
echT PressScience

Doi:10.32604/cmc.2025.064007

ARTICLE

Design a Computer Vision Approach to Localize, Detect and Count Rice
Seedlings Captured by a UAV-Mounted Camera

Trong Hieu Luu1 , Phan Nguyen Ky Phuc2 , Quang Hieu Ngo1,*, Thanh Tam Nguyen3 and
Huu Cuong Nguyen1

1College of Engineering, Can Tho University, Can Tho City, 910900, Vietnam
2School of Industrial Engineering and Management, International University, Vietnam National University, Ho Chi Minh City,
700000, Vietnam
3Mekong Delta Development Research Institute, Can Tho University, Can Tho City, 910900, Vietnam
*Corresponding Author: Quang Hieu Ngo. Email: nqhieu@ctu.edu.vn
Received: 01 February 2025; Accepted: 07 April 2025; Published: 19 May 2025

ABSTRACT: This study presents a drone-based aerial imaging method for automated rice seedling detection and
counting in paddy fields. Utilizing a drone equipped with a high-resolution camera, images are captured 14 days post-
sowing at a consistent altitude of six meters, employing autonomous flight for uniform data acquisition. The approach
effectively addresses the distinct growth patterns of both single and clustered rice seedlings at this early stage. The
methodology follows a two-step process: first, the GoogleNet deep learning network identifies the location and center
points of rice plants. Then, the U-Net deep learning network performs classification and counting of individual plants
and clusters. This combination of deep learning models achieved a 90% accuracy rate in classifying and counting
both single and clustered seedlings. To validate the method’s effectiveness, results were compared against traditional
manual counting conducted by agricultural experts. The comparison revealed minimal discrepancies, with a variance
of only 2–4 clumps per square meter, confirming the reliability of the proposed method. This automated approach
offers significant benefits by providing an efficient, accurate, and scalable solution for monitoring seedling growth. It
enables farmers to optimize fertilizer and pesticide application, improve resource allocation, and enhance overall crop
management, ultimately contributing to increased agricultural productivity.
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1 Introduction
The accurate determination of rice seed density is crucial for successful paddy cultivation. A precise

assessment of seed density is not only vital for maximizing crop yield but also plays a key role in effective
resource management. This information can guide decisions related to seed distribution, irrigation practices,
and fertilizer applications.

Historically, crop scientists have relied on manual field surveys to assess plant emergence rates, a
process that is time-consuming and prone to errors [1]. The emergence of Unmanned Aerial Vehicles
(UAVs) in agriculture has revolutionized monitoring practices [2]. UAVs offer significant advantages,
including increased maneuverability and faster data collection, compared to traditional methods. UAVs
have been widely used in land use and surface topography studies to capture high-resolution imagery for
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vegetation mapping [3,4]. Furthermore, the integration of UAV-mounted LiDAR technology has enhanced
data acquisition capabilities, enabling more comprehensive and accurate analysis [5–7].

High-resolution cameras are becoming increasingly prevalent for agricultural monitoring. Image
processing and computer vision techniques offer versatile toolkits for various applications, including crop
monitoring, disease detection, weed control, and yield prediction. Methods such as edge detection and
thresholding have been widely explored [8–10]. However, these methods primarily focus on identifying
individual seeds, which can be challenging under high-density planting scenarios. Recent studies have
estimated wheat plant density and quantified wheat seeds [11–13].

It is important to note that data collection in previous studies often relied on manual methods,
which may not be practical for large-scale agricultural areas. Image processing, particularly with deep
learning techniques, has shown great promise for utilizing UAV imagery for various agricultural monitoring
tasks. These applications include detecting pine wilt disease [14], assessing the chlorophyll content in
peanut leaves [15], and identifying blackgrass weeds [16]. Deep learning can significantly improve image
classification and monitoring accuracy. Previous studies have extensively explored the use of deep learning
to identify and track crop pests and diseases [17–20].

It is crucial to note that the effectiveness of deep learning in analyzing maize seedlings may be influenced
by the specific characteristics of the maize plant. Factors such as plant size and relatively stable environmental
conditions may affect the performance of image-processing techniques used for tasks such as estimating plant
density, rice seedling throwing apparatus [21], evaluating emergence rates [22,23] and counting leaves [24].

Several studies have explored the use of drones in rice farming, particularly for seeding and monitoring
plant growth stages [25,26]. These studies have primarily focused on drone-assisted seed planting techniques
and have mainly assessed plant development during the middle and later stages. An alternative approach,
presented in studies by [27,28], utilizes Convolutional Neural Networks (CNNs) to identify weeds and rice
blast diseases in seedlings. However, the feasibility of this method for large-scale agricultural applications
is challenging. Kong et al. [29] used X-ray computed tomography (CT) scans to assess rice seed density
by calculating the seed setting rates from CT images. However, the high cost of CT makes this method
impractical for widespread use. Guo et al. [30] proposed a novel approach that leverages deep learning
algorithms to estimate sowing density based on seed-setting rates. However, this method requires harvesting
the entire rice crops before analysis, making it unsuitable for real-time adjustments to fertilizer and
pesticide applications.

Wu et al. [31] and Tseng et al. [32] utilized drones equipped with CNNS to successfully detect and count
rice seedlings. However, these methods are currently limited to transplanted rice fields that have specific
block-like planting patterns. Additionally, these techniques primarily focus on relatively mature rice plants,
where panicles begin to form.

Rice cultivation primarily involves two methods, transplanting and direct sowing. During transplanting,
seedlings are nurtured in a nursery before being carefully placed in the field, ensuring uniform spacing
and plant development. In contrast, sowing involves scattering seeds directly into the field, often producing
several seeds per hole. Weather conditions significantly affect germination and seedling establishment,
leading to varying outcomes in each hole, from empty to single or multiple plants. This study differs from
previous research by focusing on counting seedlings in directly sown rice fields. Given the variability in
seedling growth and distribution across shown fields, a dedicated dataset and determination of an optimal
altitude for accurate seedling counts are crucial considerations.

Conventionally, estimating rice plant density involves laborious counting of individual tillers within a
50 × 50 cm quadrat. This manual method requires sampling from multiple locations across the field, which is
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time consuming and costly. This study introduces a novel approach to assess rice seed density during crucial
transplanting and tillering stages. By employing a camera mounted on an UAV, this study examined various
flight altitudes to determine the optimal height for capturing detailed images of young rice plants. To mitigate
uncertainties arising from environmental factors and the inherent randomness of seed germination, this
study integrated a thresholding technique with a three-layer CNN to improve accuracy.

The accuracy of the proposed method was verified by comparing its results with manual counts
performed on a sample within an area of one meter square within the rice field. This method demonstrates
the potential for rapid and cost-effective assessment of rice plant density. This early detection of areas with
low plant density not only saves labor costs but also provides valuable visual information. This information
empowers farmers to make informed decisions about the necessity of replanting them in specific areas.

The structure of this paper is organized as follows: Section 2 describes the method for determining
the position of rice plants, the dataset creation process, and the classification approach for identifying
positions as either single seedlings or cluster seedlings. Section 3 presents the results of this study and verifies
them against expert manual measurements. Additionally, this chapter includes a discussion comparing our
findings with previous studies. Section 4 provides the conclusions, summarizing the key achievements of
this paper.

2 Methods

2.1 Experimental Site and Data Acquistion
Data acquisition was conducted on 07 January 2024 in Thu Thua, Long An Province, Vietnam, as shown

in Fig. 1.

Figure 1: The observation location area and weather condition

Seventeen days after sowing, both the seed rate and number of tillers were carefully measured. To
capture this data, a Phantom Pro 4 drone equipped with a DJI-FC6310S camera (capturing images at 4864 ×
3648 pixels) was employed. Although video recording is possible, autonomous flight paths are preferred to
ensure consistent image quality across varying environmental conditions. The FieldAgent software was used
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to plan and execute these autonomous flights. The ground sample distance (GSD) was calculated manually
for each altitude, and is detailed in Table 1.

Table 1: Flight plan information

Altitude (m) Speed (m/s) Pixels/cm Size (m)
6 1 x-axis = 6.25 22.8 × 30.4

y-axis = 6.25

Image data was acquired at 10:15 AM on the designated observation day. During data collection, strong
winds were present, blowing in the opposite direction of the drone’s flight path. Favorable lighting conditions
ensured optimal image capture. To account for variations in environmental backgrounds, data collection
sites were randomly selected within the field. These conditions included challenging scenarios such as
backlighting, reflections on water surfaces, dark backgrounds, and the presence of objects that could be
difficult to identify.

The experimental field was spanned approximately 2 ha, with a seeding rate of 40 kg/ha. A wider spacing
of 10× 15 cm2 was implemented, with approximately three seedlings planted per hill, and fertilizer was applied
at a depth of 7 cm. During the vegetative stage, young rice plants primarily develop leaves and stems. The
timing of tillering can vary depending on rice variety, nutrient availability, and prevailing weather conditions.
In this study, a sowing machine was used to precisely plant IR4625 rice seeds one day after germination.

To complement the advanced imaging techniques used in this study, traditional methods were also
employed to assess rice seed density 14 days after sowing (Fig. 2) [33]. Four distinct polyvinyl chloride (PVC)
squares, each measuring 50 cm× 50 cm, were strategically placed at the four corners of the paddy field. These
squares, aligned with the tractor’s plowing path as shown in Fig. 3, serve as visual landmarks. The images
can be accurately divided into smaller manageable sections by identifying and locating these squares within
the aerial images. It is important to note that the seed sowing machine used in this study created evenly
spaced holes, with a predetermined distance of 10–12 cm between each hole. Therefore, knowing the precise
coordinates of these PVC landmarks can provide valuable clues for identifying the locations of individual
seed holes and clusters within images.

Figure 2: Rice crop cycle and data acquisition time adapted with permission from reference [33]
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Figure 3: Rice seed density evaluation on field

2.2 Proposed System
The proposed system is illustrated in Fig. 4. Aerial images were converted into binary images, and a

Hough line transformation was applied to detect the four edges of each landmark. Finally, the center point
of each landmark was calculated.

Figure 4: Proposed system

To detect seedling positions, a dot map was generated, and labels were assigned to each cluster center.
In this study, the objects were categorized into three classes: single rice seedlings, clusters of rice seedlings,
and undefined objects. For each dot representing a potential seedling or cluster, a square window of size
35 × 35 pixels was defined, with the dot coordinates serving as the window’s center. This window was used
to extract a feature vector from the image.

To accomplish this, the study primarily employed spatial descriptors, specifically Gabor filters, and
histograms of color ratios. Gabor filters are steerable filters that are sensitive to both orientation and
frequency. They act as linear filters, analyzing the presence of specific frequency components within the
image in different directions around the point of interest. Research in computer vision suggests that the
frequency and orientation responses of Gabor filters closely resemble those of the human visual system. This
makes them particularly well-suited for representing and distinguishing textures. Mathematically, Gabor
filters are recognized for their optimal joint resolution in both spatial and frequency domains. In the discrete
domain, two-dimensional Gabor filters are defined as Eqs. (1) and (2):



5648 Comput Mater Contin. 2025;83(3)

Gc[i , j] = Be(−
(i2+ j2)

2σ2 ) cos(2π f (i cos θ + j sin θ)) (1)

Gs [i , j] = Ce(−
(i2+ j2)

2σ2 ) cos(2π f (i cos θ + j sin θ)) (2)

In the Gabor filter equation, B and C represent the normalization factors determined during the process.
Parameter f defines the specific frequency being analyzed within the texture. By adjusting the values of
θ (orientation) and σ (scale), The Gabor filter can be tuned to detect textures with different orientations
and spatial extents by adjusting the θ (orientation) and σ (scale) values. For this study, a Gabor filter bank
was designed with the following parameters: four frequency levels, six orientations, maximum frequency of
0.327, and half-octave frequency ratio. The design of this filter bank is based on the considerations outlined
in Ref. [34]. For each color channel in the image, the mean and standard deviation of the absolute values
within the transformed images were extracted as textural features. This resulted in 144 monochrome features
(4 frequencies × 6 orientations × 2 [mean and standard deviation] × 2 channels). Throughout this study, the
Gabor filter configuration remains consistent. In addition, the color histograms of the RGB channels were
utilized as features. For each channel, the image was initially quantized into 64 distinct colors. Subsequently,
three color-ratio histograms were calculated for each pixel, and the color value was compared to the values
of its neighboring pixels. These color ratios are invariant to changes in the surface orientation, viewpoint,
and illumination direction, making them robust features for image analysis.

To enhance the precision of locating the center point during the window-sliding process, GoogLeNet
was employed to predict the initial center point. Although landmarks can be identified and initial estimates
of sowing hole locations can be made, a comprehensive view of the entire cluster is necessary for an accurate
density assessment. During the inference stage, the window slides towards the center point, as predicted by
GoogLeNet [34]. The predicted center point was then subjected to a re-evaluation process. If the predicted
center falls within an acceptable margin of error from the actual center of the window, a feature vector is
extracted. This feature vector was subsequently used as an input for the classifier to assign labels. The loss
function employed to train GoogLeNet is defined by Eq. (3) providing by [35].

L =
(x̂i − xp)

2
+ ( ŷi − yp)

2

d2 (3)

where (xpi , ypi) is the given center of the data image i. (x̂i , ŷi) is the predicted center of the network. d is
the window size. Furthermore, to enhance the accuracy of the final classifier, U-Net [36] was trained for
background removal and cluster segmentation. In our experiment, the cluster class had a strong correlation
with the cluster segment area. A parallel pipeline makes the final classifier more robust and reliable.

2.3 Data Creation and Preparation
To train the proposed system, three different datasets were prepared and created regarding 3 different

stages [33]. The first dataset comprises images in which cluster centers, that is, dots, are located at various
positions. In this set, the images of undefined objects have center coordinates of (0, 0). In this study,
we employ the U-Net deep learning network. U-Net offers several advantages in image segmentation,
particularly for remote sensing and biological applications. Additionally, the U-Net model demonstrates
superior efficiency in training with limited data compared to other convolutional neural networks (CNNs).
Moreover, U-Net is well-suited for applications with small batch sizes, which is particularly relevant to this
study, as the size of rice plants is relatively small. For Unet training, a set of raw and mask images were created,
and some typical samples are shown in Fig. 5.
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Figure 5: Samples for training U-Net. (a) Single seedling; (b) Single seedling mask; (c) Clusters of seedling; (d) Clusters
of seedling mask

To enrich the dataset and improve its suitability for training, various augmentation techniques have
been applied, including image transformations, such as rotation, blurring, denoising, and blending. These
transformations were iteratively applied to increase the diversity of the dataset. The resulting augmented
dataset was more comprehensive and robust, encompassing a wider range of visual characteristics and
complexities. This enhanced dataset improves the ability of the model to generalize and perform well during
training and evaluation. A detailed breakdown of the class distribution within the augmented dataset is
presented in Table 2 with 80% for training and 20% for testing.

Table 2: The training data sets

Single rice seedling
(Training/Testing)

Cluster rice seedlings
(Training/Testing)

Undefined object
(Training/Testing)

GoogleNet 400/100 400/100 600/150
Unet training set 680/170 744/186 1200/300

Following the training phase, key performance metrics such as accuracy, precision, recall, and F1-score,
as defined in Eqs. (4)–(7) were calculated using the confusion matrix to assess the model’s performance:

accurac y = TPn + TNn

TPn + FPn + TNn + FNn
(4)
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precision = TPn

TPn + FPn
(5)

recal l = TPn

TPn + FNn
(6)

F1_score = 2 ∗ precison ∗ recal l
precision + recal l

(7)

where TPn/TNn represents the true positive and true negative classes, FPn/FNn represents the false positive
and false negative classes, and n represents the count.

The model was trained on a personal computer equipped with an Intel Core i5-14400F processor and
16 GB of RAM. Using MATLAB software, the training process was conducted on a single CPU for
approximately 133 min. The training procedure consisted of 30 epochs, with 339 iterations per epoch. The
performance of the proposed model was evaluated using a confusion matrix Fig. 6 and a set of statistical
metrics (Table 3). The proposed model demonstrated a significantly high accuracy. Misclassifications were
minimal, with 15 of 130 samples being incorrectly classified between “single rice seedlings” and “undefined
objects.”

Figure 6: Confusion matrix of proposed approach

Table 3: The accuracy in determining rice seedlings using Unet network

Class Accuracy Precision Recall F1 Score
Single rice seedling 90.24% 89.05% 84.72% 86.83%

Cluster rice seedling 90.72% 87.7% 85.71% 86.7%
Undefined object 90% 91.84% 88.33% 85%

Average 90.32% 86.09% 86.26% 86.11%

3 Results and Discussions

3.1 Rice Seedling Localization and Detection
Extensive experimentation has determined that the optimal altitude for UAV operation is six meters

above ground level. Fig. 7 illustrates the results of the proposed model, where the red dots indicate the center
of each seedling. These findings demonstrate that our method effectively estimates the number of seedlings
in each aerial image, despite variations in plant size across the field. However, challenges arise in the precise
location of individual rice seeds within certain image regions. These challenges are particularly evident when
dust or other unidentified objects obscure the view of the rice plants or when the seeds are very small and
may be mistakenly classified as background features by conventional analysis techniques.
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Figure 7: Seedling localization and detection results. (a) Thresholding localization; (b) Seedling detection

3.2 Rice Seedling Classifying and Counting
Fig. 8 shows the results of classifying and counting rice plants from the aerial images. The results show

that the proposed method can detect and classify nearly all rice plants in the image frame. The green rectangle
represents a single rice seedling, whereas the yellow rectangle represents a cluster rice seedling. The detailed
results indicate that the proposed method can classify single rice plants even under backlit conditions. Under
good lighting conditions, the proposed method could classify almost all single and clustered rice seedlings.

To evaluate the effectiveness of UAV technology compared with traditional methods, we initially focused
on two key parameters: “hill density per square meter” and “tiller number per square meter.” However,
because of the overlapping canopy caused by germination, only the “hill density per square meter” could be
reliably measured.

In traditional method, the hill density per square meter, five sample plots, each measuring 50 × 50 cm2,
were randomly placed at the four corners and the center of the field (Fig. 1). Within each plot, the number of
single seedlings and cluster seedlings per square was recorded. Using data from these plots, the hill density
was extrapolated to estimate the total density for the entire paddy field.

In our method, samples were collected from UAVs at designated locations. For each area, images were
randomly selected for analysis, and the values derived from these images were averaged and compared with
the manually calculated results. Since the image dimensions could be measured (as shown in Table 1), the
average value for the sampled areas was determined.

Table 4 presents the results obtained from the five different images captured at an altitude of 6 m.
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Figure 8: Rice seedling classifying and counting. (a) Seedling detection and classification. (b) Seedling detection and
classification in local area

Table 4: Compare rice seed density evaluation in different altitudes and methods

No. Hill/m2 Clusters/m2 Single/m2 Manual counting/m2

1 45 30 15 44
2 38 19 19 39
3 42 25 17 41
4 41 20 21 43
5 47 25 22 45
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At an altitude of 6 m, the proposed UAV-based method and the traditional ground-based approach
for estimating hill density showed minimal differences, typically ranging from 2 to 4 hills per square meter.
Additionally, it is important to note that valuable information about rice germination can be obtained by
analyzing the average number of clusters and individual rice seedlings per square meter.

3.3 Discussions
To compare our research findings with those of several state-of-the-art studies on seedling detection and

counting. Zhang et al. [12] achieved 93% accuracy in segmenting rice plants using LW-SegNet and LW-Unet
with a multi-spectral camera mounted on a UAV at a 30-m flight altitude. Tseng et al. [32] and Yang et al. [37]
leveraged the UAV Open Dataset to detect transplanted rice plants at a 40-m altitude, achieving accuracies
between 99% and 100% using various deep learning methods. Bai et al. [38] focused on reproductive stages
and introduced RiceNet, a network that improved rice plant counting accuracy, achieving the lowest mean
absolute error (MAE) of 8.6 and root mean square error (RMSE) of 11.2 compared to other networks.

Previous studies have also employed deep learning networks to count rice plants in the field. However,
these studies primarily focused on accuracy evaluation and were conducted on transplanted rice plants,
which had already reached a considerable size. Moreover, the germination period of the rice plants in those
studies was relatively long. Our research focuses on the stage when rice plants are about to begin tillering,
at which point the germination rate in the field can be observed. We classified them in different groups,
including one rice seedling and a cluster of seedlings, and calculated the number of hill/m2. This is highly
significant in supporting farmers during the later stages of the growing season.

4 Conclusion
This study presents a methodology for assessing rice seed density at varying altitudes using a camera

mounted on an Unmanned Aerial Vehicle (UAV). To validate the approach, manual observations were
conducted on the same day in a paddy field during the tillering stage. The UAV operated autonomously at
a flight altitude of 6 m, guided by FieldAgent software, to capture aerial images. The evaluation of rice seed
density was carried out through the following steps:

• The center points of seedlings were detected using a landmark-based approach in combination with the
GoogleNet network.

• Rice seedlings were classified into three distinct categories: single rice seedlings, clusters of rice seedlings,
and undefined objects.

• Feature vectors were extracted at each detected center point, and seedlings were classified using the
U-Net network.

• At an altitude of 6 m, the proposed method achieved classification accuracies of 90.24% for single rice
seedlings and 90.72% for cluster rice seedlings. Compared to traditional methods, the difference in
estimation was minimal, with only a 1–2 hill/m2 variation.

This study primarily focused on detecting, counting, and evaluating rice seed density, without address-
ing the rice seed loss rate, which will be explored in future research. Additionally, rice seed density was
calculated offline after UAV image collection. Future studies may investigate the feasibility of real-time
processing by integrating an embedded PC with field robots, enabling more efficient data analysis and
decision-making in precision agriculture.
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