTM layers: one with 118 units and another with 96 units.
These layers collaboratively identify complex patterns in the dataset. Only one dense layer with 47 units is
proposed to be an optimal solution by the Bayesian optimization algorithm. The dense layer is followed by
an output layer which provides the predicted value for the given batch of previous values. The architecture
diagram of BOS-LSTM as per details mentioned in Table 8 is shown in Fig. 7. As shown in Fig. 7, two LSTM
layers are connected sequentially to learn complex patterns in the dataset along with a dropout layer to
generalize the model training rather than overfitting. A dense layer is used to concatenate all the learned
parameters which are further used as input to the output layer for the value prediction.
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Table 8: Searched space and selected parameters of BOS-LSTM

Search parameters Search space Selected
Number of LSTM layers [1, 10] 2
First LSTM layer units [32, 128] 118

Second LSTM layer units [32, 128] 96
Number of dense layers [1, 3] 1

Dense layer units [32, 128] 47
Dropout [0.1, 0.5] 0.23

Learning rate [0.0001, 0.001, 0.01] 0.001
Batch size [16, 32, 64] 32

Activation function [Sigmoid, Tanh, ReLU] ReLU

Figure 7: BOS-LSTM architecture diagram
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3.4 Implementation Details
The models are implemented using Python and supporting libraries like sklearn, pandas, and NumPy.

Models are implemented on the dataset containing vibration characteristic values as well as motor load
information on that specific timestamp. As the vibrations predicted in the current study are measured in g
which is equivalent to 9.81 m/s2, the unit of measurement of MSE is g2 for all the implementations of the
current study. The MAE coefficient always has the same units as the target variable, hence MAE is calculated
in g. For BOS-LSTM models, a learning rate of 0.01, a batch size of 32, and a dropout rate of 0.2 are used
to ensure the model’s convergence to an optimal solution. Additional implementation details include using
two LSTM layers with a ReLU-Rectified linear Unit as an activation function and Adam-Adaptive Moment
Estimation as an optimizer. The architecture of the BOS-LSTM model is shown in Fig. 7 showing the layers
of the model as well as the other implementation details provided in Table 8. The model is trained for a total
of 50 epochs and displays an MSE of 0.0019.

4 Results
All the models are implemented with the implementation details mentioned earlier and provided

in Tables 7 and 8 on the dataset containing the load and vibration information of the motor. Actual values
of vibrations along with the predictions of the trained models are shown in Fig. 8. It shows the actual values
in blue color and predicted ones in red color for 2K Acceleration of Ring Gear (85.7). Basic ML modes, LR
and RF did not perform well on the dataset as there aren’t any obvious trends in it. The models yielded MSE
of 0.95 and 0.465 for LR and RF, respectively. Gradient boosting models GBR, XGBoost, and LightGBM
performed better than basic ML models and MSE of 0.184, 0.029, 0. 2127, respectively. SVR achieved a lower
MSE of 0.027, indicating better performance. The BOS-LSTM outperformed all other models, achieving an
MSE of 0.0019. Fig. 8 indicates the BOS-LSTM model’s ability to accurately predict both normal vibration
patterns and higher vibration values.

The results show that basic ML models failed to capture the dataset’s complexity and to correctly
predict the peaks which resulted in lower performance. For SVR, some of the peak values are not captured
accurately while BOS-LSTM’s overall performance shows better performance in normal and peak values. The
BOS-LSTM predicted values graph shows the model generalization in predicting future values rather than
overfitting. The comparison of models concerning MSE on testing data clearly states the better performance
of BOS-LSTM as compared to other algorithms.

Along with MSE, other evaluation metrics, MAE, and R2 Score, are also calculated for each implemented
model. Table 9 provides a comparison of evaluation metrics for all models implemented on the dataset. As
shown in Table 9, the R2 scores −0.220 and −0.1350 for Linear Regression and Random Forest, respectively,
indicate poor performance of these models for the given task. A negative R2 shows that the model
performs worse than a simple mean-based prediction, due to failing in learning the complex time-dependent
relationships in the data. Fig. 8 also shows that these models failed to capture the underlying patterns in the
dataset. GBR and LightGBM showed improved performance but were still limited in terms of evaluation
metrics as shown in Table 9. XGBoost and SVR provided better predictions, with SVR outperforming other
basic models in capturing hidden patterns in the dataset. Table 9 further highlights that the proposed BOS-
LSTM significantly outperformed all other models with an MSE of 0.0019 and R2 of 0.882. Results show
that the traditional regression and tree-based models struggled with capturing long-term dependencies in
time-series datasets. Whereas complex models, such as the proposed BOS-LSTM, effectively learn temporal
patterns and provide significantly better performance.
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Figure 8: Actual vs. predicted values of all model

The use of Bayesian optimization for hyperparameter selection, evaluation of the model on unseen data,
and use of different performance metrics ensure the robustness of the proposed model. A sensitivity analysis
is conducted to further validate the findings by changing the hyperparameters and observing the impact
on model performance. To analyze the sensitivity of the proposed BOS-LSTM model, hyperparameters are
changed by selecting both their minimum and maximum values within the search space and observing their
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impact on MSE. In the minimum values setting, the model performance dropped significantly with an MSE
of 0.0850 while the maximum values setting resulted in an MSE of 0.0020. Despite selecting the maximum
values of hyperparameters from search space, results show that the proposed BOS-LSTM provides a good
balance between model complexity and generalization.

Table 9: Performance metrics of implemented algorithms

Algorithms MSE MAE R2

Linear regression 0.9515 0.6003 −0.220
Random forest regressor 0.4654 0.3056 −0.1350

Gradient boosting regressor 0.1849 0.1201 0.4240
XGBoost regressor 0.0295 0.1104 0.523

LightGBM regressor 0.2127 0.1341 0.39
SVR 0.0273 0.0913 0.668

BOS-LSTM (proposed) 0.0019 0.0263 0.882

As the evaluation metrics show the performance of models on different scales and units, it is difficult
to access models on different metrics at a time. Spider plot is a good option to visually compare multiple
models across multiple metrics, clearly showing strengths and weaknesses. The Spider plot first inverts and
normalizes the metrics on a 0 to 1 scale so that they are comparable and then plots in a radar format. Fig. 9
presents a spider plot for the MSE, MAE, and R2 values observed for models during evaluation.

Figure 9: Spider plot for model performance evaluation
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The current study involves the collection of a dataset from a heavy-duty industrial motor setup which
was not used in any prior research. Comparison of the current study with recent studies on the same
parameters is not possible due to the usage of different datasets in recent studies. A comparison with recent
studies on vibration values prediction along with the domain and evaluation parameters used is provided
in Table 10. It can be observed that the MSE 0.0019 achieved in the current study is comparatively a low error
in vibration values prediction compared to recent studies.

Table 10: Comparison with recent studies

Paper Equipment/domain Best model Results
Yang et al. [33] Ground vibrations SVR 0.128 (RMSE)

Moustafa et al. [34] Ground vibrations DT 0.066 (RMSE)
Siłka et al. [35] Train vibrations RNN-LSTM 99.12% accuracy

with 10% error
margin

Lu et al. [36] Mill vibrations XGBoost 0.0269 (RMSE)
Yang et al. [37] Tunnel boring

machine vibrations
MLR 0.12 (MRE)

Yang et al. [38] Motor vibrations Informer 0.0039 (MSE)
Proposed approach Motor and gearbox

vibrations
BOS-LSTM 0.0019 (MSE)

The results of the current study have potential implications for PM of industrial sectors involving
heavy machinery such as manufacturing, energy production, and transportation. Accurate prediction
of vibration characteristics using the proposed model enables early detection of potential failures and
reduction in chances of unplanned downtimes. This study facilitates proactive equipment maintenance
by improving reliability, optimizing maintenance schedules, and minimizing costs leading to improved
operational efficiency. The implemented methodology can be adapted for PM in other critical industrial
settings including pumps, turbines, and compressors. The integration of ML models with CM of industrial
systems can lead to improved productivity and safety in Industry 4.0.

5 Conclusion and Future Work
In conclusion, this study presents a comprehensive exploration of CM in process industries, with a

focus on a large Slip ring induction motor using vibration and load information. The proposed approach
includes data preprocessing, modeling of CM using different ML and DL algorithms, and analysis of results.
The preprocessing phase refined the raw vibration data by removing the dead signals and aligning the
temporal sequence of the data. The models exhibited varying performance on the provided dataset with
SVR displaying some capability in capturing the time series data relationships. The proposed BOS-LSTM
demonstrated superior performance compared to other models. The BOS-LSTM model’s performance can
be attributed to its architectural capability to capture long-term patterns in vibration data. This paper offers
an analysis of various ML models and shows practical applications of advanced ML techniques for CM.
By utilizing these techniques and vibration values predicted in advance, process industries can shift from
reactive maintenance to proactive maintenance strategies if there are any abnormal values expected. The
results indicate the potential of ML models, particularly BOS-LSTM, to revolutionize industrial processes.
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While the current research work focuses on only one unit of a very large industrial setup, future work
may explore enhancing predictive maintenance across diverse industrial setups. This can be achieved by
training the models on datasets collected from different industrial setups for generalization. The study is
limited to the use of vibration sensors. Future work can utilize the integration of additional sensor types,
such as temperature, pressure, and acoustic sensors, to provide a more comprehensive study. This paper is
limited to predicting vibration characteristics which can be helpful to take precautionary measures before
breakdowns. These vibration characteristics along with label information of the normal condition or fault
scenario can be used for fault classification of future predictions. The conducted study is limited to ML
and DL model implementation on the industrial dataset which can further be used for the development of
web and mobile-based applications for remote monitoring. Future directions should include integrating CM
systems with IoT and cloud platforms to enable remote, real-time monitoring and anomaly detection.
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