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ABSTRACT: Globally, skin cancer is a prevalent form of malignancy, and its early and accurate diagnosis is critical
for patient survival. Clinical evaluation of skin lesions is essential, but several challenges, such as long waiting times
and subjective interpretations, make this task difficult. The recent advancement of deep learning in healthcare has
shown much success in diagnosing and classifying skin cancer and has assisted dermatologists in clinics. Deep learning
improves the speed and precision of skin cancer diagnosis, leading to earlier prediction and treatment. In this work,
we proposed a novel deep architecture for skin cancer classification in innovative healthcare. The proposed framework
performed data augmentation at the first step to resolve the imbalance issue in the selected dataset. The proposed
architecture is based on two customized, innovative Convolutional neural network (CNN) models based on small
depth and filter sizes. In the first model, four residual blocks are added in a squeezed fashion with a small filter
size. In the second model, five residual blocks are added with smaller depth and more useful weight information of
the lesion region. To make models more useful, we selected the hyperparameters through Bayesian Optimization,
in which the learning rate is selected. After training the proposed models, deep features are extracted and fused
using a novel information entropy-controlled Euclidean Distance technique. The final features are passed on to the
classifiers, and classification results are obtained. Also, the proposed trained model is interpreted through LIME-based
localization on the HAM10000 dataset. The experimental process of the proposed architecture is performed on two
dermoscopic datasets, HAM10000 and ISIC2019. We obtained an improved accuracy of 90.8% and 99.3% on these
datasets, respectively. Also, the proposed architecture returned 91.6% for the cancer localization. In conclusion, the
proposed architecture accuracy is compared with several pre-trained and state-of-the-art (SOTA) techniques and shows
improved performance.
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1 Introduction
The skin is the most significant body part by surface area in the human body. It shields the inner organs

and is sensitive to external factors [1]. UV exposure is a critical external factor that adversely impacts the
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skin. Excessive exposure and lack of protection mechanisms lead to fatal skin diseases such as melanoma [2].
Every year, there is a significant rise in skin diseases. The largest organ is needed to enhance understanding of
skin diseases [3]. Skin cancer is the term for the unusual growth of new skin cells and is a fatal skin disease [4].
Skin cancer is generally categorized into benign and malignant forms, distinguishing whether the condition
is inactive or actively progressing. However, it has seven significant categorizations: Actinic keratosis (akiec),
Vascular lesions (vasc), Basal cell carcinoma (bcc), Melanocytic nevi (nv), Dermatofibroma (df), Melanoma
(mel), Benign keratosis-like lesions (bkl).

It is the most common malignancy in the United States. In the US, skin cancer claims the lives of
about two people every hour. In 2023, there is an estimated 4.4% rise in the number of melanoma deaths.
In the United States, an estimated 97,610 persons, among which 58,120 men and 39,490 women, will receive
a diagnosis of invasive skin cancer in 2023. In 2020, the diagnosed melanoma cases were 324,635, whereas
57,043 deaths were reported. Also, white people are 20 times more likely than people with dark skin to
develop melanoma. The diagnostic age is 65 on average. Compared to men, women receive more melanoma
diagnoses before they reach the age of 50, whereas men have a higher prevalence after the age of 50. Melanoma
predominantly manifests with age, yet its occurrence extends to younger individuals, encompassing those
under 30 [5]. Notably, it stands among the prevalent cancers identified in young adults, mainly among
women. In 2020, approximately 2400 instances of melanoma were projected to be detected in individuals
aged 15 to 29.

The incidence of melanoma witnessed a significant upward trend for several decades. However, in the
early 2000s, the annual diagnosis rates for individuals under 50 stabilized in women and exhibited a decline
of approximately 1% per year in men [4]. Although only making a small fraction, e.g., 1%, of all skin cancer
diagnoses in the United States, melanoma is a primary reason for deaths caused by skin cancer. On the
other hand, between 2011 and 2020, the annual rate of mortality from melanoma declined by around 3% for
individuals over 50% and 5% for persons under 50. Medical advancements have led to this progress.

Traditionally, many invasive and noninvasive techniques were utilized for skin cancer diagnosis.
These techniques include biopsy, sonography, fluorescence spectroscopy, and dermoscopy [6]. Among all
traditional clinical methods, the use of dermoscopy is comparatively high due to its noninvasive nature.
Dermoscopy is a digital device that involves using handheld devices to illuminate subsurface structures of the
skin [7]. These devices facilitate the optical penetration of light rays beyond the skin surface, reducing surface
reflection [8]. It has higher classifying power than the naked eye clinical analysis, which gives a maximum
of 60% accuracy [7], but still, the correctness depends on the dermatologist’s practice. The ABCD rule was
developed for dermoscopy to diagnose skin lesions in clinical trials [9]. The parameters of this rule include
asymmetry, border irregularity, color, and differential structures. These parameters graded the lesions in
benign or malignant [10]. With the use of computerized techniques, the diagnostics performance has been
improved for the experts and clinicians with limited experience in dermoscopy [11].

Significant contributions are made to automated skin lesion diagnosis to counter traditional approaches’
limitations [12]. The application of computational intelligence has remarkably increased the diagnostic
accuracy of skin lesions [13]—the endurance rate of skin cancer patients determined by multiple factors. One
of the prime factors in this regard is the premature detection of skin cancer. The involvement of Computer-
Aided Diagnostic (CAD) systems has significantly facilitated the timely detection of skin lesions [14]. The
gradual decline in the mortality rate of skin cancer and recent studies validate the impact of computer-aided
diagnostic systems [15].

CAD systems follow predefined steps to detect and classify lesions [16]. These steps generally follow
the sequence: preprocessing followed by separation of an object from the background, feature extraction,
feature selection, and finally, classification [15]. This sequence can be modified according to the methodology
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followed by CAD systems. The core step for automated diagnosis in these CAD systems is extracting features.
These features are defining parameters to distinguish between classes of skin lesions. Initially, CAD systems
were based on handcrafted image feature extraction [11]. These handcrafted features are inadequate to solve
the challenges of publicly available datasets, including imbalanced datasets, complicated images, interclass
similarity, and intra-class differences. Most recently, deep feature extraction has gained attention in intelligent
CAD systems. It has provided promising results in different domains and the field of automated medical
diagnosis [17,18].

With the emergence of intelligent techniques, automatic diagnosis is improving daily. However, along
with advancements in tools and techniques, new challenges keep surfacing in the medical field [16,19]. Big
and complicated datasets are becoming publicly available, posing new research challenges [20]. Particularly
for skin cancer, much of the research is based on the binary classification of lesions; however, skin cancer is
categorized into seven major classes. The datasets of skin lesions are highly imbalanced, along with complica-
tions like inter-class similarity and intra-class differences. Researchers have contributed to addressing these
problems, but improvements are required to develop a robust and efficient multiclass skin lesion diagnosis
system. With the emergence of deep neural networks, concerns like computational complexity and resource
consumption emerged. Therefore, there is a dire need for a framework that considers all these challenges
and provides an accurate, robust, computationally efficient solution. This research presents an automated
framework for efficiently classifying skin lesions into multiple classes. Significant contributions of this
work are:

- We proposed two deep learning architectures, QuadRes-Net and PentRes-Net, inspired by the ResNet
architecture. Both models have fewer parameters and are more efficient than the ResNet50 and
ResNet101 architectures.

- The proposed models’ hyperparameters have been initialized using Bayesian Optimization. Usually, they
are initialized using a hit-trail method.

- A novel technique, Information Entropy Controlled Distance, is proposed for the fusion of higher
entropy value features for improved accuracy and less computational time.

- GradCAM-based interpretability is performed on the original images to capture the critical prediction
information. A detailed ablation study was performed, and the proposed work was compared with some
recent methods.

The manuscript unfolds in the subsequent sequence. Initially, Section 2 provides a summary of related
work, encompassing an overview of existing techniques. Following that, in Section 3, the proposed method-
ology is delineated, encompassing the explanation of datasets, proposed deep learning models, and complete
framework. A description of the findings is covered in Section 4. Lastly, Section 5 concludes the manuscript.

2 Literature Review
Significant advancements have been made in automated medical diagnosis in the past decade [16].

Several computerized techniques have been introduced in the literature for the classification and localization
of skin lesions [21,22]. Skin lesion segmentation is pivotal in automated dermatological image analysis,
presenting substantial opportunities for enhancing diagnosis, treatment planning, and disease monitoring.
Despite the hurdles, progress in segmentation methodologies, notably those rooted in deep learning, shows
potential for achieving more precise and dependable lesion delineation in clinical settings. Skin lesion
segmentation involves identifying and isolating areas of interest (lesions) within medical images, such as
dermoscopic or clinical photographs. Its primary objective is to precisely differentiate the lesion area from
the surrounding healthy skin, enabling further analysis and diagnosis [23].
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Skin lesion classification entails grouping lesions into distinct categories determined by their visual
attributes, including color, shape, texture, and irregularity of borders. By analyzing these traits, classification
algorithms strive to discern between benign and malignant lesions, thereby assisting in precise diagnosis and
formulation of treatment strategies. Skin lesion classification is a crucial aspect of automated dermatological
image analysis, holding considerable promise for improving early detection, decision-making, and patient
care. Addressing data variability, class imbalance, and model interpretability challenges is paramount for
advancing and integrating classification algorithms effectively into clinical practice. Before deep learning
approaches, segmentation was based on basic classic image processing. These traditional segmentation
techniques can be broadly classified as follows: It segments images into numerous regions based on pixel
intensity, grouping pixels with similar grey values. In [24], the authors tackle the challenges of skin lesion
images by presenting a new contrast enhancement technique and segmenting the lesion area by a novel
OCF (optimized color feature)-based technique for lesion segmentation, utilizing the YCbCr color space
for feature extraction, optimized by a Genetic Algorithm (GA). A multilevel probability-based threshold
function is developed to categorize the optimized features into their respective colors, which are then
converted into the binary form using maximum probability-based thresholding. An existing saliency-based
method is also applied, and its information is integrated to refine the lesion.

Authors in [25] presented a two-step system consisting of a preprocessing algorithm and a lesion
segmentation network. The hairline removal algorithm uses morphological operators and is designed to
eliminate noise artifacts. The processed images are then input into a convolutional neural network (CNN)
for lesion segmentation. This novel CNN framework is built from scratch, following an encoder-decoder
architecture. The layers are uniquely sequenced to perform both downsampling and upsampling, resulting
in a high-resolution segmentation map. In [26], authors extracted lesion area by using the U-Net model
that subsequently enhanced the classification accuracy. To address the segmentation challenges, the authors
in [27] aimed to implement a novel Sailfish-based Gradient Boosting Framework (SbGBF) for accurately
recognizing and segmenting the SL region. The boosting mechanism, rich with noise removal features,
optimizes the segmentation process.

The boosting parameters are activated to eliminate noise variables in the trained SL data. Subsequently,
the sailfish fitness function is applied to trace region features in the preprocessed SL images, leading to
the final segmentation. In [28], authors gave a collaborative learning deep convolutional neural networks
(CL-DCNN) model based on the teacher-student learning method for dermatological segmentation and
classification. The self-training method was introduced to generate high-quality pseudo-labels. The seg-
mentation network is selectively retrained through a classification network that screens the pseudo-labels.
Specifically, high-quality pseudo-labels were obtained for the segmentation network using a reliability
measure method.

Class activation maps were also employed to enhance the segmentation network’s localization capability.
Furthermore, the classification network’s recognition ability was improved by providing lesion contour
information through lesion segmentation masks. In [2], the authors suggested an end-to-end deep learning
framework based on the segmentation method. The author presented a novel S-MobileNet and used a mish
activation instead of ReLU. The framework was implemented in HAM10000 and ISIC datasets, and they
achieved 98.15% accuracy. The drawback of this work was the authors did not address the data unbalancing
problem. Ref. [29] presented an inherent learning using the deep learning models for the classification of
skin cancer. The authors integrate an explainable AI algorithm with the proposed model. They evaluated
the framework using the HAM10000 dataset, gained the highest accuracy of 92.89%, and visualized the
learned feature. In [30], the authors presented a novel generative AI model for preventing the data imbalance
problem in skin cancer. The authors presented an ST-GAN network that generated skin cancer images
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and employed the proposed classification model. They used the HAM10000 dataset for the evaluation and
improved accuracy by 16% from the SOTA techniques.

This work achieved a classification accuracy of 82.1%. In [31], a unified CAD model that involves
preprocessing, a novel architecture for segmentation and transfer learning, is presented, followed by feature
extraction, fusion, and selection. Finally, the features are classified using SVM. For the ISIC2019 dataset,
this approach achieved 93.47% accuracy. In [32], authors investigated the performance of 17 different CNNs
for skin lesion classification and established that DenseNet201 with Cubic SVM/ Fine KNN gained a top
accuracy of 92.34%. In [33], authors took advantage of and combined transformers and CNNs to build an
efficient skin lesion classification system. This system was assessed using the ISIC2019 dataset and achieved
an accuracy of 97.2%. In [34], a new segmentation framework is given, and classification is performed
using extracted features from pre-trained DenseNet201. It achieved the accuracy of 91.7%. In [35], authors
presented a novel contrast enhancement technique and then used modified DarkNet-53 and DenseNet-
201 for transfer learning. Extracted features are combined and then optimized using the modified marine
predator optimizer. The ISIC2019 dataset was utilized for evaluation, and an accuracy of 98.8% was attained.
In [36], a new model for segmentation was presented, after which the segmented images’ local and global
characteristics were extracted and classified using EfficientNetB1. This work achieved an accuracy of 91.73%
for the ISIC2019 dataset.

In [37], authors presented a system for skin lesion classification focusing on transfer learning and feature
optimization. In [38], authors presented a semantic segmentation model, then some essential features were
nominated by the Binary Dragonfly Algorithm (BDA), and finally, grouping was done using SqeezNet. This
work achieved an accuracy of 98.77%. In [39], ShuffleNet is modified using SqeezNet excitation blocks, and a
lightweight CNN is presented. The accuracy achieved by this work is 98.1% for the ISIC2019 dataset. In [40],
the authors presented an AI-based method for skin lesion classification. A residual deep convolution neural
network was utilized for this work, and an accuracy of 94.65% was achieved for the ISIC2019 dataset.

In [41], authors used deep learning to present AI-driven skin cancer classification. They employed
pertained vision transformers and conducted a comparative analysis among the deep learning models. They
utilized the ISIC2019 dataset for the experimental process. They achieved better results from the state-
of-the-art methods. The primary limitation of this work was the fixed hyperparameters that affect the
generalization of the proposed framework. In [42], authors suggested a lightweight deep-learning model for
the classification of skin cancer disease. They performed experiments on publicly available datasets with two
classes, achieving 92% accuracy. The limitation of the proposed work was that the number of training samples
was small for the efficient learning of the proposed model. In [43], the authors suggested an optimized CNN
for dermatological lesion classification. They created a CNN from scratch and a novel data augmentation
method. The authors selected the HAM1000 dataset for the experimental process and gained 97.78% accuracy.
The limitation of this work was the extensive utilization of the pooling layer that removes the valuable features
from the feature maps.

Challenges: Despite all these research advancements, many difficulties in skin lesion segmentation and
accurate classification require the research community’s attention for effective and efficient solutions. Most
of these past research studies for skin lesion classification have focused on segmentation and then used
transfer learning for classification tasks. Most of the previous works have not focused on the design of new
models from scratch. In addition, hyperparameter optimization was rarely focused on. The preprocessing
and segmentation steps are eluded in the proposed work, and two novel deep-learning architectures are
proposed to efficiently classify skin lesions into several classes.
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3 Proposed Methodology
The detailed theoretical and mathematical justification for the suggested methodology is provided

in this section. Fig. 1 depicts the proposed method for skin lesion classification and segmentation. Data
augmentation was performed using the proposed method, and two models were trained. The proposed
CNN models in this work are QuadRes-Net and PentRes-Net. Hyperparameters of both models have been
initialized using the Bayesian Optimization algorithm. After that, we trained both models and extracted
testing features. The testing features are fused using a serial approach, reducing the amount of irrelevant
information using information entropy. The final resultant vector is further passed to classifiers for the final
classification. An explainable AI technique named LIME is also applied to analyze the interpretability of a
proposed model. Also, the LIME output is concatenated with the mean-saliency technique for the lesion
segmentation. The details of each step in the proposed method are given below.

Figure 1: Proposed framework for multiclass skin lesion classification

3.1 Dataset and Augmentation
This study employs two well-known datasets, HAM10000 (Human Against Machine) [44] and

ISIC2019 [45], to assess the proposed framework. The HAM10000 dataset included 10,015 dermoscopic
images. The nature of the images of this dataset is RGB. The number of images in each class includes 327
(AKIEC), 1099 (BKL), 514 (BKL), 514 (BCC), 115 (DF), 1113 (MEL), 6705 (NV), 142 (VASC), respectively.

The 25,331 images in the ISIC2019 dataset are divided into eight classes. The number of images in the
melanocytic nevi class is 12,875; for the melanoma class, it is 4522; for the BKL class, it is 2624 images; for
the BCC class, it contains 3323 images; the SCC class includes 253 images; the VL class has 628 images; the
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DF class has 239 images; and AK includes 867 images, respectively. The sample images of each lesion type in
these datasets are shown in Fig. 1 (second half).

The class distributions of both datasets indicate an imbalanced problem. To resolve this problem, a
simple flip-and-rotate approach to data augmentation is adopted. The resultant balanced datasets contain
both the original and augmented images. Table 1 displays the class distributions of each dataset before and
after augmentation.

Table 1: Class distributions of HAM10000 and ISIC2019 before and after augmentation

Class/Dataset HAM10000 ISIC2019

Raw data Augmented Raw data Augmented
AKIEC 327 5242 867 3469

BCC 514 5225 3323 3232
BKL 1099 5852 2624 3200
DF 115 3680 239 3232

MEL 1113 5423 4522 3072
NV 6705 6705 12,875 2112

VASC 142 4544 628 2240
SCC – – 253 3200

3.2 Proposed QuadRes-Net Model
The proposed model, named QuadRes-Net, is visually illustrated in Fig. 2. The motivation behind

implementing the quadres model. The quad structure allows the network to highlight malignant regions’
global patterns, shapes, and irregularities and identify the irregular borders and color distribution essential
to skin cancer. The model has an input layer that accepts the input image size of 299 × 299 × 3. It is followed
by a convolutional layer named conv comprising 32 filters of dimension 7 × 7× 3 with a step value of 2.
Applying the ReLU activation layer resulted in obtaining a feature map of size 150 × 150 × 32. The output of
the first ReLU activation is forwarded to a first residual block. The first block contains conv_1 comprising 64
kernels of size 3 × 3 × 32 with a step size of 1, a batch norm, relu_1, and conv_2 with 32 filters of dimension
7 × 7 × 64 with a step of 1. The outcome of this block of size 150 × 150 × 32 is added to the identity mapping,
and the results are convolved with the following conv_3 weight layer comprising 64 filters of size 3 × 3 × 32
with a step of 2 Max pooling layer of size 3 × 3 with the stride of 1, is placed next playing its vital role in the
reduction of spatial dimensions.

An output of size 75 × 75 × 64 enters the second residual block from the max pooling layer. The second
block encompasses conv_5, which has 128 filters of dimension 3 × 3 × 64 with a step size of 1, batchnorm_1,
relu_2, and conv_4, which have 64 kernels of dimension 3 × 3 × 128. Conv_6, which has 128 filters of size
7 × 7 × 64, follows the shortcut connection and is continued by relu_3.

The third block first convolves the input of size 38 × 38 × 256 with conv_8, which has 256 filters of size
3 × 3 × 128 and step size 1. The convolution is followed by batchnorm_2, relu_4, and conv_7, which has 128
filters of size 3 × 3 × 256 with stride 1. A feature map of size 38 × 38 × 128 exits the block and, following the
skip connection, passes through a convolutional layer of 256 filters of size 7 × 7 × 128, stride two, and relu_6.
Proceeding this, an input of 19 × 19 × 256 enters the final residual block.
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Figure 2: Proposed QuadRes-Net model for skin lesion classification

The final block comprises the first weight layer with 256 filters of dimension 3 × 3 × 256, stride 1,
batchnorm_3, relu_5, and a second weight layer with 256 filters of 3 × 3 × 256 size and stride 1. This block
generates feature map of size 19 × 19 × 256 which passes through conv_12 having 512 filters of 3 × 3 × 256
size, stride 2, relu_7, maxpool_1 of size 5 × 5 with stride 1, conv_13 having 1024 filters of size 3 × 3 × 512 with
step size 1, relu_8, conv_14 having 1024 filters of size 3 × 3 × 1024 with stride of 2 and relu_9. Finally, the
feature map of size 5 × 5 × 1024 has proceeded to the global average pooling layer that flattens this to provide
a one-dimensional feature vector of size 1 × 1 × 1024. For the final classification, the output is fed into a dense
NewFc layer, followed by a softmax layer.

3.3 Proposed PentRes-Net Model
The second proposed deep learning model, PentRes-Net, consists of a 64-layered CNN architecture.

The proposed architecture is shown in Fig. 3. Its parts are convolutional, max pooling, batch normalization,
flattening, dense, ReLU activation, and input and output layers. The proposed model accepts the input of size
227 × 227 × 3. The aim behind employing the PentRes network is to learn fine-grained details and contextual
features. The skin lesion has different textures at different resolutions; the PentRes captures the coarse and
wide lesion features and can learn the lesion and the context around the skin. It helps in considering whether
a spot is an isolated feature or part of an extensive pattern.

The accepted input is then convolved by the conv layer with 32 filters of dimension 3 × 3 × 3 with a
step size 2. After convolution, the output of size 114 × 114 × 32 enters the first residual block. The first residual
block contains two convolutional layers named conv_1 and conv_2, having 64 filters of 3 × 3 × 32 size and
128 filters of 3 × 3 × 64 size with a step size of 1, respectively. Following these two convolutional layers are the
ReLu layer and batch norm layers are added. Finally, a set of convolutional layers, named conv_3, having 32
filters of dimension 3 × 3 × 128 with step size 1, relu_1, and batchnorm_1 concludes the first residual block
and generates the output of size 114 × 114 × 32. The output of the first block is added to the identity mapping
and is down-sampled by the following maxpool layer of size 5 × 5, then convolved by the conv_4 having 64
filters of x 3 × 3 × 32 size and step size of 2, and then relu_2 is applied on convolved output.
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Figure 3: Proposed PentRes-Net model for skin lesion classification

After applying nonlinear activation, an output of size 57 × 57 × 64 enters the second residual block
comprising conv_ 5 having 64 filters of dimension 3 × 3 × 64, conv_6 having 128 kernels of dimensions
3 × 3 × 64 with stride 1, relu_3, batchnorm_2 followed by conv_7 having 64 kernels of size 3 × 3 × 128, relu_4
and batchnorm_3. The second block produces an output of size 57 × 57 × 64 which is down-sampled by the
maxpool_1 of size 3 × 3, then convolved by conv_8 having 128 filters of dimension 3 × 3 × 64 with step size
of 2 followed by relu_5.

The input of size 29 × 29 × 128 enters the third residual block and is processed by conv_9 and conv_10,
followed by relu_6 activation and batchnorm_4. Further, it is processed by conv_11, relu_7, and batchnorm_5,
and the output of size 29 × 29 × 128 is then added to identity mapping and is down-sampled by maxpool_2
to size 15 × 15 × 128 and is then convolved by conv_12 having 256 filters of size 3 × 3 × 128 which are followed
by relu_8. This generates the output of size 15 × 15 × 256, which is further processed in block four by
two convolutional layers, conv_13 and conv_14, followed by relu_9, batchnorm_6, conv_15, relu_10, and
batchnorm_7. Proceeding this block is a shortcut connection followed by maxpool_3 of size 5 × 5, conv_16,
and relu_11. After the processing from these layers, an input of size 15 × 15 × 512 enters the final residual
block with the same configuration as previous blocks. After processing through the final block, the output is
down-sampled by maxpool_4 of size 3 × 3 with stride two and generates the feature map of size 8 × 8 × 512.
It is further convolved by conv_20 having 1024 filters of size 3 × 3 × 512 with stride one followed by relu_14.
Maxpool_5 of size 3 × 3 with a stride of 2 further down samples the output to 4 × 4 × 1024 which is then
convolved by conv_21 having 2048 filters of size 3 × 3 × 1024, after this relu_15 is placed. Feature map of size
4 × 4 × 2048 is fed to gapool, a global average pooling layer to flatten it to 1 × 1 × 2048 feature vector. It is
followed by a dense, after which a softmax activation is employed to allocate likelihoods to different classes.

3.4 Training and Features Extraction
Fig. 4 illustrates the training process of the proposed deep learning model on augmented skin lesion

datasets. All parameters were trained for both models, such as 19.4 M (million) for QuadRes-Net and 28.2 M
for PentRes-Net. The balanced HAM10000 and ISIC 2019 datasets are employed to train the models. The
Global Average Pooling (GAP) layer is chosen and activated for the QuadRes-Net model. As an activation
function, the entropy loss function is employed. Deep features are extracted on this layer, and a feature vector
of dimension Nx1024 is obtained.

Similarly, in the model PentRes-Net, the Global Average pooling (GAP) layer is selected, and feature
extraction is activated. The entropy loss function was employed as an activation function to obtain a feature
vector of dimension Nx2048.
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Figure 4: Proposed deep learning model learning using training data for skin lesion classification task

3.5 Proposed Feature Fusion
The process of merging several feature vectors into one feature vector is termed feature fusion. In

this work, we aim to fuse the features of the proposed QuadRes-Net and PentRes-Net into a single feature
vector for better accuracy. However, the simple fusion process increased the computational time and added
redundant features, which increased the uncertainty of the extracted features. Therefore, we proposed
a Serial controlled Information Entropy fusion technique that improved the accuracy and reduced the
computational time.

Given two extracted feature vectors known as QuadRes-Net and PentRes-Net, denoted by ΔF1 and ΔF2
of dimensional N × 1024 and N × 2048, respectively. Suppose Δ denotes the serial fusion-based obtained
vector Fu of dimension N × 3072. Mathematically, this process is defined as follows:

ΔF1 = ACT (Model1)N×1024 (1)
ΔF2 = ACT (Model2)N×2048 (2)

ΔFu = (
ΔF1
ΔF2

)
N×3072

(3)

The obtained fused vector of dimension N × 3072 contains several redundant and uncertain infor-
mation observed during the initial classification; therefore, we proposed a new technique that improved
the fusion process named information entropy controlled minimum distance. To measure the uncertain
information in the fused vector, the following probability distribution function has been employed [46]:

U = −∑i pi log pi (4)

where pi denotes the occurrence probability of one sample, and the logarithmic gain function is defined by
log pi . The variable U denotes the information entropy of the entire feature vector. The smaller the entropy
value, the more certain the information is opted. After that, the Euclidean distance has been computed among
each sample as follows:

D⃗i j = ∥new (xi) − new (x j)∥
2 (5)
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= K̃ (xi .xi) + K̃ (x j .x j) − 2K̃ (xi .x j) (6)

where xi and x j are two samples in a testing set and D⃗i j denotes the ED among i , j. The new feature space
new (xi) is mapped, and the kernel K̃ should be considered positive definite. Based on the distance D⃗i j, the
uncertain is computed as follows:

Ũi j =
D⃗i j

∑k=1, . . .n D⃗i k
(7)

Finally, the entropy value is computed for the final fused feature vector. The max entropy value features
are selected in this work for the final fused feature vector—the dimension of the fused vector for this work
is N × 1752. The final fused feature vector is passed to several machine-learning classifiers for the final
classification results.

4 Results and Analysis
The findings of the experiments that are conducted to assess the proposed framework are elaborated

in this section. The framework is tested using two publicly accessible datasets, HAM10000 and ISIC2019.
The training and testing results have been determined through an equal distribution strategy of 50:50. The
hyperparameters of this work are stochastic gradient descent, epoch’s value of 50, momentum of 0.706,
learning rate of 0.0010, and mini-batch size of 64. These hyperparameters are initialized using a Bayesian
optimization (BO) technique. 5-fold cross-validation is employed to prevent overfitting. For the classification
results, several classifiers have been employed, including Linear SVM, Fine KNN, Medium Quadratic SVM,
Cosine KNN, Gaussian SVM, Cubic KNN, Coarse Gaussian SVM, and Weighted KNN. The 10-fold cross-
validation approach is implemented for testing results. The performance of each classifier is computed
based on the following measures: accuracy, sensitivity, precision, F1-Score, and classification time. The entire
framework is simulated using MATLAB2023b on a PC with 128 GB of RAM and 12 GB graphics card
RTX3060.

4.1 Qualitative Analysis
Multiple experiments were conducted to test the proposed framework on both selected datasets.

Initially, the results are computed for each model separately, such as QuadRes-Net and PentRes-Net. After
that, the fusion results are computed and compared to each single step. Further, a detailed ablation study was
also performed to validate the proposed framework performance.

4.2 Results of HAM10000 Dataset
Classification outcomes for the model QuadRes-Net using the HAM10000 dataset are presented

in Table 2. Results of different classifiers used in the experiment are presented. Fine KNN has accomplished
the maximum accuracy of 84.2% and attained the sensitivity, precision, and F1-Score of 85.82%, 85.15%, and
85.49%, respectively. The rest of the classifiers have achieved an accuracy of 78.3%, 82.6%, 84.1%, 78.3%,
76.6%, 76.9%, 71.6%, 77.1%, 74.9%, and 82.7%, respectively. Cubic SVM has achieved the second-highest
accuracy of 84.1%, but the classification time is much higher than Fine KNN’s. Overall, the computational
time of the classification process is noted for each classifier and given in this table.

Table 2 (second half) summarizes the classification results of the model PentRes-Net for the HAM10000
dataset. Among all the ten classifiers, the Cubic SVM achieved the maximum accuracy of 83.9% and
the maximum sensitivity, precision, and F1-Score of 85.11%, 84.6%, and 84.8%, respectively. Weighted
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KNN of 83.2% achieved second-best accuracy. The classification accuracy and computation times for
different classifiers are comparable with the results of the proposed model QuadRes-Net. There is neither
a considerable spike in the accuracies nor an observable dip in the computation time of SVM classifiers;
however, the computation time for Cubic SVM and other classifiers is low for model PentRes-Net compared
to model QuadRes-Net.

Table 2: Results of the HAM10000 dataset using the proposed QuadRes-Net and PenRes-Net deep architectures. Bold
entries means most significant values

Results of the HAM10000 dataset using the proposed QuadRes-Net deep architecture

Classifier Accuracy (%) Sensitivity (%) Precision (%) F1-Score (%) Time (sec)
Linear SVM 78.3 79.57 79.61 79.57 190.3

Quadratic SVM 82.6 83.95 83.6 83.79 140.9
Cubic SVM 84.1 85.5 85.04 85.28 136.2

Fine Gaussian SVM 78.3 79.24 81.85 80.52 185.2
Medium Gaussian SVM 76.6 77.68 78.08 77.88 176.8
Coarse Gaussian SVM 70.2 70.64 74.25 72.433 173.2

Fine KNN 84.2 85.82 85.15 85.49 194.0
Medium KNN 76.9 78.57 78.05 78.31 274.3
Coarse KNN 71.6 72.57 74.12 73.34 177.6
Cosine KNN 77.1 78.74 78.14 78.44 166.8
Cubic KNN 74.9 76.44 76.22 76.33 199.2

Weighted KNN 82.7 84.51 83.47 83.98 166.0
Results of HAM10000 using the proposed deep learning Model PentRes-Net

Linear SVM 79.5 80.77 80.28 80.56 170.2
Quadratic SVM 82.3 83.4 83.0 83.2 131.4

Cubic SVM 83.9 85.11 84.6 84.8 122.0
Fine Gaussian SVM 80.44 81.58 81.257 81.42 171.3

Medium Gaussian SVM 77.4 78.5 78.3 78.4 142.6
Coarse Gaussian SVM 73.7 74.4 76.22 75.32 140.8

Fine KNN 82.7 84.2 83.6 83.9 144.6
Medium KNN 78.4 80.05 79.2 79.6 151.4
Coarse KNN 75.9 77.31 76.7 77.0 157.1
Cosine KNN 78.6 80.22 79.35 79.7 175.7
Cubic KNN 78.4 79.98 79.22 78.81 147.1

Weighted KNN 83.2 84.7 83.8 84.2 152.3

Table 3 presents the classification results of the proposed fusion technique. The proposed fusion was
performed on feature vectors from QuadRes-Net and PentRes-Net deep neural networks on the HAM10000
dataset. The fusion step has remarkably increased the classification accuracy, as shown in this table. The
classification time is also significantly reduced compared to experiments 1 and 2 (QuadRes-Net and PentRes-
Net). Quadratic SVM has gained the maximum accuracy of 90.7%, and the sensitivity, precision, and F1-Score
values are 91.38%, 91.27%, and 91.32%, respectively. The rest of the classifiers also obtained improved accuracy
of 90.0%, 90.7%, 80.4%, 88.5%, 84.8%, 87.4%, 85.7%, 82.8%, 85.7%, 84.3%, and 87.4%, respectively. The
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confusion matrix of Quadratic SVM is illustrated in Fig. 5. This figure shows that the BKL and MEL classes
have higher false positive rates, whereas the others show better prediction performance.

Table 3: Results of the proposed features fusion on the HAM10000 dataset. Bold entries means most significant values

Classifier Accuracy (%) Sensitivity (%) Precision (%) F1-Score (%) Time (sec)
Linear SVM 90.0 90.75 90.64 90.42 90.1

Quadratic SVM 90.8 91.38 91.27 91.32 94.6
Cubic SVM 90.7 91.44 91.28 91.35 85.2

Fine Gaussian SVM 80.4 80.44 85.44 82.86 110.9
Medium Gaussian SVM 88.5 89.21 89.17 89.19 117.3
Coarse Gaussian SVM 84.8 85.27 86.18 85.72 121.3

Fine KNN 87.4 88.54 88.11 88.32 112.4
Medium KNN 85.7 86.87 86.42 86.65 111.8
Coarse KNN 82.8 83.88 83.81 83.84 125.8
Cosine KNN 85.7 86.91 86.42 86.67 121.6
Cubic KNN 84.3 85.51 85.15 85.33 131.2

Weighted KNN 87.4 88.48 87.98 88.22 120.8

Figure 5: Confusion Matrix for Quadratic SVM for proposed methodology using HAM10000 dataset

4.3 Results for ISIC2019 Dataset
For the ISIC2019 dataset, classification experiments were conducted using the proposed QuadRes-Net

and PentRes-Net models. Table 4 presents the classification results of model QuadRes-Net for the ISIC2019
dataset. The Fine KNN topped accuracy with 98.5% among the ten classifiers. Further, the sensitivity achieved
was 98.45, the precision value was 98.525, and the F1-Score of 98.48%, respectively. A weighted KNN of 98.0%
achieved the second-best accuracy. The classification accuracy and computation times for different classifiers
are given in Table 5. The computational time of each classifier is noted for this experiment, and cubic SVM
shows less time than the other classifiers.
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Table 4: Proposed classification results of ISIC2019 dataset using proposed deep learning model named QuadRes-Net
and PentRes-Net. Bold entriesmeans most significant values

Results of ISIC2019 dataset using proposed deep learning model named QuadRes-Net

Classifier Accuracy (%) Sensitivity (%) Precision (%) F1-Score (%) Time (sec)
Linear SVM 94.3 94.212 94.51 94.363 230.4

Quadratic SVM 95.9 95.83 96.1 95.964 239.8
Cubic SVM 96.6 96.57 96.75 96.659 225.7

Fine Gaussian SVM 94.2 94.02 95.087 94.55 330.9
Medium Gaussian SVM 94.0 93.97 94.18 94.08 392.2
Coarse Gaussian SVM 88.3 88.06 89.075 88.56 340.2

Fine KNN 98.5 98.45 98.525 98.48 350.9
Medium KNN 93.1 92.81 93.35 93.08 327.0
Coarse KNN 84.9 84.87 85.65 85.26 333.7
Cosine KNN 93.4 93.25 93.67 93.46 354.8
Cubic KNN 92.0 91.787 92.225 92.0 390.0

Weighted KNN 98.0 97.88 98.16 98.02 355.4
Results of ISIC2019 using the proposed deep learning model named PentRes-Net

Linear SVM 95.0 94.97 95.03 95.00 302.5
Quadratic SVM 96.2 96.10 96.23 96.20 360.2

Cubic SVM 97.1 97.07 97.13 97.10 338.8
Fine Gaussian SVM 95.6 95.30 96.23 95.79 340.2

Medium Gaussian SVM 94.8 94.75 94.85 94.79 357.3
Coarse Gaussian SVM 92.7 92.46 92.92 92.69 339

Fine KNN 98.51 98.47 98.57 98.52 393.2
Medium KNN 94.8 94.66 95.03 94.84 301.5
Coarse KNN 91.9 91.80 91.90 91.9 300.4
Cosine KNN 94.9 94.80 95.00 94.8 397.6
Cubic KNN 94.4 94.31 94.53 94.42 389.2

Weighted KNN 98.41 98.25 98.48 98.36 390.7

Table 5: Results of the proposed features fusion technique using ISIC2019 dataset

Classifier Accuracy (%) Sensitivity (%) Precision (%) F1-Score (%) Time (sec)
Linear SVM 98.0 97.93 98.0 97.93 109.0

Quadratic SVM 98.6 98.53 98.58 98.55 115.0
Cubic SVM 98.9 98.9 98.9 98.90 130.5

Fine Gaussian SVM 90.3 89.16 93.73 91.36 179.5
Medium Gaussian SVM 98.0 97.92 98.06 97.99 178.1
Coarse Gaussian SVM 96.5 96.28 96.61 96.44 177.2

Fine KNN 99.3 99.2 99.28 99.22 160.3
Medium KNN 97.6 96.61 97.7 97.15 169.6
Coarse KNN 94.7 94.47 94.78 94.62 171.3

(Continued)
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Table 5 (continued)

Classifier Accuracy (%) Sensitivity (%) Precision (%) F1-Score (%) Time (sec)
Cosine KNN 97.6 97.36 97.66 97.50 190.3
Cubic KNN 97.0 96.85 97.125 96.98 182.4

Weighted KNN 98.8 98.67 98.82 98.74 178.7

Table 4 summarizes the classification results of the model PentRes-Net for the ISIC2019 dataset. Fine
KNN outperformed the rest of the classifiers for this experiment with 98.51% accuracy. Weighted KNN gave
the second-best accuracy with 98.41%. The highest sensitivity, precision, and F1-Score were also achieved
by Fine KNN with the values of 98.47%, 98.57%, and 98.52%, respectively. Furthermore, it is evident that
the suggested PentRes-Net model required a little longer computing time than the QuadRes-Net model;
however, an improvement has occurred in the accuracy, precision, sensitivity, and F1-Score.

In the last stage, extracted features are fused using a novel fusion technique as presented in the pro-
posed Section 3. Table 5 presents the overview of classification results achieved by utilizing the fused feature
vector for the ISIC2019 dataset. The fusion step has impacted the classification results and computation time
positively. Fine KNN outperformed the other classifiers by gaining 99.3% accuracy and a sensitivity value of
99.2%, a precision of 99.28%, and an F1-Score achieved of 99.22%, respectively. Fig. 6 shows the Fine KNN
classifier’s confusion matrix that can be utilized to confirm the computed performance measures. This figure
shows that each class’s correct prediction rate is above 98%, which is a strength of the proposed fusion process.

Figure 6: Confusion matrix for Fine KNN for proposed methodology using ISIC2019 dataset

4.4 Discussion
A detailed discussion of the proposed framework is presented in this subsection. Fig. 1 shows the

importance of deep learning techniques for skin lesion classification and diagnosis. The proposed deep
learning fusion framework is illustrated in Fig. 1, which includes several middle steps, such as designing new
models and feature fusion. The dataset imbalance issue is resolved in the initial step and is later utilized
for training deep learning models. Two novel deep learning models, QuadRes-Net and PentRes-Net, are
proposed in this work (models can be seen in Figs. 3 and 4). The total learnable parameters of the suggested
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models are comparable with the state-of-the-art models, as shown in Fig. 7 (upper part). This figure shows
that the parameters of the proposed models are less than those of other pre-trained models except for four
networks. The proposed PentRes-Net architecture contains fewer parameters than all the other networks.

Figure 7: Comparison among several pre-trained and proposed deep architectures in the form of parameters and
accuracy

Tables 2 and 3 present the results of the HAM10000 dataset, whereas Tables 4 and 5 present the
classification results of the ISIC2019 dataset, respectively. In these tables, it is noted that the classification
accuracy has been improved after employing the proposed fusion technique. The accuracy almost jumped
up to 5% after the fusion technique. Confusion matrices are illustrated in Figs. 5 and 6, which can be used to
verify the highest classifier’s computed performance measures.

Fig. 7 (second-half) presents a comparison among proposed models and pre-trained neural networks
accuracy. In this figure, the accuracy performance of proposed QuadRes-Net, PentRes-Net, and fusion
process has been significantly improved. The computational time of each classifier is also noted during the
classification process and the fusion process reduced the overall testing time (see Tables 2–5).
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Ablation Study: Initially, the publicly accessible datasets are used to train the proposed models, and
feature vectors are extracted from them. The classification results of individual features and the computation
time are calculated. The proposed framework has performed well for ISIC2019 regarding accuracy and
computation time using individual features from models QuadRes-Net and PentRes-Net. However, the clas-
sification accuracy for HAM10000 had room for improvement. After that, the individual feature vectors are
fused using simple serial-based fusion to evaluate the impact of merged features on the proposed framework.

Finally, the fused feature vector is used to evaluate the framework. The fusion step has remarkably
enhanced the classification accuracy of HAM10000 and improved the classification results of the ISIC2019
dataset. It is also observed that generally, the fusion step impacts accuracy positively but adds to the
computation time; however, in the proposed framework, it is evident from the results that the fusion
step decreased the computation time for the experiment using HAM10000 and ISIC2019 datasets. The
classification and segmentation performance can be further enhanced by adopting color constancy, as
multiple research works have shown improvement in segmentation and classification accuracy by using color
constancy. Further, a GradCAM visualization is performed on the proposed models, and the results are
illustrated in Fig. 8.

Figure 8: GradCAM-based visualization of the proposed PentRes-Net Model
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Another ablation study is conducted based on the before-and-after data augmentation process, as shown
in Table 6. From this table, it is observed that the proposed model significantly improved the accuracy by
~5% after the augmentation step and is more generalized after the augmentation step.

Table 6: Proposed model analysis before and after the augmentation process

HAM10000

Models Before augmentation After augmentation
QuadRes-Net 84.1 89.1
PentRes-Net 88.2 93.2

ISIC 2019

QuadRes-Net 90.2 95.2
PentRes-Net 94.5 99.5

Lastly, the proposed framework’s performance is compared with that of state-of-the-art tech-
niques. Table 7 gives a performance comparison of the proposed work using the HAM10000 dataset
and the ISIC2019 dataset. It is evident that the proposed framework has outpaced the state-of-the-art in
classification performance.

Table 7: Comparison of the proposed accuracy with the state-of-the-art techniques. Bold entries means most significant
values

Comparison of the proposed methodology with the state-of-the-art HAM10000 dataset

Sr.# Research work Year Accuracy (%)
1 Hoang et al. [47] 2022 84.80
2 Popescu et al. [48] 2022 86.71
3 Neeshma et al. [49] 2022 82.1
4 Shobha et al. [50] 2022 86.54
5 Jaeyho et al. [51] (Xception Model) 2024 89.76
6 Proposed Model 90.8

Comparison of the proposed methodology with the state-of-the-art for ISIC2019 dataset
1 Maqsood et al. [31] 2023 93.47
2 Ayas et al. [33] 2022 97.2
3 Zafar et al. [34] 2023 91.7
4 Bibi et al. [35] 2023 98.80
5 Kadirappa et al. [36] 2023 91.73
6 Radhika et al. [38] 2023 98.77
7 Baig et al. [39] 2023 98.1
8 Alsahafi et al. [40] 2023 94.65
9 Khan et al. [52] 2024 95.70
10 Proposed Model 99.3
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Lesion Localization: Based on the classification performance, the proposed PentRes-Net architecture
is modified for the lesion segmentation task using the HAM10000 dataset. The testing was done on 500
dermoscopic images and obtained an accuracy of 91.6%, a sensitivity rate of 90.4%, and a precision rate of
91.0%. Furthermore, a few sample images are illustrated in Fig. 9. Fig. 9a shows the original testing images, (b)
illustrates the segmented binary images after PentRes-Net and OTSU thresholding, (c) denotes the refined
image, (d) denotes the fused image, (e) represents the mapped on the original image, (f) represent the ground
truth image, and (g) shows the final localized image, respectively.

Figure 9: Lesion localization using QuadRes-Net with LIME interpretable technique on HAM10000 dataset. (a)–(g)
Original images, proposed segmented without postprocessing, proposed with post-processing, proposed with final
refinement, proposed mapped on the original image, ground truth image, and compare proposed segmented and
ground truth

5 Conclusion
This work proposed a novel skin lesion classification and localization framework using dermoscopic

images. The proposed framework begins with dataset augmentation and ends with lesion localization. In
the augmentation process, the imbalanced issue was resolved, increasing the training accuracy. Before
the augmentation process, the training accuracy of both proposed models was 84.1% and 88.2% for the
HAM10000 dataset (QuadRes-Net and PentRes-Net) and 90.2% and 94.5% for the ISIC2019 dataset, respec-
tively. After the augmentation process, the accuracy improved by up to 5% for both datasets. The models
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were trained using the Bayesian optimization approach instead of the selection of literature knowledge-
based hyperparameters. The trained model’s features are extracted from the testing data and fused using a
novel technique that improves the accuracy and reduces the computational time. The proposed framework
obtained final classification accuracy of 90.8% and 99.3% for HAM10000 and ISIC2019 datasets, respectively.
The localization accuracy is also computed for the HAM10000 dataset, and 91.6% accuracy was obtained. A
comparison was also conducted with SOTA, showing that the proposed framework has improved accuracy
and precision rates.

Despite the numerous advantages, the most notable limitation of these networks lies in their require-
ment for exceedingly deep architectures, leading to a substantial amount of computational load. This
research’s strength lies in developing innovative models with fewer residual blocks and weight layers,
resulting in reduced computational requirements while achieving improved accuracy in disease diagnosis
compared to the ResNet, Densenet, and Inception architectures. In the future, addressing this limitation
could involve the implementation of an optimization algorithm to choose the most influential features.
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