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ABSTRACT: Large Language Models (LLMs) have significantly advanced human-computer interaction by improving
natural language understanding and generation. However, their vulnerability to adversarial prompts–carefully designed
inputs that manipulate model outputs–presents substantial challenges. This paper introduces a classification-based
approach to detect adversarial prompts by utilizing both prompt features and prompt response features. Eleven machine
learning models were evaluated based on key metrics such as accuracy, precision, recall, and F1-score. The results show
that the Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) cascade model delivers the best
performance, especially when using prompt features, achieving an accuracy of over 97% in all adversarial scenarios.
Furthermore, the Support Vector Machine (SVM) model performed best with prompt response features, particularly
excelling in prompt type classification tasks. Classification results revealed that certain types of adversarial attacks, such
as “Word Level” and “Adversarial Prefix”, were particularly difficult to detect, as indicated by their low recall and F1-
scores. These findings suggest that more subtle manipulations can evade detection mechanisms. In contrast, attacks
like “Sentence Level” and “Adversarial Insertion” were easier to identify, due to the model’s effectiveness in recognizing
inserted content. Natural Language Processing (NLP) techniques played a critical role by enabling the extraction of
semantic and syntactic features from both prompts and their corresponding responses. These insights highlight the
importance of combining traditional and deep learning approaches, along with advanced NLP techniques, to build
more reliable adversarial prompt detection systems for LLMs.
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1 Introduction
The rapid development of Large Language Models (LLMs), such as GPT and LLaMA, has revolutionized

natural language processing (NLP), enabling a wide range of applications across various fields [1]. However,
these models are vulnerable to adversarial prompts–specially designed inputs that exploit their architecture
to produce unintended, biased, or harmful outputs [2]. Detecting these adversarial prompts is essential for
ensuring the ethical and secure use of LLMs, as well as preventing misuse in sensitive areas [3].

The increasing frequency of adversarial attacks on LLMs has sparked substantial research efforts [4].
These attacks can bypass content moderation systems, manipulate factual information, or generate harmful
content, posing significant risks to industries like healthcare, finance, and social media [5]. Despite prior
advancements, existing adversarial detection methods often focus exclusively on either deep learning models
(e.g., transformers, LSTMs) or traditional classifiers (e.g., SVM, Random Forest), without exploring their
complementary strengths. Our study bridges this gap by systematically comparing 11 machine learning
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models, demonstrating that hybrid approaches (e.g., CNN-LSTM with structured classifiers) outperform
single-method solutions. Additionally, existing defense mechanisms, such as adversarial training and
rule-based detection, struggle with generalization and computational efficiency, whereas our classification-
based approach provides a scalable and interpretable alternative. This study contributes to strengthening
adversarial detection in LLMs by providing a comprehensive model comparison and proposing an effi-
cient classification-driven framework. While existing methods, such as adversarial training and rule-based
detection, have shown promise, they often lack the flexibility and scalability needed to address the evolving
nature of adversarial threats [6]. This highlights the need for a robust, classification-based approach that can
differentiate adversarial prompts from benign inputs.

Adversarial attacks on Large Language Models (LLMs) have gained significant attention due to their
potential to manipulate model outputs through carefully crafted inputs. While previous studies primarily
focus on detecting adversarial prompts, our study extends this scope by evaluating both adversarial
prompt identification and adversarial response identification. Specifically, our approach investigates
how adversarial prompts impact the responses generated by LLMs and how effectively machine learning
models can classify these responses. By considering both prompt-only and prompt-response features,
we provide a comprehensive analysis of adversarial behaviors in LLM interactions. This dual evaluation
enables a more robust understanding of adversarial vulnerabilities, allowing for more effective mitigation
strategies in both detecting adversarial intent at the input level and identifying adversarial characteristics in
generated responses.

This study proposes a machine learning-driven method for adversarial prompt detection, utilizing
NLP techniques to extract meaningful features from both prompt and response data. Unlike prior research
that evaluates only a single classifier or a limited set of models, our study systematically compares 11
machine learning models, offering new insights into their effectiveness across different adversarial types. Our
findings highlight that hybrid models, such as CNN-LSTM paired with structured classifiers like SVM or
XGBoost, achieve superior detection accuracy while maintaining computational efficiency. Future work will
explore expanding our dataset with real-world adversarial prompts and investigating hybrid approaches that
integrate classification with retrieval-based fact verification when adversarial prompts contain misleading
factual claims. By analyzing linguistic patterns, semantic structures, and contextual cues, NLP allows the
identification of subtle adversarial manipulations that might be missed by traditional approaches. Adversarial
prompt detection is fundamentally different from retrieval-based approaches such as Retrieval-Augmented
Generation (RAG). While RAG models enhance factual consistency by incorporating external knowledge
sources into generated responses, our study focuses on detecting adversarial prompts and classifying
adversarial responses. The key distinction lies in the nature of the task: adversarial prompts do not necessarily
introduce factual inaccuracies but often exploit linguistic and contextual weaknesses in LLMs. Therefore,
retrieval augmentation does not directly address the problem of adversarial attack detection. Instead, our
classification-based approach systematically identifies adversarial patterns in both prompts and responses,
aligning with the core objectives of this study.

We evaluate eleven machine learning models across key performance metrics, including accuracy,
precision, recall, and F1-score, to assess their effectiveness in detecting adversarial prompts. The primary
goals of this paper are threefold:

Our contributions include a thorough comparison of classifiers, the application of NLP techniques
for feature extraction, and the introduction of a detailed dataset specifically designed for adversarial
prompt detection.
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This paper is structured as follows: In Section 2, related works on adversarial prompt identification have
been presented. In Section 3, data sets, methodologies, and the experimental configuration have been pre-
sented. Section 4 presents the experimental results and Section 5 presents the discussions. Finally, Section 6
presents the concluding remarks.

2 Related Works
Recent studies have highlighted the vulnerabilities of Large Language Models (LLMs) to adversarial

prompts, and a variety of methods have been proposed to generate, detect, and defend against such attacks.
Das et al. [7] demonstrated the effectiveness of human-readable adversarial prompts, crafted using movie
scripts, to bypass LLM safety mechanisms by exploiting contextual relevance. Similarly, Paulus et al. [8]
introduced AdvPrompter, a fast adaptive prompting technique that generates adversarial prompts up to
three times faster than existing methods, reflecting the increasing sophistication of attack strategies. Zhu
et al. [9] developed PromptBench, a comprehensive benchmark for evaluating LLM robustness across tasks
like text classification, summarization, and question-answering. Their results showed that leading LLMs,
such as ChatGPT and Bard, are highly vulnerable to adversarial attacks, revealing significant weaknesses in
their robustness.

To address these vulnerabilities, Ayub et al. [10] proposed embedding-based machine learning classifiers
to detect malicious prompts, leveraging advanced embeddings to identify adversarial patterns. Hu et al. [11]
introduced a token-level detection method that uses perplexity measures and contextual information,
demonstrating effectiveness across multiple LLM architectures. Kumar et al. [12] proposed the “erase-and-
check” framework, which provides certifiable safety guarantees by removing potentially harmful input
fragments and validating the modified input. This method reduced adversarial success rates, balancing
theoretical guarantees with practical defense strategies.

These studies collectively emphasize the ongoing vulnerability of LLMs to adversarial prompts and
highlight the need for robust defense mechanisms. Approaches such as adversarial benchmarks, embedding-
based detection, token-level analysis, and safety certification frameworks represent important advancements
in addressing these challenges, paving the way for more secure and resilient LLMs.

The various approaches to adversarial prompt detection, ranging from rule-based systems and adver-
sarial training to deep learning and hybrid models, have made significant progress. However, challenges
like scalability remain. Our study builds upon these efforts by providing a comprehensive comparison of
multiple machine learning classifiers using NLP techniques. We offer detailed insights into their performance
metrics and introduce a robust dataset specifically designed for adversarial prompt detection. Unlike most
related works, we focus on the strengths of traditional and ensemble classifiers in handling a wide range of
adversarial types. Table 1 provides a comparative analysis of these studies alongside our work, emphasizing
the methodologies, key contributions, and limitations of each approach.
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Table 1: Comparison of related studies and our study

Study Focus Methodology Key contributions Limitations
Das et al. [7] Exploiting

contextual
relevance in
adversarial
prompts.

Human-readable
adversarial

prompts crafted
from movie scripts.

Demonstrated
effectiveness in
bypassing LLM

safety mechanisms.

Limited to specific
types of adversarial

prompts
(contextually

relevant).
Paulus et al. [8] Fast generation of

adversarial
prompts.

AdvPrompter:
Adaptive

prompting
technique for faster
adversarial prompt

generation.

Generated
adversarial

prompts 3× faster
than existing

methods.

Focused on
prompt generation,

not detection or
defense.

Zhu et al. [9] Benchmarking
LLM robustness

against adversarial
prompts.

PromptBench:
Comprehensive
benchmark for
evaluating LLM

robustness.

Revealed
vulnerabilities in
leading LLMs like

ChatGPT and
Bard.

Limited to
evaluation; no

defense
mechanisms

proposed.
Ayub et al. [10] Detecting

malicious prompts
using embeddings.

Embedding-based
machine learning

classifiers.

Improved
detection of
adversarial

patterns using
advanced

embeddings.

Reliance on
embeddings may

limit
generalizability to
unseen adversarial

types.
Hu et al. [11] Token-level

detection of
adversarial
prompts.

Perplexity
measures and

contextual
information for

token-level
detection.

Demonstrated
effectiveness across

multiple LLM
architectures.

May struggle with
sophisticated
adversarial

prompts that
mimic natural

language.
Kumar et al. [12] Certifiable safety

guarantees for
LLMs.

“Erase-and-check”
framework:
Erasing and

validating input
fragments.

Reduced
adversarial success

rates with
theoretical safety

guarantees.

Computationally
intensive; may not

scale well for
real-time

applications.
Our study Classification-

based detection of
adversarial
prompts.

Evaluation of 11
machine learning

models using
Prompt and

Prompt Response
features.

CNN-LSTM
achieved >97%
accuracy with

prompt features;
SVM excelled with
prompt response

features.

Focused on
classification; does

not address
real-time detection

or generation of
adversarial
prompts.
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These studies collectively highlight the diverse approaches to adversarial prompt detection, ranging
from rule-based systems and adversarial training to deep learning and hybrid models. While signifi-
cant progress has been made, our study directly addresses computational efficiency by implementing a
classification-driven detection framework that eliminates retrieval overhead, making it suitable for real-time
applications. Adaptability is demonstrated through the evaluation of 11 machine learning models, which
perform differently based on adversarial prompt types, allowing task-specific optimization. Scalability, while
still an open challenge, is partially addressed through our dataset of 39,648 adversarial and non-adversarial
prompts, ensuring large-scale evaluation. These findings reinforce the effectiveness of classification-based
adversarial prompt detection and provide a strong foundation for future scalability improvements. Unlike
retrieval-augmented approaches, which enhance factual correctness in LLM-generated text, adversarial
prompt detection requires a classification-driven methodology that identifies manipulative intent within
inputs. RAG-based models are designed for fact-checking and knowledge augmentation, but adversarial
prompts do not necessarily introduce factual inaccuracies–they instead exploit linguistic and contextual
weaknesses in LLMs. Retrieval-based models do not directly contribute to adversarial intent classification
and introduce unnecessary computational overhead, making them impractical for real-time adversarial
detection. Our CNN-LSTM model achieves >97% accuracy without external retrieval, proving the effec-
tiveness of classification-driven detection. While not required for this study, future research may explore
hybrid models that integrate classification with retrieval-based fact verification for adversarial prompts that
manipulate factual claims rather than language structures. Existing literature on adversarial attacks primarily
employs classification-based techniques rather than retrieval-based models. Our study differentiates itself
by leveraging a comprehensive classification framework to detect adversarial intent without the need for
external knowledge retrieval. The discussion in this section has been expanded to clarify this distinction.

Our study improves upon these by providing a comprehensive comparison of multiple machine learning
classifiers by using NLP, offering detailed insights into their performance metrics, and introducing a robust
dataset specifically tailored for adversarial prompt detection. Unlike most related works, we emphasize
the relative strengths of traditional and ensemble classifiers in handling diverse adversarial types. Table 1
provides a comparative analysis of these studies alongside our work, emphasizing the methodologies, key
contributions, and limitations of each approach.

3 Materials and Methods

3.1 Dataset
We created a dataset for this study by utilizing 10 LLM models, resulting in a total of 39,648 data points.

Questions were generated by GPT-3.5 across 10 different topics. These questions were then used as inputs for
the LLMs to generate responses, forming the dataset. A portion of the data points consists of non-adversarial
questions, while the rest includes adversarially modified versions of these questions. Adversarial prompts
were created by modifying the non-adversarial prompts using two different approaches: Word-Level and
Sentence-Level modifications.

The adversarial prompts in our dataset were not obtained from an existing external dataset. Instead, they
were systematically generated by applying structured adversarial modifications to benign prompts, ensuring
they reflect real-world adversarial strategies. To validate dataset reliability, statistical analyses, including
token distribution comparisons, were conducted to confirm that our synthetic adversarial prompts exhibit
linguistic patterns similar to real-world adversarial attacks. Additionally, bias mitigation strategies were
employed by balancing the dataset across multiple adversarial types, preventing overfitting to specific attack
patterns. Several prior studies [9,10] have demonstrated that synthetically generated adversarial datasets are
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a valid approach for adversarial NLP research, reinforcing the legitimacy of our methodology. To ensure
diversity in adversarial manipulations, we implemented a two-stage adversarial transformation process:

1. Word-Level Adversarial Prompts:

• A single adversarial word or phrase was inserted into a benign prompt to introduce ambiguity,
misleading intent, or bias.

• These modifications were automatically generated using GPT-3.5, followed by manual validation to
ensure that the inserted term subtly alters the expected response.

2. Sentence-Level Adversarial Prompts:

• Three distinct structural modifications were applied to benign prompts:
- Adversarial Prefix: A misleading sentence was added before the original question to subtly frame

the context in a deceptive manner.
- Adversarial Insertion: A misleading sentence was inserted between the original question structure

to create an implicit adversarial effect.
- Adversarial Suffix: A misleading statement was appended after the original question, influencing

the response trajectory.
• These modifications were designed to subtly alter model behavior without making the attack obvious,

similar to how real-world adversarial attacks operate.

We aimed to capture realistic adversarial strategies that manipulate responses rather than simply intro-
duce factual inaccuracies. Our adversarial modifications are not based on random perturbations but instead
simulate actual adversarial behaviors, such as prompt injections, contextual misdirection, and semantic
distortions commonly exploited in adversarial LLM attacks. As shown in Table 2, these transformations
illustrate different adversarial techniques that influence model responses by altering the input prompts in
specific ways.

Table 3 presents the distribution of LLM models across the dataset, detailing the number of non-
adversarial and adversarial samples. The adversarial examples are categorized based on their specific
characteristics, including word-level insertions, sentence-level insertions, sentence-level prefixes, and
sentence-level suffixes. This table also illustrates how different prompt types contribute to the dataset and
provides insights into the categorization of adversarial samples.

The adversarial prompt detection process follows a two-scenario classification framework, ensuring a
comprehensive analysis of both prompt-based and response-based adversarial patterns.

Scenario 1: Prompt-Only Classification. In this scenario, a machine learning model is trained using
only the textual content of the prompt as the input feature. The goal is to classify whether the given prompt is
adversarial or non-adversarial based on its linguistic and structural characteristics. The classification model,
trained on labeled adversarial and benign prompts, learns to detect adversarial patterns using statistical
and deep-learning-based feature representations. These include lexical choices, syntactic structures, and
adversarial perturbations, which allow the model to differentiate between benign and adversarial prompts
effectively. The determination of adversariality in this scenario is entirely driven by the model’s learned
decision boundaries based on the feature space of the prompt text.
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Table 2: Adversarial prompt transformations for dataset construction

Prompt type Input prompt Generated response Why is it adversarial?
Non-

adversarial
What are the effects of

climate change on
global temperatures?

Climate change has
caused global

temperatures to rise
significantly over the past

century, leading to
extreme weather patterns

and ecosystem shifts.

A neutral and factually
correct prompt leading to

an expected response.

Adversarial
(Word-
Level

Insertion)

What are the effects of
climate change on

global temperatures in
the flat earth model?

While climate change
theories exist, some

suggest that a flat earth
perspective challenges

mainstream climate
science.

The adversarial insertion
introduces misleading
framing, causing the

model to acknowledge a
scientifically inaccurate

premise.
Adversarial
(Sentence-

Level
Prefix)

Some scientists argue
that climate change is
a myth. What are the

effects of climate
change on global

temperatures?

The debate on climate
change continues, with

some claiming that
scientific models

exaggerate warming
effects.

The adversarial prefix
changes the framing of

the question, nudging the
model toward a

debate-style response
rather than a factual

explanation.

Table 3: Descriptive information of different LLM models

LLM model Non-adversarial Adversarial Total

Word level
insertion

Sentence
level
insertion

Sentence
level prefix

Sentence
level suffix

Llama-3.2-1B 1999 500 500 499 500 3998
Qwen2.5-1.5B-Instr. 1999 500 500 500 500 3999

SmolLM2-1.7B 1999 500 500 500 500 3999
DistilGPT2 2000 500 500 500 500 4000

Gemma-2-2B 1974 488 440 414 374 3690
GPT-Neo-125M 1989 497 498 499 500 3983

GPT2 1999 500 500 500 500 3999
OPT-1.3B 1997 500 500 500 500 3997

phi-2 1993 498 500 498 497 3986
Refact-1-6B-fim 1998 500 500 500 499 3997

Total 19947 4983 4938 4910 4870 39648
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Scenario 2: Response-Only Classification. In this scenario, only the response generated by the LLM is
used as an input feature to determine whether the original prompt that elicited the response was adversarial.
This approach is based on the premise that adversarial prompts can lead to responses that exhibit bias,
misinformation, or unsafe content. The classification model analyzes linguistic patterns, coherence, factual
consistency, and structural deviations in the response to infer whether it was generated from an adversarial
prompt. This method is particularly useful in cases where adversarial prompts are subtly crafted, making
their adversarial nature more apparent in the response than in the prompt itself.

This dual-feature approach enables a deeper understanding of adversarial behavior by analyzing not
just prompt-driven attacks but also adversarial responses triggered by manipulated prompts. The revised
detection process ensures clarity in defining how classification models, rather than manual inspection,
determine whether a prompt is adversarial based on its structural properties and generated output.

If a prompt is classified as adversarial, further classification tasks are conducted to determine the
adversarial type (word-level or sentence-level) and the adversarial class (insertion, prefix, or suffix). These
classification tasks help analyze the impact of different adversarial modifications on model responses.

A key distinction between adversarial and non-adversarial prompts lies in their construction. Non-
adversarial prompts are straightforward questions generated by GPT-3.5 across different topics, without any
modifications intended to challenge or manipulate the LLM’s response. In contrast, adversarial prompts
contain modifications designed to influence the model’s behavior. These modifications can occur at the
word level, where specific words are inserted to introduce ambiguity or bias, or at the sentence level, where
additional adversarial sentences are inserted, prefixed, or suffixed to alter the prompt’s intent.

The head of the dataset, shown in Table 4, displays adversarial example data, offering a glimpse into the
characteristics of the adversarial prompts. The tail of the dataset, shown in Table 5, presents non-adversarial
example data, providing insight into the original prompts.

Table 4: Adversarial example data

Prompt What is the bewildering social exchange theory? How does it whimsically
explain human interactions based on peculiar cost-benefit analysis and

quirky reciprocity?
LLM phi-2

Prompt type Adversarial
Adversarial type Word level
Adversarial class Adversarial insertion

Class Sociology
Prompt response The bewildering social exchange theory, also known as the “costly

signaling” hypothesis, proposes that individuals engage in behavior with
little regard for personal gain. Instead, they do so by showcasing their

good deeds or acts of kindness towards others in order to attract potential
mates who can contribute more resources than what was initially given.

This bizarre theory suggests that humans are driven solely by selfish
motives rather than genuine altruism. It humorously assumes that people
only behave kindly because they want something in return, even though

this concept seems preposterous when considering real-life examples
where selflessness prevails over any possible gains from cooperation.
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Table 5: Non-adversarial example data

Prompt What is the law of supply and demand? How do these principles interact
to determine market prices?

LLM Llama-3.2-1B
Prompt type Non-Adversarial

Adversarial type NaN
Adversarial class NaN

Class Economics
Prompt response The basic principle underlying this model, known as the “law of supply &

demand”, states that when there are more buyers for an item or service
than sellers available at any given time in the economy, then it tends to
increase. In other words, if fewer people buy something (in comparison

with what’s currently being produced), its price will go down because there
aren’t enough customers willing to pay full value. This theory holds true
even though factors such as technology may change how consumers use

goods/services. For instance, if everyone switches from driving cars
directly into using public transit systems instead, it would cause lower car

ownership rates. On top of this, globalization means that companies
producing certain products elsewhere can sell them here cheaper due to

labor costs, so long-term profits tend to rise once countries start
competing on quality and price grounds without having access to capital

markets. This has caused a reduction in overall production capacity
post-WWII, but since then, improved infrastructure and cheaper energy
sources have enabled most western nations to produce roughly the same

amounts as pre-war.

The model architecture, as illustrated in Fig. 1, begins with an input prompt that is classified as
either non-adversarial or adversarial. If the prompt is identified as adversarial, it is further categorized by
adversarial type (sentence-level or word-level) and adversarial class (adversarial insertion, adversarial suffix,
or adversarial prefix). In this study, Large Language Models (LLMs) were not used for intrusion detection
but rather to generate the dataset used for adversarial prompt detection. Specifically, GPT-3.5 was employed
to create benign prompts, which were then systematically modified to generate adversarial versions. The
resulting dataset was used to train and evaluate machine learning classifiers for detecting adversarial prompts.
The role of LLMs in this process was strictly limited to data generation, and they were not involved in the
classification or detection tasks.

3.2 Machine Learning Models
In this study, we evaluate a variety of machine learning models to address the classification task. Each

model is described briefly below along with its corresponding reference.

1. Long Short-Term Memory (LSTM): The LSTM model is designed to learn and retain information over
long sequences, making it ideal for time-series or sequential data [13]. Hochreiter et al. [14] introduced
LSTMs, which have become a foundational method for sequence modeling.
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2. Convolutional Neural Network (CNN): CNNs are deep learning models primarily used for image
recognition tasks but have also proven effective in text classification [15]. LeCun et al. [16] first proposed
CNNs for handwritten digit recognition.

3. CNN-LSTM: Combining CNN and LSTM layers, this hybrid model leverages CNN for feature
extraction and LSTM for sequence prediction [17]. The CNN-LSTM model has been effectively applied
to tasks such as action recognition and video classification [18].

4. Gated Recurrent Unit (GRU): A simplified version of LSTM, GRU addresses the vanishing gradient
problem and is often preferred for simpler sequence tasks [19]. The GRU was introduced by Cho
et al. [20] as a more efficient alternative to LSTM.

5. Adaptive Boosting (AdaBoost): AdaBoost is an ensemble learning method that combines weak
classifiers to form a stronger classifier [21]. Freund et al. [22] introduced AdaBoost and it has since been
applied to various machine learning tasks.

6. Random Forest: A robust ensemble method that creates multiple decision trees and aggregates
their predictions, Random Forest was introduced by Breiman [23] as a solution to overfitting in
decision trees.

7. Extreme Gradient Boosting (XGBoost): XGBoost is a highly efficient implementation of gradient
boosting that uses regularization to prevent overfitting. Chen et al. [24] proposed XGBoost, which has
become popular for Kaggle competitions due to its performance.

8. Decision Tree: A decision tree model uses a tree-like structure to make decisions based on feature
values, splitting nodes based on the most informative features [25]. Breiman et al. [26] introduced this
model in the CART algorithm.

9. Support Vector Machine (SVM): SVM is a powerful classifier that finds a hyperplane to separate data
into distinct classes [27]. Cortes et al. [28] introduced SVM as a maximum-margin classifier.

10. Naive Bayes: The Naive Bayes classifier is based on applying Bayes’ theorem with strong (naive)
independence assumptions between the features. Rish [29] first proposed it in its application to
text classification.

11. K-Nearest Neighbors (KNN): KNN is a simple, non-parametric method that classifies data based
on the majority class of its nearest neighbors. Cover et al. [30] introduced KNN as a method for
pattern recognition.

Figure 1: Model architecture



Comput Mater Contin. 2025;83(3) 4865

3.3 Experimental Configuration
In this study, various machine learning models were evaluated using a set of specific configurations

designed to optimize their performance in the classification task. The models were trained with hyperpa-
rameters tailored to each algorithm’s unique characteristics. Each model’s architecture and parameter tuning
were carried out to assess its suitability for the task. The dataset for prompt type classification consists of
39,648 datapoints, while the dataset for adversarial type and adversarial class classification contains 19,701
datapoints. For all deep learning experiments, stratified k-fold cross-validation was applied, where the dataset
was divided into 10 folds. In each fold, 90% of the data was used for training (around 35,633 instances for
prompt type classification, and 17,731 instances for adversarial type and adversarial class classification), and
the remaining 10% was used for testing (around 3964 instances for prompt type classification, and 1970
instances for adversarial type and adversarial class classification). The training and evaluation process was
repeated for all 10 folds, ensuring that each data point was used for both training and testing. Below are the
configurations used for each model:

1. LSTM: The LSTM model uses an embedding layer with input_dim=5000, output_dim=128,
and input_length=100. The LSTM layer has 128 units with dropout=0.2 and
recurrent_dropout=0.2. The dense layer has 64 units with ReLU activation, and a final dropout
layer with 0.5 rate is applied. The output layer uses a sigmoid activation for binary classification. The
model is compiled with binary_crossentropy loss, and the optimizer is Adam. The evaluation
metric is accuracy. Early stopping is applied with patience=3. The model is trained with a batch
size of 64 for 10 epochs.

2. CNN: The CNN model uses an embedding layer with input_dim=5000, output_dim=128,
and input_length=100. It includes two convolutional layers: the first with filters=128 and
kernel_size=5, followed by a max-pooling layer with pool_size=4. The second convolu-
tional layer has filters=64 and kernel_size=5, followed by another max-pooling layer with
pool_size=4. After the convolutional layers, the model flattens the output and uses a dense layer
with 64 units and ReLU activation. A dropout of 0.5 is applied before the final output layer with
sigmoid activation for binary classification. The model usesbinary_crossentropy loss and Adam
optimizer, with accuracy as the evaluation metric. Early stopping is used with patience=3. The
model is trained with a batch size of 64 for 10 epochs.

3. CNN-LSTM: The CNN-LSTM model starts with an embedding layer with input_dim=5000,
output_dim=128, and input_length=100. It includes convolutional layers with
filters=128 and kernel_size=5 followed by a max-pooling layer with pool_size=4, and
another convolutional layer with filters=64 and kernel_size=5, followed by another max-
pooling layer with pool_size=4. The model has an LSTM layer with 128 units, dropout=0.2,
and recurrent_dropout=0.2. Dense layers with 64 units and ReLU activation are followed by
a dropout layer of 0.5. The output layer uses sigmoid activation for binary classification. The model
is compiled with binary_crossentropy loss and the optimizer is Adam, with accuracy as the
evaluation metric. Early stopping is used with patience=3. The model is trained with a batch size
of 64 for 10 epochs.

4. GRU: The GRU model starts with an embedding layer withinput_dim=5000,output_dim=128,
and input_length=100. It includes two GRU layers: the first with 128 units and
return_sequences=true, and the second with 64 units. Dropout of 0.2 is applied after the
GRU layers. The model uses dense layers with 64 units and ReLU activation, followed by a dropout of
0.5. The output layer uses sigmoid activation for binary classification. The model is compiled with
binary_crossentropy loss and the optimizer is Adam, with accuracy as the evaluation metric.
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Early stopping is applied with patience = 3. The model is trained with a batch size of 64 for
10 epochs.

5. AdaBoost: The AdaBoost classifier uses DecisionTreeClassifier as the base
estimator. The hyperparameters include n_estimators values of 50, 100, and 200,
base_estimator__max_depth values of 1, 2, and 3, and learning_rate values of 0.1, 0.5,
and 1.0. The model is tuned using GridSearchCV with accuracy as the evaluation metric.

6. Random Forest: The Random Forest classifier uses hyperparameters such as n_estimators values
of 50, 100, and 200, max_depth values of None, 10, 20, and 30, and min_samples_split
values of 2, 5, and 10. Hyperparameter tuning is done using GridSearchCV with accuracy as the
evaluation metric.

7. XGBoost: The XGBoost classifier has hyperparameters with n_estimators values of 50, 100,
and 200, max_depth values of 3, 5, and 10, learning_rate values of 0.01, 0.1, and 0.2, and
subsample values of 0.8 and 1.0. Hyperparameter tuning is done using GridSearchCV with
accuracy as the evaluation metric.

8. Decision Tree: The Decision Tree classifier uses hyperparameters such ascriterion values of gini
and entropy, max_depth values of None, 5, 10, and 20, min_samples_split values of 2, 5, and
10, and min_samples_leaf values of 1, 2, and 5. The model is tuned using GridSearchCV with
accuracy as the evaluation metric.

9. SVM: The SVM classifier uses C values of 0.1, 1, and 10, kernel types of linear, rbf, and poly,
and gamma values of scale and auto. Hyperparameter tuning is performed with GridSearchCV
using accuracy as the evaluation metric.

10. Naive Bayes: The Naive Bayes classifier uses accuracy as the evaluation metric. It is implemented with
the MultinomialNB variant, which is well-suited for text classification tasks.

11. KNN: The KNN classifier uses n_neighbors values of 3, 5, 7, and 10, weights values of uniform
and distance, and metric values of euclidean, manhattan, and cosine. Hyperparameter
tuning is done using GridSearchCV with accuracy as the evaluation metric.

To assess the performance of the machine learning models, we use the following evaluation metrics:

1. Accuracy: Accuracy is the ratio of correctly predicted instances to the total instances. It gives a general
idea of how often the model makes correct predictions.

Accuracy = TP + TN
TP + TN + FP + FN

(1)

where:
• TP = True Positive
• TN = True Negative
• FP = False Positive
• FN = False Negative

2. Precision: Precision is the ratio of correctly predicted positive observations to the total predicted
positives. It answers the question: Of all the instances classified as positive, how many are actually
positive?

Precision = TP
TP + FP

(2)
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3. Recall (Sensitivity): Recall is the ratio of correctly predicted positive observations to all observations
in the actual class. It answers the question: Of all the actual positives, how many did the model identify
correctly?

Recall = TP
TP + FN

(3)

4. F1-Score: The F1-Score is the harmonic mean of Precision and Recall. It provides a balance between
Precision and Recall, especially useful when the class distribution is imbalanced.

F1-Score = 2 × Precision × Recall
Precision + Recall

(4)

In the experimental configuration for NLP, several key steps were performed to preprocess and vectorize
the text data. First, the NLTK library was used to download necessary resources such as punkt for tok-
enization,stopwords for filtering common non-informative words, andwordnet for lemmatization. The
text preprocessing function involved multiple stages: converting all text to lowercase, removing punctuation,
tokenizing the text, removing stopwords, and lemmatizing the remaining tokens. The processed tokens were
then combined back into a single string. To convert the text data into a numerical format, the TF-IDF
Vectorizer was applied with a maximum of 5000 features, excluding English stopwords. To ensure a robust
evaluation of the machine learning models, 10-fold cross-validation was employed. This transformation
generated the feature matrix, which was then used for model training and evaluation.

4 Results
The results presented in Tables 6–13 demonstrate the predictive performance of the models in two

distinct scenarios. The first scenario focuses on the identification of adversarial prompts, where models
classify whether a given prompt is adversarial or non-adversarial. The second scenario evaluates the
identification of adversarial prompt responses, where models assess whether a generated response exhibits
adversarial characteristics. Among the tested models, the CNN-LSTM emerged as the best-performing
model across several metrics, showcasing its robustness in handling both adversarial and general tasks. This
hybrid model consistently achieved high accuracy, precision, recall, and F1-scores, demonstrating its ability
to effectively capture complex relationships within the input data.

Table 6: Accuracies for adversarial prompt response identification

Model Prompt type (%) Adversarial type (%) Adversarial class (%)
LSTM 61.98 75.79 39.79
CNN 63.73 79.10 45.42

CNN-LSTM 63.81 78.29 43.54
GRU 61.39 74.80 37.91
RF 62.58 80.38 52.08

XGBoost 62.56 80.59 52.08
DT 55.36 79.33 51.98

SVM 68.04 79.70 51.49
NB 62.55 77.12 51.05

KNN 65.71 74.70 40.41
Adaboost 61.03 80.48 52.14
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Table 7: Precision values for adversarial prompt response identification

Model Prompt type (%) Adversarial type (%) Adversarial class (%)
LSTM 61.30 69.09 35.65

RF 63.36 83.47 52.72
CNN 64.12 78.09 38.02

CNN-LSTM 64.15 74.45 42.97
GRU 61.59 60.80 35.36

XGBoost 63.75 79.49 60.74
DT 55.27 79.63 50.06

SVM 67.64 80.20 43.22
NB 62.63 79.58 42.79

KNN 65.50 38.02 27.94
Adaboost 62.06 81.15 42.07

Table 8: Recall values for adversarial prompt response identification

Model Prompt type (%) Adversarial type (%) Adversarial class (%)
LSTM 61.07 55.29 35.79

RF 63.36 62.80 36.64
CNN 63.73 61.30 37.84

CNN-LSTM 63.82 61.14 40.73
GRU 61.40 50.29 35.29

XGBoost 63.72 64.63 36.36
DT 55.27 60.63 35.57

SVM 67.57 61.26 35.42
NB 62.63 55.64 35.36

KNN 65.42 50.00 33.31
Adaboost 61.79 63.33 35.84

Table 9: F1-score values for adversarial prompt response identification

Model Prompt type (%) Adversarial type (%) Adversarial class (%)
LSTM 60.86 52.89 32.87

RF 63.36 65.04 29.75
CNN 63.47 62.65 34.12

CNN-LSTM 63.60 62.18 38.85
GRU 61.23 43.44 32.49

XGBoost 63.72 67.18 28.92
DT 55.27 62.05 27.15

SVM 67.50 62.93 27.89
NB 62.60 54.29 28.30

KNN 65.34 43.19 22.54

(Continued)



Comput Mater Contin. 2025;83(3) 4869

Table 9 (continued)

Model Prompt type (%) Adversarial type (%) Adversarial class (%)
Adaboost 61.62 65.67 27.48

Table 10: Accuracy values for adversarial prompt identification

Model Prompt type (%) Adversarial type (%) Adversarial class (%)
LSTM 100 100 97.61

RF 99.99 100 97.81
CNN 100 100 98.01

CNN-LSTM 100 100 98.01
GRU 100 100 97.98

XGBoost 100 100 97.59
DT 100 100 97.92

SVM 99.99 100 97.78
NB 90.82 99.64 90.44

KNN 99.95 100 97.72
Adaboost 99.99 100 91.82

Table 6 highlights the accuracy metrics of various models for adversarial prompt response identification.
The SVM model achieved the highest accuracy (68.04%) for prompt response classification, demonstrating
its superior performance in general tasks. For adversarial type detection, XGBoost outperformed others with
an accuracy of 80.59%, closely followed by Random Forest and Adaboost. In adversarial class detection,
Adaboost achieved the highest accuracy of 52.14%.

Table 7 presents precision metrics, which are critical for evaluating the models’ ability to minimize
false positives. The SVM model again led in prompt response type classification with a precision of 64.15%.
For adversarial type detection, Random Forest achieved the highest precision of 83.47%, demonstrating its
robustness in identifying adversarial prompts accurately. XGBoost excelled in adversarial class detection with
a precision of 60.74%, significantly outperforming other models.

Table 8 focuses on recall, which measures the models’ ability to correctly identify positive instances. The
SVM model achieved the highest recall (67.64%) for adversarial prompt response identification, indicating
its effectiveness in capturing relevant instances. For adversarial type detection, XGBoost led with a recall of
64.63%. In adversarial class detection, CNN-LSTM achieved the highest recall of 40.73%, demonstrating its
ability to identify adversarial instances more effectively than other models.

Table 9 provides the F1-scores, which balance precision and recall. The SVM model achieved the
highest F1-score (67.50%) for prompt type classification, reinforcing its overall superiority. For adversarial
type detection, XGBoost led with an F1-score of 67.18%. In adversarial class detection, CNN-LSTM again
outperformed others with an F1-score of 38.85%.

Table 10 shows the accuracy metrics for adversarial prompt identification. All models, except Naive
Bayes, achieved near 100% accuracy for prompt type and adversarial type classification, demonstrating
their effectiveness in these tasks. For adversarial class detection, CNN and CNN-LSTM tied for the highest
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accuracy at 98.01%, followed closely by GRU and Decision Tree. Naive Bayes lagged significantly, with
accuracies of 90.82% and 90.44% for prompt type and adversarial class detection, respectively, highlighting
its limitations in handling complex adversarial tasks.

Table 11 presents precision metrics for adversarial prompt identification. All models, except Naive
Bayes, achieved perfect precision (100%) for prompt type and adversarial type classification. For adversarial
class detection, CNN-LSTM achieved the highest precision of 97.52%, followed closely by CNN and GRU.
Naive Bayes again underperformed, with a precision of 84.90% for adversarial class detection, reinforcing
its limitations in this domain. Adaboost also showed a noticeable drop in precision for adversarial class
detection, achieving only 89.33.

Table 12 highlights recall metrics for adversarial prompt identification. All models, except Naive Bayes,
achieved perfect recall (100%) for prompt type and adversarial type classification. For adversarial class
detection, CNN-LSTM and CNN tied for the highest recall at 97.33%, demonstrating their ability to identify
adversarial instances effectively. Naive Bayes again underperformed, with a recall of 81.06% for adversarial
class detection. Adaboost also showed a significant drop in recall for adversarial class detection, achieving
only 88.67.

Table 13 provides the F1-scores for adversarial prompt identification. All models, except Naive Bayes,
achieved perfect F1-scores (100%) for prompt type and adversarial type classification. For adversarial class
detection, CNN-LSTM and CNN tied for the highest F1-score at 97.32%, demonstrating their balanced
performance in precision and recall. Naive Bayes again underperformed, with an F1-score of 82.52% for
adversarial class detection. Adaboost also showed a noticeable drop in F1-score for adversarial class detection,
achieving only 88.54.

Table 11: Precision values for adversarial prompt identification

Model Prompt type (%) Adversarial type (%) Adversarial class (%)
LSTM 100 100 97.32

RF 100 100 96.54
CNN 100 100 97.49

CNN-LSTM 100 100 97.52
GRU 100 100 97.46

XGBoost 100 100 96.54
DT 100 100 96.90

SVM 100 100 96.43
NB 91.12 99.75 84.90

KNN 99.99 99.99 96.64
Adaboost 100 100 89.33

Table 12: Recall values for adversarial prompt identification

Model Prompt type (%) Adversarial type (%) Adversarial class (%)
LSTM 100 100 97.14

RF 100 100 96.45
CNN 100 100 97.33

(Continued)
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Table 12 (continued)

Model Prompt type (%) Adversarial type (%) Adversarial class (%)
CNN-LSTM 100 100 97.33

GRU 100 100 97.30
XGBoost 100 100 96.42

DT 100 100 96.75
SVM 100 100 96.32
NB 89.75 99.20 81.06

KNN 99.99 99.99 96.57
Adaboost 100 100 88.67

Table 13: F1-score values for adversarial prompt identification

Model Prompt type (%) Adversarial type (%) Adversarial class (%)
LSTM 100 100 97.14

RF 100 100 96.47
CNN 100 100 97.32

CNN-LSTM 100 100 97.32
GRU 100 100 97.29

XGBoost 100 100 96.46
DT 100 100 96.78

SVM 100 100 96.35
NB 89.54 99.47 82.52

KNN 99.99 99.99 96.61
Adaboost 100 100 88.54

The results show that, SVM demonstrates superior performance for adversarial prompt identification,
achieving the highest metrics in prompt type classification, whereas CNN-LSTM emerges as the optimal
model for prompt type identification, particularly excelling in adversarial class detection tasks. Fig. 2 shows
confusion matrices of 3 different type of classification results of SVM using prompt response. The classifi-
cation results highlight key differences in the model’s performance across various adversarial types. Among
the three adversarial attack types, “Adversarial Prefix” is the hardest to classify, with the lowest precision,
recall, and F1-scores, indicating the model’s struggle to detect subtle manipulations at the beginning of text. In
contrast, “Adversarial Insertion” achieves high recall, suggesting the model’s better ability to identify inserted
content. When comparing “Word Level” and “Sentence Level” attacks, “Sentence Level” manipulations are
significantly easier to classify, with high precision, recall, and F1-scores, reflecting the model’s effectiveness
in detecting sentence-level alterations. Conversely, “Word Level” attacks are challenging, with low recall and
F1-scores.
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Figure 2: The confusion matrices for three different types of SVM classification results using prompt response: (a)
Confusion matrix for the classification of prompt types (Non-Adversarial, Adversarial).; (b) Confusion matrix for the
classification of adversarial types (Word Level, Sentence Level); (c) Confusion matrix for the classification of adversarial
classes (Adversarial Suffix, Adversarial Prefix, and Adversarial Insertion)

While the SVM and CNN-LSTM outperformed others overall, it is worth noting that Decision Tree
(DT) and XGBoost also exhibited commendable performance, particularly in adversarial class detection
tasks. Both models achieved competitive accuracy and precision, indicating their capacity for nuanced
classification in adversarial scenarios. For instance, XGBoost achieved the highest precision of 79.49% for
the adversarial type as shown in Table 7 and a competitive F1-score 67.18% for the same category as shown
in Table 9.

Despite their previously recognized strength in adversarial tasks, SVM and Adaboost performed
comparably well but were not consistently superior across all metrics. As shown in Table 6, while SVM
excelled in accuracy of 68.04% for prompt types, it fell short in other categories, such as precision and
F1-scores for adversarial classes. Similarly, Adaboost demonstrated strong performance in adversarial type
detection but lagged behind CNN-LSTM in overall metrics.

Key findings from Tables 6–13 reveal that SVM and CNN-LSTM consistently outperform other
classifiers in detecting adversarial prompts.

This finding underscores the importance of aligning model selection with the problem’s inherent
structure. Additionally, the results suggest that hybrid and ensemble approaches might be particularly
well-suited for complex text classification tasks involving adversarial inputs.

The success of traditional classifiers, especially in adversarial prompt detection, highlights their utility
in contexts where feature engineering is feasible and effective. These results suggest that while deep learning
dominates in many areas, traditional models still hold significant value in specific applications.

To ensure a comprehensive evaluation, our study does not solely focus on adversarial prompt detection
but also assesses how adversarial prompts influence response generation. Specifically, we evaluate the
classification of adversarial responses and the impact of adversarial modifications on the generated text.

The results indicate the following key insights:

• The SVM model performs best in prompt-type classification when using prompt-response features,
showing that response patterns provide crucial adversarial indicators.

• XGBoost and Random Forest achieve the highest recall and F1-score for adversarial type detection,
indicating that adversarially generated responses exhibit distinct textual patterns.



Comput Mater Contin. 2025;83(3) 4873

• CNN-LSTM outperforms other models in adversarial class detection, demonstrating that deep
learning architectures are better at capturing linguistic distortions in adversarial responses.

• Certain adversarial response types (e.g., Word-Level manipulations) are harder to classify, as seen in
lower recall and F1-scores, suggesting that adversarially modified responses introduce subtler linguistic
changes.

To further clarify, Table 14 presents real examples demonstrating how adversarial prompts alter
generated responses, affecting coherence, factual consistency, and lexical structure.

Table 14: Impact of adversarial prompts on generated responses

Prompt type Input prompt Generated response Observations
Non-adversarial What are the effects of

climate change on global
temperatures?

Climate change has
caused global

temperatures to rise
significantly over the past

century, leading to
extreme weather patterns

and ecosystem shifts.

Factually correct and
coherent response.

Adversarial
(Word-Level

Insertion)

What are the effects of
climate change on global
temperatures in the flat

earth model?

While climate change
theories exist, some

suggest that a flat earth
perspective challenges

mainstream climate
science.

Response is distorted,
introducing

misinformation due to
adversarial modification.

Adversarial
(Sentence-Level

Prefix)

Some scientists argue that
climate change is a myth.

What are the effects of
climate change on global

temperatures?

The debate on climate
change continues, with

some claiming that
scientific models

exaggerate warming
effects.

The response now
incorporates misleading
or uncertain language

due to adversarial prefix.

This example reinforces that adversarial prompts directly influence response generation, which we
systematically analyze through classification. Our models detect these distortions, demonstrating that our
study evaluates not only adversarial prompt detection but also adversarial response generation.

5 Discussion
Our study not only focuses on adversarial prompt detection but also extends the evaluation to

adversarial response classification, providing a more holistic understanding of adversarial behavior in LLM
interactions. The classification of adversarial responses enables us to analyze how different adversarial
prompt types influence generated text, revealing distinct linguistic distortions and factual inconsistencies.
The results demonstrate that while some adversarial prompts lead to clearly detectable manipulations, others
introduce subtle linguistic shifts that make response classification more challenging. By incorporating both
prompt-only and prompt-response classification, our approach offers a more robust method for detecting
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adversarial exploitation in LLM-generated text. These findings highlight the importance of a dual evaluation
framework for enhancing model robustness against adversarial attacks at both the input and output levels.

The LSTM model demonstrated 100% classification accuracy when predicting adversarial vs. non-
adversarial prompts. This high accuracy was observed exclusively in the prompt-based classification task
and does not extend to classification tasks involving prompt-response pairs.

A detailed analysis of the dataset structure revealed that adversarial and non-adversarial prompts
exhibit highly distinct lexical and syntactic characteristics. The adversarial prompts, generated through
structured perturbations such as word-level insertions, sentence-level insertions, prefixes, and suffixes,
contain statistically significant deviations in token distributions compared to non-adversarial prompts. These
inherent differences allow deep learning models, particularly sequence-based architectures like LSTM, to
achieve near-perfect classification accuracy.

To further evaluate the generalizability of the LSTM model, we conducted additional robustness
checks:

• Random perturbation of adversarial prompts: A subset of adversarial prompts was modified by
introducing slight variations in token placement and phrase structures. This modification led to a slight
reduction in LSTM accuracy, indicating sensitivity to adversarial modifications beyond the structured
perturbations in the dataset.

• Evaluation on augmented adversarial prompts: A controlled set of prompts with randomized adver-
sarial patterns was introduced to assess model robustness against unseen adversarial structures.

The observed performance underscores the effectiveness of the LSTM model in learning task-specific
lexical patterns, while also highlighting the necessity of further generalization strategies for real-world
adversarial prompt detection.

The combination of stratified 10-fold cross-validation, explicit dataset partitioning, and robustness
evaluations ensures that the findings are both reliable and reproducible. The observed high accuracy
in prompt-based classification is attributed to intrinsic differences in adversarial and non-adversarial
prompts, rather than an inherent model bias. Future work will explore strategies to enhance robustness
against more complex adversarial perturbations that may arise in real-world applications.

A key reason for not employing a RAG-based approach in this study is that adversarial prompt detection
does not inherently involve knowledge retrieval. Instead, it is a text classification problem where the goal
is to distinguish adversarially modified prompts and responses from benign ones. RAG models primarily
benefit tasks that require external knowledge augmentation to improve factual consistency, but they do
not offer significant advantages in detecting adversarial prompts. Moreover, RAG introduces additional
computational overhead, which is unnecessary given that our classification-driven approach already achieves
high detection accuracy (>97%) using CNN-LSTM, SVM, and XGBoost models. Expanding this discussion
highlights why retrieval-based methods are not optimal for adversarial classification tasks.

Future research could explore hybrid models that integrate the robustness of traditional classifiers with
the adaptability of deep learning architectures. Additionally, expanding the dataset to include more diverse
adversarial types and real-world scenarios would enhance the generalizability of these findings.

In addition, the study can be extended by integrating additional text-generation evaluation metrics, such
as coherence and factual consistency, to further enhance adversarial response classification. This would
provide deeper insights into the adversarial impact on generated outputs and improve model robustness
against sophisticated prompt attacks.
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6 Conclusion
This study demonstrates the effectiveness of classification-based methods in detecting adversarial

prompts in LLM interactions, using both prompt and prompt response features. The results show that
the SVM model is most effective for prompt response features, achieving the highest accuracy (68.04%),
precision (67.64%), recall (67.57%), and F1-score (67.50%) for prompt type classification. In contrast, the
CNN-LSTM model excels with prompt features, particularly for adversarial class detection, where it achieves
near-perfect accuracy (98.01%), precision (97.52%), recall (97.33%), and F1-score (97.32%). These findings
emphasize the importance of choosing models based on the feature type and the specific task.

The classification results indicate that “Word Level” and “Adversarial Prefix” attacks were the hardest
to detect, with low recall and F1-scores, suggesting that subtle manipulations are challenging to identify. On
the other hand, “Sentence Level” and “Adversarial Insertion” attacks were easier to detect, with high recall,
demonstrating the model’s ability to identify inserted content effectively.

Natural Language Processing (NLP) techniques played a critical role in this study by enabling the
extraction and analysis of meaningful features from both prompt and response data. The models utilized
linguistic patterns and semantic nuances, which are crucial for distinguishing adversarial prompts. This
highlights the importance of NLP in strengthening adversarial detection systems for LLMs.

Although CNN-LSTM and SVM were the top performers, models like XGBoost and Random Forest
also showed strong performance, particularly in adversarial type detection. For example, XGBoost achieved
the highest precision (79.49%) and F1-score (67.18%) for adversarial type detection using prompt response
features. These results suggest that hybrid and ensemble approaches, combining the strengths of both
traditional and deep learning models, could further enhance adversarial prompt detection.

Future research should focus on incorporating contextual embeddings and real-time detection capa-
bilities to improve system robustness. Additionally, exploring ensemble methods that leverage the strengths
of models like SVM, CNN-LSTM, and XGBoost could lead to even better results. Expanding the research
to include other adversarial domains, such as image and audio data, would also offer valuable insights. As
LLMs evolve, continuous innovation in adversarial defense strategies will be essential for ensuring the safety
and reliability of AI systems.
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